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Abstract 

Computing the pairwise semantic similarity 
between all words on the Web is a compu-
tationally challenging task. Parallelization 
and optimizations are necessary. We pro-
pose a highly scalable implementation 
based on distributional similarity, imple-
mented in the MapReduce framework and 
deployed over a 200 billion word crawl of 
the Web. The pairwise similarity between 
500 million terms is computed in 50 hours 
using 200 quad-core nodes. We apply the 
learned similarity matrix to the task of au-
tomatic set expansion and present a large 
empirical study to quantify the effect on 
expansion performance of corpus size, cor-
pus quality, seed composition and seed 
size. We make public an experimental 
testbed for set expansion analysis that in-
cludes a large collection of diverse entity 
sets extracted from Wikipedia. 

1 Introduction 

Computing the semantic similarity between terms 
has many applications in NLP including word clas-
sification (Turney and Littman 2003), word sense 
disambiguation (Yuret and Yatbaz 2009), context-
spelling correction (Jones and Martin 1997), fact 
extraction (Paşca et al. 2006), semantic role labe-
ling (Erk 2007), and applications in IR such as 
query expansion (Cao et al. 2008) and textual ad-
vertising (Chang et al. 2009). 

For commercial engines such as Yahoo! and 
Google, creating lists of named entities found on 
the Web is critical for query analysis, document 
categorization, and ad matching. Computing term 
similarity is typically done by comparing co-
occurrence vectors between all pairs of terms 
(Sarmento et al. 2007). Scaling this task to the 
Web requires parallelization and optimizations. 

In this paper, we propose a large-scale term si-
milarity algorithm, based on distributional similari-
ty, implemented in the MapReduce framework and 
deployed over a 200 billion word crawl of the 
Web. The resulting similarity matrix between 500 
million terms is applied to the task of expanding 
lists of named entities (automatic set expansion). 
We provide a detailed empirical analysis of the 
discovered named entities and quantify the effect 
on expansion accuracy of corpus size, corpus 
quality, seed composition, and seed set size. 

2 Related Work 

Below we review relevant work in optimizing si-
milarity computations and automatic set expansion. 
2.1 Computing Term Similarities 
The distributional hypothesis (Harris 1954), which 
links the meaning of words to their contexts, has 
inspired many algorithms for computing term simi-
larities (Lund and Burgess 1996; Lin 1998; Lee 
1999; Erk and Padó 2008; Agirre et al. 2009). 
Brute force similarity computation compares all 
the contexts for each pair of terms, with complexi-
ty O(n2m) where n is the number of terms and m is 
the number of possible contexts. More efficient 
strategies are of three kinds: 
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Smoothing: Techniques such as Latent Semantic 
Analysis reduce the context space by applying 
truncated Singular Value Decomposition (SVD) 
(Deerwester et al. 1990). Computing the matrix 
decomposition however does not scale well to 
web-size term-context matrices. Other currently 
unscalable smoothing techniques include Probabil-
istic Latent Semantic Analysis (Hofmann 1999), 
Iterative Scaling (Ando 2000), and Latent Dirichlet 
Allocation (Blei et al. 2003). 

Randomized Algorithms: Randomized tech-
niques for approximating various similarity meas-
ures have been successfully applied to term simi-
larity (Ravichandran et al. 2005; Gorman and Cur-
ran 2006). Common techniques include Random 
Indexing based on Sparse Distributed Memory 
(Kanerva 1993) and Locality Sensitive Hashing 
(Broder 1997). 

Optimizations and Distributed Processing: 
Bayardo et al. (2007) present a sparse matrix opti-
mization strategy capable of efficiently computing 
the similarity between terms which’s similarity 
exceeds a given threshold. Rychlý and Kilgarriff 
(2007), Elsayed et al. (2008) and Agirre et al. 
(2009) use reverse indexing and the MapReduce 
framework to distribute the similarity computa-
tions across several machines. Our proposed ap-
proach combines these two strategies and efficient-
ly computes the exact similarity (cosine, Jaccard, 
Dice, and Overlap) between all pairs. 
2.2 Entity extraction and classification 
Building entity lexicons is a task of great interest 
for which structured, semi-structured and unstruc-
tured data have all been explored (GoogleSets; 
Sarmento et al. 2007; Wang and Cohen 2007; Bu-
nescu and Mooney 2004; Etzioni et al. 2005; Paşca 
et al. 2006). Our own work focuses on set expan-
sion from unstructured Web text. Apart from the 
choice of a data source, state-of-the-art entity ex-
traction methods differ in their use of numerous, 
few or no labeled examples, the open or targeted 
nature of the extraction as well as the types of fea-
tures employed. Supervised approaches (McCal-
lum and Li 2003, Bunescu and Mooney 2004) rely 
on large sets of labeled examples, perform targeted 
extraction and employ a variety of sentence- and 
corpus-level features. While very precise, these 
methods are typically used for coarse grained enti-
ty classes (People, Organizations, Companies) for 
which large training data sets are available. Unsu-

pervised approaches rely on no labeled data and 
use either bootstrapped class-specific extraction 
patterns (Etzioni et al. 2005) to find new elements 
of a given class (for targeted extraction) or corpus-
based term similarity (Pantel and Lin 2002) to find 
term clusters (in an open extraction framework). 
Finally, semi-supervised methods have shown 
great promise for identifying and labeling entities 
(Riloff and Shepherd 1997; Riloff and Jones 1999; 
Banko et al. 2007; Downey et al. 2007; Paşca et al. 
2006; Paşca 2007a; Paşca 2007b; Paşca and Durme 
2008). Starting with a set of seed entities, semi-
supervised extraction methods use either class-
specific patterns to populate an entity class or dis-
tributional similarity to find terms similar to the 
seed set (Paşca’s work also examines the advan-
tages of combining these approaches). Semi-
supervised methods (including ours) are useful for 
extending finer grain entity classes, for which large 
unlabeled data sets are available. 
2.3 Impact of corpus on system performance 
Previous work has examined the effect of using 
large, sometimes Web-size corpora, on system per-
formance in the case of familiar NLP tasks. Banko 
and Brill (2001) show that Web-scale data helps 
with confusion set disambiguation while Lapata 
and Keller (2005) find that the Web is a good 
source of n-gram counts for unsupervised models. 
Atterer and Schutze (2006) examine the influence 
of corpus size on combining a supervised approach 
with an unsupervised one for relative clause and 
PP-attachment. Etzioni et al. (2005) and Pantel et 
al. (2004) show the advantages of using large 
quantities of generic Web text over smaller corpora 
for extracting relations and named entities. Overall, 
corpus size and quality are both found to be impor-
tant for extraction. Our paper adds to this body of 
work by focusing on the task of similarity-based 
set expansion and providing a large empirical 
study quantify the relative corpus effects. 
2.4 Impact of seeds on extraction performance 
Previous extraction systems report on the size and 
quality of the training data or, if semi-supervised, 
the size and quality of entity or pattern seed sets. 
Narrowing the focus to closely related work, Paşca 
(2007a; 2007b) and Paşca and Durme (2008) show 
the impact of varying the number of instances rep-
resentative of a given class and the size of the 
attribute seed set on the precision of class attribute 
extraction. An example observation is that good 
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quality class attributes can still be extracted using 
20 or even 10 instances to represent an entity class. 
Among others, Etzioni et al. (2005) shows that a 
small pattern set can help bootstrap useful entity 
seed sets and reports on the impact of seed set 
noise on final performance. Unlike previous work, 
empirically quantifying the influence of seed set 
size and quality on extraction performance of ran-
dom entity types is a key objective of this paper. 

3 Large-Scale Similarity Model 

Term semantic models normally invoke the distri-
butional hypothesis (Harris 1985), which links the 
meaning of terms to their contexts. Models are 
built by recording the surrounding contexts for 
each term in a large collection of unstructured text 
and storing them in a term-context matrix. Me-
thods differ in their definition of a context (e.g., 
text window or syntactic relations), or by a means 
to weigh contexts (e.g., frequency, tf-idf, pointwise 
mutual information), or ultimately in measuring 
the similarity between two context vectors (e.g., 
using Euclidean distance, Cosine, Dice). 

In this paper, we adopt the following methodol-
ogy for computing term similarity. Our various 
web crawls, described in Section 6.1, are POS-
tagged using Brill’s tagger (1995) and chunked 
using a variant of the Abney chunker (Abney 
1991). Terms are NP chunks with some modifiers 
removed; their contexts (i.e., features) are defined 
as their rightmost and leftmost stemmed chunks. 
We weigh each context f using pointwise mutual 
information (Church and Hanks 1989). Let PMI(w) 
denote a pointwise mutual information vector, con-
structed for each term as follows: PMI(w) = (pmiw1, 
pmiw2, …, pmiwm), where pmiwf is the pointwise 
mutual information between term w and feature f: 
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where cwf is the frequency of feature f occurring for 
term w, n is the number of unique terms and N is 
the total number of features for all terms. 

Term similarities are computed by comparing 
these pmi context vectors using measures such as 
cosine, Jaccard, and Dice. 

3.1 Large-Scale Implementation  

Computing the similarity between terms on a large 
Web crawl is a non-trivial problem, with a worst 
case cubic running time – O(n2m) where n is the 
number of terms and m is the dimensionality of the 
feature space. Section 2.1 introduces several opti-
mization techniques; below we propose an algo-
rithm for large-scale term similarity computation 
which calculates exact scores for all pairs of terms, 
generalizes to several different metrics, and is scal-
able to a large crawl of the Web. 

Our optimization strategy follows a generalized 
sparse-matrix multiplication approach (Sarawagi 
and Kirpal 2004), which is based on the well-
known observation that a scalar product of two 
vectors depends only on the coordinates for which 
both vectors have non-zero values. Further, we 
observe that most commonly used similarity scores 
for feature vectors xr  and yr , such as cosine and 
Dice, can be decomposed into three values: one 
depending only on features of xr, another depend-
ing only on features of yr, and the third depending 
on the features shared both by xr and yr. More for-
mally, commonly used similarity scores ( )yxF rr,  
can be expressed as: 
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Table 1 defines f0, f1, f2, and f3 for some common 
similarity functions. For each of these scores, f2 = 
f3. In our work, we compute all of these scores, but 
report our results using only the cosine function. 

Let A and B be two matrices of PMI feature vec-
tors. Our task is to compute the similarity between 
all vectors in A and all vectors in B. In computing 
the similarity between all pairs of terms, A = B. 

Figure 1 outlines our algorithm for computing 
the similarity between all elements of A and B. Ef-
ficient computation of the similarity matrix can be 
achieved by leveraging the fact that ( )yxF rr,  is de-
termined solely by the features shared by xr and yr 
(i.e., f1(0,x) = f1(x,0) = 0 for any x) and that most of 

Table 1. Definitions for f0, f1, f2, and f3 for commonly used 
similarity scores. 
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the feature vectors are very sparse (i.e., most poss-
ible contexts never occur for a given term). In this 
case, calculating f1(x, y) is only required when both 
feature vectors have a shared non-zero feature, sig-
nificantly reducing the cost of computation. De-
termining which vectors share a non-zero feature 
can easily be achieved by first building an inverted 
index for the features. The computational cost of 
this algorithm is ∑ 2

iN , where Ni is the number of 
vectors that have a non-zero ith coordinate. Its 
worst case time complexity is O(ncv) where n is 
the number of terms to be compared, c is the max-
imum number of non-zero coordinates of any vec-
tor, and v is the number of vectors that have a non-
zero ith coordinate where i is the coordinate which 
is non-zero for the most vectors. In other words, 
the algorithm is efficient only when the density of 
the coordinates is low. On our datasets, we ob-
served near linear running time in the corpus size. 

Bayardo et al. (2007) described a strategy that 
potentially reduces the cost even further by omit-
ting the coordinates with the highest number of 
non-zero value. However, their algorithm gives a 
significant advantage only when we are interested 
in finding solely the similarity between highly sim-
ilar terms. In our experiments, we compute the ex-
act similarity between all pairs of terms. 

Distributed Implementation 
The pseudo-code in Figure 1 assumes that A can fit 
into memory, which for large A may be impossible. 
Also, as each element of B is processed indepen-
dently, running parallel processes for non-
intersecting subsets of B makes the processing 
faster. In this section, we outline our MapReduce 
implementation of Figure 1 deployed using Ha-
doop1, the open-source software package imple-
menting the MapReduce framework and distri-
buted file system. Hadoop has been shown to scale 
to several thousands of machines, allowing users to 
write simple “map” and “reduce” code, and to 
seamlessly manage the sophisticated parallel ex-
ecution of the code. A good primer on MapReduce 
programming is in (Dean and Ghemawat 2008). 

Our implementation employs the MapReduce 
model by using the Map step to start M×N Map 
tasks in parallel, each caching 1/Mth part of A as 
an inverted index and streaming 1/Nth part of B 
through it. The actual inputs are read by the tasks 
                                                 
1 Hadoop, http://lucene.apache.org/hadoop/ 

directly from HDFS (Hadoop Distributed File Sys-
tem). Each part of A is processed N times, and each 
part of B is processed M times. M is determined by 
the amount of memory dedicated for the inverted 
index, and N should be determined by trading off 
the fact that as N increases, more parallelism can 
be obtained at the increased cost of building the 
same inverse index N times. 

The similarity algorithm from Figure 1 is run in 
each task of the Map step of a MapReduce job. 
The Reduce step is used to group the output by bi. 

4 Application to Set Expansion 

Creating lists of named entities is a critical prob-
lem at commercial engines such as Yahoo! and 
Google. The types of entities to be expanded are 
often not known a priori, leaving supervised clas-
sifiers undesirable. Additionally, list creators typi-
cally need the ability to expand sets of varying 
granularity. Semi-supervised approaches are pre-
dominantly adopted since they allow targeted ex-
pansions while requiring only small sets of seed 
entities. State-of-the-art techniques first compute 
term-term similarities for all available terms and 
then select candidates for set expansion from 
amongst the terms most similar to the seeds (Sar-
mento et al. 2007). 

Input: Two matrices A and B of feature vectors. 
## Build an inverted index for A (optimiza- 
## tion for data sparseness) 
AA = an empty hash-table 
for i in (1..n): 
   F2[i] = f2(A[i]) ## cache values of f2(x) 
   for k in non-zero features of A[i]: 
      if k not in AA: AA[k] = empty-set 
      ## append <vector-id, feature-value> 
      ## pairs to the set of non-zero 
      ## values for feature k 
      AA[k].append( (i,A[i,k]) ) 
## Process the elements of B 
for b in B: 
   F1 = {} ## the set of Ai that have non-

zero similarity with b 
   for k in non-zero features of b: 
      for i in AA[k]: 
         if i not in sim: sim[i] = 0 
         F1[i] += f1( AA[k][i], b[k]) 
   F3 = f3(b) 
   for i in sim: 
      print i, b, f0( F1[i], F2[i], F3) 

Output: A matrix containing the similarity between 
all elements in A and in B. 

Figure 1. Similarity computation algorithm. 
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Formally, we define our expansion task as: 

Task Definition: Given a set of seed entities S = 
{s1, s2, …, sk} of a class C = {s1, s2, …, sk, …,, sn} and 
an unlabeled textual corpus T, find all members of 
the class C. 

For example, consider the class of Bottled Water 
Brands. Given the set of seeds S = {Volvic, San 
Pellegrino, Gerolsteiner Brunnen, Bling H2O}, our 
task is to find all other members of this class, such 
as {Agua Vida, Apenta, Culligan, Dasani, Ethos 
Water, Iceland Pure Spring Water, Imsdal, …} 

4.1 Set Expansion Algorithm 

Our goal is not to propose a new set expansion al-
gorithm, but instead to test the effect of using our 
Web-scale term similarity matrix (enabled by the 
algorithm proposed in Section 3) on a state-of-the-
art distributional set expansion algorithm, namely 
(Sarmento et al. 2007). 

We consider S as a set of prototypical examples 
of the underlying entity set. A representation for 
the meaning of S is computed by building a feature 
vector consisting of a weighted average of the fea-
tures of its seed elements s1, s2, …, sk, a centroid. For 
example, given the seed elements {Volvic, San Pel-
legrino, Gerolsteiner Brunnen, Bling H2O}, the 
resulting centroid consists of (details of the feature 
extraction protocol are in Section 6.1): 

brand, mineral water, monitor, 
lake, water, take over, … 

Centroids are represented in the same space as 
terms allowing us to compute the similarity be-
tween centroids and all terms in our corpus. A 
scored and ranked set for expansion is ultimately 
generated by sorting all terms according to their 
similarity to the seed set centroid, and applying a 
cutoff on either the similarity score or on the total 
number of retrieved terms. In our reported experi-
ments, we expanded over 22,000 seed sets using 
our Web similarity model from Section 3. 

5 Evaluation Methodology 

In this section, we describe our methodology for 
evaluating Web-scale set expansion. 

5.1 Gold Standard Entity Sets 

Estimating the quality of a set expansion algorithm 
requires a random sample from the universe of all 
entity sets that may ever be expanded, where a set 
represents some concept such as Stage Actors. An 
approximation of this universe can be extracted 
from the “List of” pages in Wikipedia2. 

Upon inspection of a random sample of the “List 
of” pages, we found that several lists were compo-
sitions or joins of concepts, for example “List of 
World War II aces from Denmark” and “List of 
people who claimed to be God”. We addressed this 
issue by constructing a quasi-random sample as 
follows. We randomly sorted the list of every noun 
occurring in Wikipedia2. Then, for each noun we 
verified whether or not it existed in a Wikipedia 
list, and if so we extracted this list. If a noun be-
longed to multiple lists, the authors chose the list 
that seemed most appropriate. Although this does 
not generate a perfect random sample, diversity is 
ensured by the random selection of nouns and rele-
vancy is ensured by the author adjudication. 

The final gold standard consists of 50 sets, in-
cluding: classical pianists, Spanish provinces, 
Texas counties, male tennis players, first ladies, 
cocktails, bottled water brands, and Archbishops of 
Canterbury. For each set, we then manually 
scraped every instance from Wikipedia keeping 
track also of the listed variants names. 

The gold standard is available for download at: 
http://www.patrickpantel.com/cgi-bin/Web/Tools/getfile.pl?type=data&id=sse-
gold/wikipedia.20071218.goldsets.tgz 

The 50 sets consist on average of 208 instances 
(with a minimum of 11 and a maximum of 1,116) 
for a total of 10,377 instances. 

5.2 Trials 

In order to analyze the corpus and seed effects on 
performance, we created 30 copies of each of the 
50 sets and randomly sorted each copy. Then, for 
each of the 1500 copies, we created a trial for each 
of the following 23 seed sizes: 1, 2, 5, 10, 20, 30, 
40, …, 200. Each trial of seed size s was created by 
taking the first s entries in each of the 1500 random 
copies. For sets that contained fewer than 200 
items, we only generated trials for seed sizes 

                                                 
2 In this paper, extractions from Wikipedia are taken 
from a snapshot of the resource in December 2008. 
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smaller than the set size. The resulting trial dataset 
consists of 20,220 trials3. 

5.3 Judgments 

Set expansion systems consist of an expansion al-
gorithm (such as the one described in Section 4.1) 
as well as a corpus (such as Wikipedia, a news 
corpus, or a web crawl). For a given system, each 
of the 20,220 trials described in the previous sec-
tion are expanded. In our work, we limited the total 
number of system expansions, per trial, to 1000. 

Before judgment of an expanded set, we first 
collapse each instance that is a variant of another 
(determined using the variants in our gold stan-
dard) into one single instance (keeping the highest 
system score)4. Then, each expanded instance is 
judged as correct or incorrect automatically 
against the gold standard described in Section 5.1. 

5.4 Analysis Metrics 

Our experiments in Section 6 consist of precision 
vs. recall or precision vs. rank curves, where: 
a) precision is defined as the percentage of correct 

instances in the expansion of a seed set; and 
b) recall is defined as the percentage of non-seed 

gold standard instances retrieved by the system. 
Since the gold standard sets vary significantly in 
size, we also provide the R-precision metric to 
normalize for set size: 
c) R-precision is defined as the average precision 

of all trials where precision is taken at rank R = 
{size of trial’s associated gold standard set}, 
thereby normalizing for set size. 

                                                 
3 Available for download at http://www.patrickpantel.com/cgi-

bin/Web/Tools/getfile.pl?type=data&id=sse-gold/wikipedia.20071218.trials.tgz. 
4 Note also that we do not allow seed instances nor their 
variants to appear in an expansion set. 

For the above metrics, 95% confidence bounds are 
computed using the randomly generated samples 
described in Section 5.2. 

6 Experimental Results 

Our goal is to study the performance gains on set 
expansion using our Web-scale term similarity al-
gorithm from Section 3. We present a large empir-
ical study quantifying the importance of corpus 
and seeds on expansion accuracy. 

6.1 Experimental Setup 

We extracted statistics to build our model from 
Section 3 using four different corpora, outlined in 
Table 2. The Wikipedia corpus consists of a snap-
shot of the English articles in December 20085. 
The Web100 corpus consists of an extraction from 
a large crawl of the Web, from Yahoo!, of over 
600 million English webpages. For each crawled 
document, we removed paragraphs containing 
fewer than 50 tokens (as a rough approximation of 
the narrative part of a webpage) and then removed 
all duplicate sentences. The resulting corpus con-
sists of over 200 billion words. The Web020 cor-
pus is a random sample of 1/5th of the sentences in 
Web100 whereas Web004 is a random sample of 
1/25th of Web100. 

For each corpus, we tagged and chunked each 
sentence as described in Section 3. We then com-
puted the similarity between all noun phrase 
chunks using the model of Section 3.1. 

6.2 Quantitative Analysis 

Our proposed optimization for term similarity 
computation produces exact scores (unlike rando-
mized techniques) for all pairs of terms on a large 
Web crawl. For our largest corpus, Web100, we 
computed the pairwise similarity between over 500 
million words in 50 hours using 200 four-core ma-
chines. Web004 is of similar scale to the largest 
reported randomized technique (Ravichandran et 
al. 2005). On this scale, we compute the exact si-
milarity matrix in a little over two hours whereas 
Ravichandran et al. (2005) compute an approxima-
tion in 570 hours. On average they only find 73% 

                                                 
5 To avoid biasing our Wikipedia corpus with the test 
sets, Wikipedia “List of” pages were omitted from our 
statistics as were any page linked to gold standard list 
members from “List of” pages. 

Table 2. Corpora used to build our expansion models.

CORPORA 
UNIQUE 

SENTENCES 
(MILLIONS) 

TOKENS 
(MILLIONS) 

UNIQUE 
WORDS 

(MILLIONS) 
Web100 5,201 217,940 542 

Web020† 1040 43,588 108 

Web004† 208 8,717 22 

Wikipedia6 30 721 34 
†Estimated from Web100 statistics. 

 

943



of the top-1000 similar terms of a random term 
whereas we find all of them. 

For set expansion, experiments have been run on 
corpora as large as Web004 and Wikipedia (Sar-
mento et al. 2007), a corpora 300 times smaller 
than our Web crawl. Below, we compare the ex-
pansion accuracy of Sarmento et al. (2007) on Wi-
kipedia and our Web crawls. 

Figure 2 illustrates the precision and recall tra-
deoff for our four corpora, with 95% confidence 
intervals computed over all 20,220 trials described 
in Section 4.2. Table 3 lists the resulting R-
precision along with the system precisions at ranks 
25, 50, and 100 (see Figure 2 for detailed precision 
analysis). Why are the precision scores so low? 
Compared with previous work that manually select 
entity types for expansion, such as countries and 
companies, our work is the first to evaluate over a 
large set of randomly selected entity types. On just 
the countries class, our R-Precision was 0.816 us-
ing Web100. 

The following sections analyze the effects of 
various expansion variables: corpus size, corpus 
quality, seed size, and seed quality. 

6.2.1 Corpus Size and Corpus Quality Effect 

Not surprisingly, corpus size and quality have a 
significant impact on expansion performance. Fig-
ure 2 and Table 3 quantify this expectation. On our 
Web crawl corpora, we observe that the full 200+ 
billion token crawl (Web100) has an average R-
precision 13% higher than 1/5th of the crawl 
(Web020) and 53% higher than 1/25th of the crawl. 
Figure 2 also illustrates that throughout the full 
precision/recall curve, Web100 significantly out-
performs Web020, which in turn significantly out-
performs Web004. 

The higher text quality Wikipedia corpus, which 
consists of roughly 60 times fewer tokens than 

Web020, performs nearly as well as Web020 (see 
Figure 2). We omitted statistics from Wikipedia 
“List of” pages in order to not bias our evaluation 
to the test set described in Section 5.1. Inspection 
of the precision vs. rank graph (omitted for lack of 
space) revealed that from rank 1 thru 550, Wikipe-
dia had the same precision as Web020. From rank 
550 to 1000, however, Wikipedia’s precision 
dropped off significantly compared with Web020, 
accounting for the fact that the Web corpus con-
tains a higher recall of gold standard instances. The 
R-precision reported in Table 3 shows that this 
precision drop-off results in a significantly lower 
R-precision for Wikipedia compared with Web020. 

6.2.2  The Effect of Seed Selection 

Intuitively, some seeds are better than others. We 
study the impact of seed selection effect by in-
specting the system performance for several ran-
domly selected seed sets of fixed size and we find 
that seed set composition greatly affects perfor-
mance. Figure 3 illustrates the precision vs. recall 
tradeoff on our best performing corpus Web100 for 
30 random seed sets of size 10 for each of our 50 
gold standard sets (i.e., 1500 trials were tested.) 
Each of the trials performed better than the average 
system performance (the double-lined curve lowest 
in Figure 3). Distinguishing between the various 
data series is not important, however important to 
notice is the very large gap between the preci-
sion/recall curves of the best and worst performing 
random seed sets. On average, the best performing 
seed sets had 42% higher precision and 39% higher 
recall than the worst performing seed set. Similar 

Table 3. Corpora analysis: R-precision and Precision at var-
ious ranks. 95% confidence bounds are all below 0.005†. 

CORPORA R-PREC PREC@25 PREC@50 PREC@100 

Web100 0.404 0.407 0.347 0.278 
Web020 0.356 0.377 0.319 0.250 
Web004 0.264 0.353 0.298 0.239 

Wikipedia 0.315 0.372 0.314 0.253 
†95% confidence bounds are computed over all trials described in Section 5.2. 

Figure 2. Corpus size and quality improve performance. 
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Table 3. Corpora analysis: R-precision and Precision at var-
ious ranks. 95% confidence bounds are all below 0.005†. 

CORPORA R-PREC PREC@25 PREC@50 PREC@100 

Web100 0.404 0.407 0.347 0.278 

Web020 0.356 0.377 0.319 0.250 

Web004 0.264 0.353 0.298 0.239 

Wikipedia 0.315 0.372 0.314 0.253 
†95% confidence bounds are computed over all trials described in Section 5.2. 
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curves were observed for inspected seed sets of 
size 5, 20, 30, and 40. 

Although outside of the scope of this paper, we 
are currently investigating ways to automatically 
detect which seed elements are better than others in 
order to reduce the impact of seed selection effect. 

6.2.3 The Effect of Seed Size 

Here we aim to confirm, with a large empirical 
study, the anecdotal claims in (Paşca and Durme 
2008) that few seeds are necessary. We found that 
a) very small seed sets of size 1 or 2 are not suffi-
cient for representing the intended entity set; b) 5-
20 seeds yield on average best performance; and c) 
surprisingly, increasing the seed set size beyond 
20 or 30 on average does not find any new correct 
instances. 

We inspected the effect of seed size on R-
precision over the four corpora. Each seed size 
curve is computed by averaging the system per-
formance over the 30 random trials of all 50 sets. 
For each corpus, R-precision increased sharply 
from seed size 1 to 10 and the curve flattened out 

for seed sizes larger than 20 (figure omitted for 
lack of space). Error analysis on the Web100 cor-
pus shows that once our model has seen 10-20 
seeds, the distributional similarity model seems to 
have enough statistics to discover as many new 
correct instances as it could ever find. Some enti-
ties could never be found by the distributional si-
milarity model since they either do not occur or 
infrequently occur in the corpus or they occur in 
contexts that vary a great deal from other set ele-
ments. Figure 4 illustrates this behavior by plotting 
for each seed set size the rate of increase in discov-
ery of new correct instances (i.e., not found in 
smaller seed set sizes). 

We see that most gold standard instances are 
discovered with the first 5-10 seeds. After the 30th 
seed is introduced, no new correct instances are 
found. An important finding is that the error rate 
does not increase with increased seed set size (see 
Figure 5). This study shows that only few seeds 
(10-20) yield best performance and that adding 
more seeds beyond this does not on average affect 
performance in a positive or negative way. 

Figure 3. Seed set composition greatly affects system performance (with 30 different seed samples of size 10). 

Figure 4. Few new instances are discovered with more 
than 5-20 seeds on Web100 (with 95% confidence). 

Figure 5. Percentage of errors does not increase as 
seed size increases on Web100 (with 95% confidence).
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7 Conclusion  

We proposed a highly scalable term similarity al-
gorithm, implemented in the MapReduce frame-
work, and deployed over a 200 billion word crawl 
of the Web. The pairwise similarity between 500 
million terms was computed in 50 hours using 200 
quad-core nodes. We evaluated the impact of the 
large similarity matrix on a set expansion task and 
found that the Web similarity matrix gave a large  
performance boost over a state-of-the-art expan-
sion algorithm using Wikipedia. Finally, we re-
lease to the community a testbed for experimental-
ly analyzing automatic set expansion, which in-
cludes a large collection of nearly random entity 
sets extracted from Wikipedia and over 22,000 
randomly sampled seed expansion trials.  
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