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Abstract

Applying statistical parsers developed for
English to languages with freer word-
order has turned out to be harder than
expected. This paper investigates the
adequacy of different statistical parsing
models for dealing with a (relatively)
free word-order language. We show
that the recently proposedRelational-
Realizational (RR) model consistently
outperforms state-of-the-artHead-Driven
(HD) models on the Hebrew Treebank.
Our analysis reveals a weakness of HD
models: their intrinsic focus on configu-
rational information. We conclude that the
form-function separation ingrained in RR
models makes them better suited for pars-
ing nonconfigurational phenomena.

1 Introduction

Parsing technology has come a long way since
Charniak (1996) demonstrated that a simple tree-
bank PCFG performs better than any other parser
(with F175 accuracy) on parsing the WSJ Penn
treebank (Marcus et al., 1993). Treebank Gram-
mars (Scha, 1990; Charniak, 1996) trained on
large corpora nowadays present the best available
means to parse natural language text.

The performance curve for parsing the WSJ was
a steep one at first, as the incorporation of no-
tions such ashead, distance, subcategorization
(Charniak, 1997; Collins, 1999) brought about
a dramatic increase in parsing accuracy to the
level of F188. Discriminative approaches, Data-
Oriented Parsing (‘all-subtrees’) approaches, and
self-training techniques brought further improve-
ments, and recent results are starting to level off at
aroundF192.1 (McClosky et al., 2008).

As the interest of the NLP community grows
to encompass more languages, we observe efforts

towards adapting an English parser for parsing
other languages (e.g., (Collins et al., 1999)), or
towards designing a language-independent frame-
work based on principles underlying the mod-
els for parsing English (Bikel, 2002). The per-
formance curve for parsing other languages with
these models looks rather different. A case in point
is Modern Standard Arabic. Since the initial ef-
fort of (Bikel, 2002) to parse the Arabic treebank
(Maamouri et al., 2004), which yieldedF175 ac-
curacy, four years and successive revisions have
led to no more thanF179 (Maamouri et al., 2008).

This pattern from Arabic is not peculiar. The
level of state-of-the-art results for other languages
still lags behind those for English, even after
putting considerable effort into the adaptation.1

Given that these languages are inherently differ-
ent from English and from one another, it appears
that we cannot avoid a question concerning thead-
equacyof the models used to parse them. That is,
given the properties of a language, which model-
ing strategy would be appropriate for parsing it?

Until recently, there has been practically
no computationally affordable alternative to the
Head-Driven (HD)approach in the development
of phrase-structure based statistical parsing mod-
els. Recently, we proposed theRelational-
Realizational (RR)approach that rests upon differ-
ent premises (Tsarfaty and Sima’an, 2008). The
question of how the RR model fares against the
HD models that have so far been predominantly
used has never been tackled. Yet, it is precisely
such a comparison that can shed new light on the
question of adequacy we posed above.

Empirically quantifying the effects of differ-
ent modeling choices has been addressed for En-
glish by, e.g., (Johnson, 1998; Klein and Manning,
2003), and for German by, e.g., (Dubey, 2004;

1Consider, e.g., “The PaGe shared task on parsing Ger-
man” (Kubler, 2008), reportingF175, F179, F183 for the
participating parsers.
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Rafferty and Manning, 2008). This paper provides
an empirical systematic comparison of conceptu-
ally different modeling strategies with respect to
parsing Hebrew. This comparison is intended to
provide a first answer to the question of parser ad-
equacy in the face of word-order freedom.

Our two empirical results are unequivocal.
Firstly, RR models significantly outperform HD
models (about 2 points absolute improvement in
F1) in parsing the Modern Hebrew treebank. In
particular, RR models show better performance
in identifying the constituents for which syntactic
positions are relatively free. Secondly, we show
a novel variation of the HD model, incorporating
theRelationalnotions of the RR model, on the hy-
pothesis that this might bridge the gap. The RR
model remains superior.

Our post-experimental analysis shows that HD
modeling is inherently problematic for parsing a
language with freer word-order because of the
hard-wiring of notions such asleft, right anddis-
tance from the head. RR models, taking a prin-
cipled approach towards capturing variable form-
function correspondence patterns, are better suited
for parsingnonconfigurationalphenomena.

2 The Data

This section describes some properties of Modern
Hebrew (henceforth, Hebrew) that make it signifi-
cantly different from English. These properties af-
fect the syntactic representations found in the He-
brew Treebank and the kind of syntactic phenom-
ena a parser for Hebrew has to cope with.

Modern Hebrew is a Semitic language with a
canonical SVO word-order pattern,2 yet it allows
considerable freedom in the placement of syntac-
tic constituents in a clause. For example, linguistic
elements of any kind may be fronted, triggering
an inversion familiar from Germanic languages
as in (1b) (Triggered Inversion (TI)in (Shlonsky,
1997)). Under some information structuring con-
ditions,Verb Initial (VI) constructions are also al-
lowed, as in (1c) (Melnik, 2002). All sentences
in (1) thus mean “Dani gave the present to Dina”,
despite their different word-ordering.

(1) a. dani natan et hamatana ledina
Dani gave ACC the-present to-Dina

b. et hamatana natan dani ledina
ACC the-present gave Dani to-Dina

2SVO is an abbreviation for the Subject-Verb-Object type
in thebasic word-ordertypology of (Greenberg, 1963).

Word Order Frequency Relative Frequency

SV 1612 41%
VS 1144 29%
No S 624 16%
No V 550 14%

Table 1: Modern Hebrew Predicative Clause-
Types in 3930 Predicative Matrix Clauses in the
Training Set of the Modern Hebrew Treebank.

c. natan dani et hamatana ledina
gave Dani ACC the-present to-Dina

A corpus study we conducted on a fragment of
the Modern Hebrew treebank reveals that although
there is a significant number of subjects preceding
verbs in simple (matrix) clauses (41%), there are
also a fair number of sentences for which this or-
der is reversed (29%), and there is evidence for
other configurations, such as empty realization of
subjects (16%) and non-verbal realization of pred-
icates (14%).

In the face of such lack of consistency in its
configurational position, the grammatical function
Objectin Hebrew is indicated byDifferential Ob-
ject Marking (DOM)(Aissen, 2003). NP objects
in Hebrew are marked foraccusativity(using the
markeret) if they are also marked fordefiniteness
(indicated by the prefixha). So, in contrast with
(2a)-(2b), the indefinite object renders (2c) un-
grammatical, and the missing accusativity renders
(2d) awkward. The fact that marking NP objects
involves the joint contribution of multiple surface
elements (et, ha) contributing features to the NP
constituent is referred to asextended exponence
(Matthews, 1993, p. 182).

(2) a. dani natan matana ledina
Dani gave present to-Dina
“Dani gave a present to Dina”

b. dani natan et hamatana ledina
Dani gave ACC the-present to-Dina
“Dani gave the present to Dina”

c. *dani natan et matana ledina
Dani gave ACC present to-Dina

d. ??dani natan hamatana ledina
Dani gave the-present to-Dina

These data pose a challenge to generative pars-
ing models, as they would be required to gener-
ate alternative word-order patterns while maintain-
ing a coherent pattern of object marking, encom-

843



passing the contribution of multiple surface expo-
nents. The question this paper addresses is there-
fore what kind of modeling approach would be ad-
equate for modeling the interplay betweensyntax
andmorphologyin marking grammatical relations
in Hebrew, as reflected by the sentence-pair (3).
They both mean, roughly, “Dani gave the present
to Dina yesterday; their word-order vary, but the
pattern of object marking is retained.

(3) a. dani natan etmol et hamatana ledina
Dani gave yesterday ACC the-present
to-Dina

b. et hamatana natan etmol dani ledina
ACC the-present gave yesterday dani
to-dina

3 The Models

The different models we experiment with are all
trained on syntactic structures annotated in the
Modern Hebrew Treebank (Sima’an et al., 2001).
The native representation of clause-level cate-
gories in the Treebank employs flat structures.
This choice was made due to the lack of empirical
evidence in Hebrew for grouping freely positioned
syntactic elements to form a constituent.3 In order
to compensate for the ambiguity in theinterpreta-
tion of flat structures, additional information such
as morphological marking and grammatical func-
tion labels is added to the phrase-structure trees.

3.1 TheState-Splits Approach

The simplest way to encode grammatical func-
tions information on top of the phrase-structure
representation in the treebank is by decorating
non-terminal nodes with morphological or func-
tional features, similarly to the rich representation
format of syntactic categories in GPSG. This is
the approach taken by the annotators of the He-
brew treebank in which information about mor-
phological marking appears at multiple levels of
constituency (Guthmann et al., 2009), and func-
tional features (such assubject, object,etc.) deco-
rate phrase-level constituent labels (Sima’an et al.,
2001). The S-level representation of our example
sentences (3a)–(3b) then would be as we depict
in figure 1, which can be read off as feature-rich

3Such clauses are defined formally asexocentricin for-
mal theories of syntax, and are used to describe syntactic
structures in, e.g., Tagalog, Hungarian and Warlpiri (Bres-
nan, 2001, page 110). This flat representation format is char-
acteristic of treebanks for other languages with relatively-free
word-order as well, such as German (cf. (Kubler, 2008)).

PCFG productions. We refer to this approach as
theState-Splits (SP)approach, which serves as the
baseline for the rest of our investigation.

3.2 TheHead-Driven Approach

Following the linguistic wisdom that the inter-
nal organization of syntactic constituents revolves
around theirheads, Head-Driven (HD) models
have been proposed by (Magerman, 1995; Char-
niak, 1997; Collins, 1999). In a generative HD
model, the head daughter is generated first, con-
ditioned on properties of the mother node. Then,
sisters of the head daughter are generated condi-
tioned on the head, typically byleft andright gen-
eration processes. Overall, HD processes have the
modeling advantage that they capture structurally-
marked positions that characterize theargument
structureof the sentence. The simplest possible
process uses unigram probabilities, but (Klein and
Manning, 2003) show that usingverticalandhori-
zontalMarkovization improves parsing accuracy.4

An unlexicalized generative HD model will
generate our two example sentences as we illus-
trate in figure 2. The generation of the context-
free events in figure 1 is then broken down to
seven different context-free parameters each, en-
coding head-parent and head-sister structural rela-
tionships — the latter mediated with a structurally-
markeddelta function (∆i). The rich morpho-
logical representation of phrase-level NP objects
(+def/acc), for instance, is conditioned on the
headsister, itsdirection, and thedistance from the
head(check, e.g., nodes∆L1 ,∆R2).

3.3 TheRelational-Realizational Approach

The Relational-Realizational (RR)parsing model
of (Tsarfaty and Sima’an, 2008) similarly decom-
poses the generation of the context-free events in
figure 1 into multiple independent parameters, but
does so in a conceptually different way. Instead of
decomposing a context-free event toheadandsis-
ters, the RR model is best viewed as a generative
grammar that decomposes it toform andfunction.

The RR grammar first generates a set of gram-
matical functions depicting theRelational Net-
work (RN)(Perlmutter, 1982) of the clause. This

4The success of Head-Driven models (Charniak, 1997;
Collins, 2003) was initially attributed to the fact that they
were fully lexicalized, but (Klein and Manning, 2003) show
that an unlexicalized model combining Head-Driven Marko-
vian processes with linguistically motivated state-splits can
approach the performance of fully lexicalized models.
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(3a) S

NP-SBJ
Dani

VP-PRD
natan
gave

ADVP
etmol

yesterday

NP+D+ACC-OBJ
et-hamatana
the-present

PP-COM
le-dina
to-Dina

(3b) S

NP+D+ACC-OBJ
et-ha-matana
the-present

VP-PRD
natan
gave

ADVP
etmol

yesterday

NP-SBJ
Dani
Dani

PP-COM
le-dina
to-Dina

Figure 1: TheState-SplitsApproach for Ex. (3)

(3a) S

V P@S

L ,∆L1, V P@S

NP
Dani
Dani

HEAD ,V P@S

VP
natan
gave

R,∆R1, V P@S

ADVP
etmol

yesterday

R,∆R2, V P@S

NP+D+ACC

et-ha-matana
the-Present

R,∆R3, V P@S

PP
le-dina
to-Dina

(3b) S

V P@S

L ,∆L1, V P@S

NP+D+ACC

et-ha-matana
the-present

HEAD ,V P@S

VP
natan
gave

R,∆R1, V P@S

ADVP
etmol

yesterday

R,∆R2, V P@S

NP
Dani
Dani

R,∆R3, V P@S

PP
le-dina
to-Dina

Figure 2: TheHead-DrivenApproach for Ex. (3)

(3a) S

{SBJ,PRD,OBJ,COM}@S

SBJ@S

NP
Dani
Dani

PRD@S

VP
natan
gave

PRD : OBJ@S

ADVP
etmol

yesterday

OBJ@S

NP+D+ACC

et-hamatana
the-present

COM@S

PP
le-dina
to-Dina

(3b) S

{SBJ,PRD,OBJ,COM}@S

OBJ@S

NP+D+ACC

et-ha-matana
the-Present

PRD@S

VP
natan
gave

PRD : SBJ@S

ADVP@S
etmol

yesterday

SBJ@S

NP
Dani
Dani

COM@S

PP
le-dina
to-Dina

Figure 3: TheRelational-RealizationalApproach

RN provides an abstract set-theoretic representa-
tion of theargument structureof the clause.5 This
is called theprojection phase. Then an ordering
of the grammatical relations is generated, includ-
ing reserved contextual slots for adjunction and/or
punctuation marks. This is called theconfigura-
tion phase. Finally, each of the grammatical func-
tion labels and adjunction slots gets realized as a
morphosyntactic representation (a category label
plus dominated morphological features) of the re-
spective daughter constituent. This is called the
realizationphase.6

Figure 3 shows the generation of sentences
(3a)–(3b) following theprojection, configuration
and realization phases corresponding to the top-
down context-free layers of the tree. In both
cases, the same relational network is generated,
capturing the fact that they have the same argu-
ment structure. Then the different orderings of
the grammatical elements are generated, reserving
an adjunction slot for sentential modification (la-
beled by short context). Interestingly, the HD/RR
models for our sentences are of comparable size
(seven parameters) but the parameter types en-
code radically different notions. Illustrative of the
difference is the realization of a morphologically
marked NP object. In the RR model this is con-
ditioned on a grammatical relation (check, for in-
stance, node OBJ@S) and in the HD model it is
conditioned on linear ordering or configurational
notions such asleft, right anddistance.

4 Experiments

Goal We set out to compare the performance
of the different modeling approaches for pars-
ing Modern Hebrew. Considerable effort was de-
voted to making the models strictly comparable,
in terms of preparing the data, defining statistical
events, and unifying the rules determining cross-
cutting linguistic notions (e.g.,headsand predi-
cates, grammatical functionsandsubcat sets). We
spell out some of the setup considerations below.

Data We use the Modern Hebrew treebank
(MHTB) (Sima’an et al., 2001) consisting of 6501
sentences from news-wire texts, morphologically
analyzed and syntactically annotated as phrase-

5Unlike in HD models or dependency grammars, thehead
predicative element has no distinguished status here.

6Realization of adjunction slots (but not of function la-
bels) may generate multiple sisters adjoining at a single
position.
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GF Description Applicable to. . .

PRD Predicative Elements VP, PREDP
SBJ Grammatical Subjects NP, SBAR
OBJ Direct Objects NP
COM Indirect Objects NP, PP

FInite Complements SBAR
IC Infinitival Complements VP
CNJ A Conjunct within

a Conjunction Structure All

Table 2: Grammatical Functions in the MHTB

SP-PCFG Expansion P(Cln , . . . , Ch, . . . , Crn |P )

HD-PCFG Head P(Ch|P )
Left Branch? P(L :∆l1, H:∆h|Ch, P )
Right Branch? P(Ch, R:∆r1|∆h, Ch, P )
Left Arg/Mod P(Cli ,∆li+1

| L ,∆li , Ch, P )
Right Arg/Mod P(Cri ,∆ri+1| R ,∆ri , Ch, P )
Left Final? P(C1| L ,∆ln−1 , Ch, P )
Right Final? P(Cn| R ,∆rn−1 , Ch, P )

RR-PCFG Projection P({gr1, . . . , grm}|P )
Configuration P(〈gr1, . . . , grm〉|{gr1, . . . , grm}P )
Realization P(Cj|grj , P )
Adjunction P(Cj1, . . . , Cjn |grj : grj+1, P )

Table 3: PCFG Parameter Classes for All Models

structure trees. In our version of the MHTB,def-
initenessandaccusativityfeatures are percolated
from the PoS-tags level to phrase-level categories,
extending the procedure of (Guthmann et al.,
2009). For all models, we applied non-terminal
state-splits distinguishing finite from non-finite
verb forms and possessive from non-possessive
noun phrases. We head-annotated the treebank,
and based on the ‘subject’, ‘object’, ‘complement’
and ‘conjunction’ labels in the MHTB we devised
an automatic procedure to annotate all the gram-
matical functions indicated in table 2.7

Procedure For all models, we learn a PCFG by
reading off the parameters described in table 3,
in accordance with the trees depicted in figures
1–3.8 For all models, we use relative frequency
estimates. For lexical parameters, we use a sim-
ple smoothing procedure assigning probability to
unknown words using the per-tag distribution of
rare words (“rare” threshold set to< 2). The in-
put to our parser consists of morphologically seg-
mented surface forms, and the parser has to as-

7The enhanced corpus will be available atwww.
science.uva.nl/ ˜ rtsarfat/resources.htm .

8Our training procedure is strictly equivalent to the
transform-detransform methodology of (Johnson, 1998), but
we implement a tree-traverse procedure as in (Bikel, 2002)
collecting all parameters per event at once.

sign the syntactic as well as morphological anal-
ysis to the surface segments.9 We use the stan-
dard development/training/test split as in (Tsarfaty
and Sima’an, 2008). Since our goal is a detailed
comparison and fine-grained analysis of the results
we concentrate on the development set. We use
a general-purpose CKY parser (Schmid, 2004) to
exhaustively parse the sentences, and we strip off
all model-specific information prior to evaluation.

Evaluation We use standardParsevalmeasures
calculated for the original, flat, canonical repre-
sentation of the parse trees.10 We report Pre-
cision/Recallfor the coarse-grained non-terminal
categories. In addition to overall Parseval scores
we report the accuracy resultsPer Syntactic Cate-
gory. We further report model size in terms of the
number of parameters. As is well known in Ma-
chine Learning, models with more parameters re-
quire more data to learn, and are more vulnerable
to sparseness. In our evaluation we thus follow the
rule of thumb that (all else being equal) for mod-
els of equal size the better performing model is
preferred, and for models with equal performance,
the smaller one is preferred.

5 Results and Analysis

5.1 Overall Results

Table 4 shows the parsing results for theState-
Split (SP) PCFG, theHead-Driven (HD) PCFG
and the Relational-Realizational (RR) PCFG
models on parsing the Modern Hebrew Treebank,
with definitenessandaccusativitymarked on PoS-
tags as well as phrase-level categories. For all
models, we experiment with grandparent encod-
ing. For non-HD models, we also examine the
utility of a head-category split.11

9This setup is more difficult than, e.g., the Arabic parsing
setup of (Bikel, 2002), as they assume gold-standard pos-tags
as input. Yet it is easier than the setup of (Tsarfaty, 2006;
Goldberg and Tsarfaty, 2008) which uses unsegmented sur-
face forms as input. The decision to use segmented and un-
tagged forms was made to retain a realistic scenario. Mor-
phological analysis is known to be ambiguous, and we do
not assume that morphological features are known up front.
Morphological segmentation is also ambiguous, but for our
purposes it is unavoidable. When comparing different mod-
els on an individual sentence they may propose segmenta-
tion to sequences of different lengths, for which accuracy re-
sults cannot be faithfully compared. See (Tsarfaty, 2006) for
discussion.

10The flat canonical representation also allows for a fair
comparison that is not biased by the differing branching fac-
tors of the different models.

11In HD models, a head-tag is already assumed in the con-
ditioning context for sister nodes (Klein and Manning, 2003).
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SP-PCFG

Grand-Parent − − + +
Head-Tag − + − +
Prec/Rec 70.05/72.40 71.14/72.0374.66/74.35 71.99/72.17
(#Params) (4995) (8366) (7385) (11633)

HD-PCFG

Grand-Parent − − + +
Markov 0 1 0 1

Prec/Rec 66.87/71.64 70.40/74.35 73.04/71.9473.52/74.84
(#Params) (6678) (10015) (19066) (21399)

RR-PCFG

Grand-Parent − − + +
Head Tag − + − +

Prec/Rec 69.90/73.96 72.96/75.73 74.19/75.0376.32/76.51
(#Params) (3791) (7546) (7611) (13618)

Table 4: The Performance of Different Models
in Parsing Hebrew: Parsing Results Prec/Recall
for Sentences of Length≤ 40.

For all models, grandparent encoding is help-
ful. For HD models, a higher Markovian order im-
proves performance. This shows that even in He-
brew there are linear-precedence tendencies that
help steer the disambiguation in the right direc-
tion, which is in line with our observation that
word-order patterns in Modern Hebrew are not
completely free (cf. table 1).

The best SP model performs equally or better
than all HD models. This might be due to the
smaller size of SP grammars, resulting in more ro-
bust estimates. But it is remarkable that, given the
feature-rich representation, such a simple treebank
grammar provides better disambiguation capacity
than linguistically articulated HD models. We at-
tribute this to the fact that parent-daughter rela-
tions have a stronger association with grammati-
cal functions than relations between neighbouring
nodes. For Hebrew, such adjacency relations may
be arbitrary due to word-order variability.

Overall, RR models show the best performance
for the set of all models with parent encoding, and
for the set of all models without. Our best RR
model shows 6.6%/8.4% Prec/Rec error reduction
from the best SP model. The Recall improvement
shows that the RR model is much better in gener-
alizing, recovering successfully more of the con-
stituents found in the gold representation. The
best RR model also outperforms HD models with
8.7%/6.7% Prec/Rec error reduction from the best

In our SP or RR models, head-information is used as yet an-
other feature-value pair rather than an object with a distin-
guished status during generation.

Model / SP-PCFG HD-PCFG RR-PCFG
Category

NP 77.39 / 74.32 77.94 / 73.7578.96 / 76.11
PP 71.78 / 71.14 71.83 / 69.2474.4 / 72.02
SBAR 55.73 / 59.71 53.79 / 57.4957.97 / 61.67
ADVP 71.37 / 77.01 72.52 / 73.5673.57 / 77.59

ADJP 79.37 / 78.96 78.47 / 77.14 78.69 / 78.18
S 73.25 / 79.07 71.07 / 76.49 72.37 / 78.33

SQ 36.00 /32.14 30.77 / 14.29 55.56/ 17.86
PREDP 36.31 / 39.63 44.74/ 39.63 44.51 /46.95
VP 76.34 / 80.81 77.33 /82.51 78.59/ 81.18

Table 5: Per-Category Evaluation of Parsing
Performance for Different Models: Prec/Rec
Per Category Calculated for All Sentences.

HD model. The resulting precision improvement
of the RR relative to HD is larger than the im-
provement relative to SP, and the Recall improve-
ment pattern is reversed. So it seems that the HD
model generalizes better than the SP model, but
also gets generalizations wrong more often than
the SP model.

The RR model combines the generalization
advantage of breaking down context-free events
while it maintains the coherence advantage of
learning flat trees (cf. (Johnson, 1998)). The best
RR model obtains the best performance among
all models: F176.41. To put this result in con-
text, for the setting in which the Arabic parser of
(Maamouri et al., 2008) obtainsF178.1, — i.e.,
with gold standard feature-rich tags — the best
RR model obtainsF183.3 accuracy which is the
best parsing result reported for a Semitic language
so far. RR models also have the advantage of re-
sulting in more compact grammars, which makes
learning and parsing with them much more com-
putationally efficient.

5.2 Per-Category Break-Down Analysis

To understand better the merits of the different
models we conducted a break-down analysis of
performance-per-category for the best performing
models of each kind. The break-down results are
shown in table 5. We divided the table into three
sets of categories: those for which the RR model
gave the best performance, those for which the SP
model gave the best performance, and those for
which there is no clear trend.

The most striking outcome is that the RR model
identifies at higher accuracy precisely those syn-
tactic elements that are freely positioned with re-
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spect to the head: NPs, PPs, ADVPs and SBARs.
Adjectives, in contrast, have clear ordering con-
straints — they always appear after the noun. S
level elements, when embedded, always appear
immediately after a conjunction or a relativizer.
In particular, NPs and PPs realize arguments and
adjuncts that may occupy different positions rela-
tive to the head. The RR model is better than the
other models in identifying those elements partly
because morphological information helps to dis-
ambiguate syntactically relevant chunks and make
correct attachment decisions about them.

Remarkably, predicative (verb-less) phrases
(PREDP), which are characteristic of Semitic lan-
guages, are hard to parse, but here too the RR does
slightly better than the other two, as it allows for
variability in the means to realize a (verbal or verb-
less) predicate. Both RR and HD models outper-
form SP for VPs, which is due to the specific na-
ture of VPs in the MHTB – they existonly for
complement phrases with strict linear ordering.

6 Distances, Functions and
Subcategorization Frames

Markovian processes to theleft and to theright of
the head provide a first approximation of the pred-
icate’sargument structure, as they capture trends
in the co-occurrences of constituents reflected in
their pattern ofpositioning and adjacency. But
as our results so far show, such an approxima-
tion is empirically less rewarding for a language
in which grammatical relations are not tightly cor-
related with structural notions.12

Collins (2003) attempted a more abstract for-
mulation of argument-structure by articulating left
and rightsubcat-sets. Each set represents those
arguments that are expected to occur at each side
of the head. Argument sisters (“complements”)
are generated if and only if they are required, and
their generation ‘cancels’ the requirement in the
set. Adjuncts (“modifiers”) may be freely gener-
ated at any position.

At first glance, such a dissociation of configura-
tional positions and subcategorization sets seems
to be more adequate for parsing Hebrew, because
it allows for some variability in the order of gen-
eration. But here too, since the model uses sets of

12Conditioning based onadjacencyand distanceis also
common insidedependency parsingmodels, and we conjec-
ture that this is one of the reasons for their difficulty in coping
with freer word-order languages, a difficulty pointed out in
(Nivre et al., 2007).

(3a) S

V P@S

L ,{SBJ}, V P@S

NP
Dani
Dani

H,V P@S

VP
natan
gave

R,{OBJ,COM}, V P@S

ADVP
etmol

yesterday

R,{OBJ,COM}, V P@S

NP+D+ACC
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le-dina
to-Dina

Figure 4: TheRelational Head-DrivenApproach

constituent labels, it disambiguates the grammati-
cal functions of an NP solely based on the direc-
tion of the head, which is adequate for English but
not for Hebrew. In order to relax this association
further, we propose to replace constituent labels
in the subcat-sets with grammatical relations iden-
tical to the functional elements in the relational
network of the RR. This provides means to medi-
ate the cancellation of constituents in the sets with
their functions and correlate it with morphology.

To get an idea of the implications of such a
modeling strategy, let us consider our example
sentences in such a Relational-HD model as de-
picted in figure 4. Both representations share
the event of generating the verbal head. Sisters
are generated conditioned on the head and the
functional elements remaining to be “cancelled”.
Each of the two trees consists of an event real-
izing an “object”, one for an NP to the right of
the head, and the other for an NP to its left. In
both cases, an object constituent will be generated
jointly with the morphological features associated
with it. Evidently, when using sets of grammatical
relations instead of constituent-labels, correlation
of morphology and grammatical functions is more
straight-forward to maintain.
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Model SP-PCFG HD-PCFG HD-PCFG HD-PCFG HD-PCFG RR-PCFG

Type of Distance∆ Phrase-Level Intervening Left and Right Left and Right Left and Right Subcat Sets
or Subcategorization State-Splits Verb/Punc #Constituents Constituent Labels Function Labels Configuration

Precision/Recall 70.95/70.32 72.39 / 71.97 72.70 / 74.46 72.42 / 74.29 72.84/74.62 76.32/76.51
(#Params) (13884) (11650) (18058) (16334) (16460) (13618)

Table 6: Incorporating Distance and Grammatical Functions into Head-Driven Parsing Models
Reporting Precison/Recall (#Parameters) for Sentences Length< 40.

6.1 Results and Analysis

Table 6 reports the results of experimenting with
HD models with different instantiations of adis-
tance function, starting from the standard notion
of (Collins, 2003) and ending with our proposed,
relational, function sets. For all HD models, we
retain thehead, leftandright generation cycle and
only change the conditioning context (∆i) for sis-
ter generation.

As a baseline, we show the results of adding
grammatical function information as state-splits
on top of an SP-PCFG.13 This SP model presents
much lower performance than the RR model al-
though they are almost of the same size and they
start off with the same information. This result
shows that sophisticated modeling can blunt the
claws of the sparseness problem. One may ob-
tain the same number of parameters for two dif-
ferent models, but correlate them with more pro-
found linguistic notions in one model than in the
other. In our case, there is more statistical evi-
dence in the data for, e.g., case marking patterns,
than for association of grammatical relations with
structurally-marked positions.

For all HD variations, the RR model contin-
ues to outperform HD models. The function-set
variation performs slightly (but not significantly)
better than the category-set. What seems to be
still standing in the way of getting useful dis-
ambiguation cues for HD models is the fact that
the left and right direction of realization is hard-
wired in their representation. This breaks down a
coherent distribution over morphosyntactic repre-
sentations realizing grammatical relations to arbi-
trary position-dependent fragments, which results
in larger grammars and inferior performance.14

13The startegy of adding grammatical functions as state-
splits is used in, e.g., German (Rafferty and Manning, 2008).

14Due to the difference in the size of the grammars, one
could argue that smoothing will bridge the gap between
the HD and RR modeling strategies. However, the better
size/accuracy trade-off shown here for RR models suggests
that they provide a good bias/variance balancing point, es-
pecially for feature-rich models characterizing morphologi-

7 A Typological Detour

Hebrew, Arabic and other Semitic Languages are
known to be substantially different from English
in that English is stronglyconfigurational. In
configurational languages word-order is fixed, and
information about the grammatical functions of
constituents (e.g.,subjector object) is often cor-
related with structurally-marked positions inside
highly-nested constituency structures.Nonconfig-
urational languages (Hale, 1983), in contrast, al-
low for freedom in their word-ordering and infor-
mation about grammatical relations between con-
stituents is often marked by means ofmorphology.

Configurationalityis hardly a clear-cut notion.
The difference in the configurationality level of
different languages is often conceived as depicted
in figure 7. In linguistic typology, the branch
of linguistics that studies the differences between
languages (Song, 2001), the division of labor be-
tween linear ordering and morphological marking
in the realization of grammatical relations is of-
ten viewed as a continuum. Common wisdom has
it that the lower a language is on the configura-
tionality scale, the more morphological marking
we expect to be used (Bresnan, 2001, page 6).

For a statistical parser to cope with nonconfig-
urational phenomena as observed in, for instance,
Hebrew or German, it should allow for flexibil-
ity in the form of realization of the grammati-
cal functionswithin the phrase-structure represen-
tation of trees. Recent morphological theories
employ Form-Function separation as a widely-
accepted practice for enhancing the adequacy of
models describing variability in the realization of
grammaticalproperties. Our results suggest that
the adequacy of syntactic processing models is re-
lated to such typological insights as well, and is
enhanced by adopting a similar form-function sep-
aration for expressing grammaticalrelations.

cally rich languages. A promising strategy then would be to
smooth or split-and-merge (Petrov et al., 2006)) RR-based
models rather than to add an elaborate smoothing component
to configurationally-based HD models.
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configurational—————– nonconfigurational
Chinese>English>{German,Hebrew}>Warlpiri

Figure 5:The Configurationality Scale

The HD assumptions take the function of a con-
stituent to be transparently related to its formal
position, which entails word-order rigidity. Such
transparent relations between configurational po-
sitions and grammatical functions are assumed by
other kinds of parsing frameworks such as the ‘all-
subtrees’ approach of Data-Oriented Parsing, and
the distinction between left and right application
in CCG-based parsers.

The RR modeling strategy stipulates a strict
separation betweenform — parametrizing explic-
itly basic word-order (Greenberg, 1963) and mor-
phological realization (Greenberg, 1954) — and
function — parametrizing relational networks bor-
rowed from (Perlmutter, 1982) — which makes
it possible to statistically learn complex form-
function mapping reflected in the data. This is
an adequate means to capture, e.g., morphosyn-
tactic interactions, which characterize theless-
configurationallanguages on the scale.

8 Conclusion

In our comparison of the HD and RR modeling
approaches, the RR approach is shown to be em-
pirically superior and typologically more adequate
for parsing a language exhibiting word-order vari-
ation interleaved with extended morphology. HD
models are less accurate and more vulnerable to
sparseness as they assume transparent mappings
between form and function, based onleft andright
decompositions hard-wired in the HD representa-
tion. RR models, in contrast, employform and
function separation which allows the statistical
model to learn complex correspondance patterns
reflected in the data. In the future we plan to in-
vestigate how the different models fare against one
another in parsing different languages. In particu-
lar we wish to examine whether parsing different
languages should be pursued by different models,
or whether the RR strategy can effectively cope
with different languages types. Finally, we wish
to explore the implications of RR modeling for
applications that consider the form of expression
in multiple languages, for instanceStatistical Ma-
chine Translation (SMT).
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