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Abstract

While speaking spontaneously, speakers
often make errors such as self-correction
or false starts which interfere with the
successful application of natural language
processing techniques like summarization
and machine translation to this data. There
is active work on reconstructing this error-
ful data into a clean and fluent transcript
by identifying and removing these simple
errors.

Previous research has approximated the
potential benefit of conducting word-level
reconstruction of simple errors only on
those sentences known to have errors. In
this work, we explore new approaches
for automatically identifying speaker con-
struction errors on the utterance level, and
quantify the impact that this initial step has
on word- and sentence-level reconstruc-
tion accuracy.

1 Introduction

A system would accomplish reconstruction of its
spontaneous speech input if its output were to rep-
resent, in flawless, fluent, and content-preserving
text, the message that the speaker intended to con-
vey. While full speech reconstruction would likely
require a range of string transformations and po-
tentially deep syntactic and semantic analysis of
the errorful text (Fitzgerald, 2009), in this work we
will attempt only to resolve less complex errors,
correctable by deletion alone, in a given manually-
transcribed utterance.

The benefit of conducting word-level recon-
struction of simple errors only on those sen-
tences known to have errors was approximated in
(Fitzgerald et al., 2009). In the current work, we
explore approaches for automatically identifying
speaker-generated errors on the utterance level,

and calculate the gain in accuracy that this initial
step has on word- and sentence-level accuracy.

1.1 Error classes in spontaneous speech
Common simple disfluencies in sentence-like ut-
terances (SUs) include filler words (i.e., “um”, “ah”,
and discourse markers like “you know”), as well as
speaker edits consisting of a reparandum, an inter-
ruption point (IP), an optional interregnum (like “I
mean”), and a repair region (Shriberg, 1994), as
seen in Figure 1.

[that′s]︸ ︷︷ ︸
reparandum

IP︷︸︸︷
+ {uh}︸︷︷︸

interregnum

that′s︸ ︷︷ ︸
repair

a relief

Figure 1: Typical edit region structure.

These reparanda, or edit regions, can be classified
into three main groups:

1. In a repetition (above), the repair phrase is
approximately identical to the reparandum.

2. In a revision, the repair phrase alters reparan-
dum words to correct the previously stated
thought.

EX1: but [when he] + {i mean} when she put it
that way

EX2: it helps people [that are going to quit] + that
would be quitting anyway

3. In a restart fragment an utterance is aborted
and then restarted with a new train of thought.

EX3: and [i think he’s] + he tells me he’s glad he
has one of those

EX4: [amazon was incorporated by] {uh} well i
only knew two people there

In simple cleanup (a precursor to full speech re-
construction), all detected filler words are deleted,
and the reparanda and interregna are deleted while
the repair region is left intact. This is a strong ini-
tial step for speech reconstruction, though more
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1 he that ’s uh that ’s a relief
2 E E E FL - - - -
3 NC RC RC FL - - - -

Figure 2: Example of word class and refined word
class labels, where - denotes a non-error, FL de-
notes a filler, E generally denotes reparanda, and
RC and NC indicate rough copy and non-copy
speaker errors, respectively. Line 3 refines the la-
bels of Line 2.

complex and less deterministic changes may be
required for generating fluent and grammatical
speech text in all cases.

1.2 Related Work
Stochastic approaches for simple disfluency de-
tection use features such as lexical form, acous-
tic cues, and rule-based knowledge. State-of-
the-art methods for edit region detection such as
(Johnson and Charniak, 2004; Zhang and Weng,
2005; Kahn et al., 2005; Honal and Schultz, 2005)
model speech disfluencies as a noisy channel
model, though direct classification models have
also shown promise (Fitzgerald et al., 2009; Liu
et al., 2004). The final output is a word-level tag-
ging of the error condition of each word in the se-
quence, as seen in line 2 of Figure 2.

The Johnson and Charniak (2004) approach,
referred to in this document as JC04, combines
the noisy channel paradigm with a tree-adjoining
grammar (TAG) to capture approximately re-
peated elements. The TAG approach models the
crossed word dependencies observed when the
reparandum incorporates the same or very simi-
lar words in roughly the same word order, which
JC04 refer to as a rough copy. Line 3 of Figure
2 refines “edits” (E) into rough copies (RC) and
non-copies (NC).

As expected given the assumptions of the
TAG approach, JC04 identifies repetitions and
most revisions in spontaneous data, but is less
successful in labeling false starts and other
speaker self-interruptions without cross-serial cor-
relations. These non-copy errors hurt the edit de-
tection recall and overall accuracy.

Fitzgerald et al. (2009) (referred here as FHJ)
used conditional random fields (CRFs) and the
Spontaneous Speech Reconstruction (SSR) corpus
(Fitzgerald and Jelinek, 2008) corpus for word-
level error identification, especially targeting im-
provement of these non-copy errors. The CRF was

trained using features based on lexical, language
model, and syntactic observations along with fea-
tures based on JC04 system output.

Alternate experimental setup showed that train-
ing and testing only on SUs known from the la-
beled corpus to contain word-level errors yielded
a notable improvement in accuracy, indicating that
the described system was falsely identifying many
non-error words as errors.

Improved sentence-level identification of error-
ful utterances was shown to help improve word-
level error identification and overall reconstruction
accuracy. This paper describes attempts to extend
these efforts.

2 Approach

2.1 Data
We conducted our experiments on the recently re-
leased Spontaneous Speech Reconstruction (SSR)
corpus (Fitzgerald and Jelinek, 2008), a medium-
sized set of disfluency annotations atop Fisher
conversational telephone speech data (Cieri et al.,
2004)1. Advantages of the SSR data include

• aligned parallel original and cleaned sen-
tences

• several levels of error annotations, allowing
for a coarse-to-fine reconstruction approach

• multiple annotations per sentence reflecting
the occasional ambiguity of corrections

As reconstructions are sometimes non-
deterministic, the SSR provides two manual
reconstructions for each utterance in the data. We
use these dual annotations to learn complemen-
tary approaches in training and to allow for more
accurate evaluation.

The Spontaneous Speech Reconstruction cor-
pus is partitioned into three subcorpora: 17,162
training sentences (119,693 words), 2,191 sen-
tences (14,861 words) in the development set, and
2,288 sentences (15,382 words) in the test set. Ap-
proximately 17% of the total utterances contain a
reparandum-type error. In constructing the data,
two approaches were combined to filter out the
utterances considered most likely to be errorful
(6,384 in total) and only those SUs were manually
reconstructed. However the entire data set was in-
cluded in the distribution – and used in training for
this work – to maintain data balance.

1The Spontaneous Speech Reconstruction corpus can be
downloaded from http://www.clsp.jhu.edu/PIRE/ssr.
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The training of the TAG model for JC04, used
as a feature in this work, requires a very specific
data format, and thus is trained not with SSR but
with Switchboard (SWBD) data (Godfrey et al.,
1992). Key differences in these corpora, besides
the granularity and form of their annotations, in-
clude:

• SSR aims to correct speech output, while
SWBD edit annotation aims to identify
reparandum structures specifically. SSR only
marks those reparanda which annotators be-
lieve must be deleted to generate a grammat-
ical and content-preserving reconstruction.

• SSR includes more complex error identifi-
cation and correction, not considered in this
work.

While the SWBD corpus has been used in
some previous simple disfluency labeling work
(e.g., Johnson and Charniak, 2004; Kahn et al.,
2005), we consider the SSR for its fine-grained er-
ror annotations.

3 Identifying poor constructions

Prior to reconstruction, it is to our advantage to au-
tomatically identify poorly constructed sentences,
defined as being ungrammatical, incomplete, or
missing necessary sentence boundaries. Accu-
rately extracting ill-formed sentences prior to sub-
sentential error correction helps to minimize the
risk of information loss posed by unnecessarily
and incorrectly reconstructing well-formed text.

To evaluate the efforts described below, we
manually label each SU s in the SSR test set S
(including those not originally annotated with re-
constructions but still included in the SSR distri-
bution) as well-formed or poorly-formed, form-
ing the set of poorly constructed SUs P ⊂ S,
|P | = 531 and |S| = 2288 utterances.

To identify speaker errors on the sentence level,
we consider and combine a collection of features
into a single framework using a maximum entropy
model (implemented with the Daumé III (2004)
MEGA Model toolkit).

3.1 SU-level error features

Six feature types are presented in this section.

• Features #1 and #2 are the two methods in-
cluded in a similar though less exhaustive ef-
fort by (Fitzgerald and Jelinek, 2008) in error

filtering for the creation of the SSR corpus it-
self.

• Feature types #3 and #4 extract features from
automatic parses assigned to the given sen-
tence. It is expected that these parses will
contain some errors and the usefulness of
these features may be parser-specific. The
value of these features though is the con-
sistent, if not always accurate, treatment of
similar construction errores given a particu-
lar state-of-the-art parser.

• Feature type #5 investigates the relationship
between the probability of a SU-internal error
and the number of words it contains.

• Feature type #6 serves to bias the probabil-
ity against assigning a backchannel acknowl-
edgement SU as an error instance.

Feature #1 (JC04): Consider only sentences with
JC04 detected edit regions. This approach takes
advantage of the high precision, low recall JC04
disfluency detection approach described in Section
1.2. We apply the out-of-box JC04 system and
consider any sentence with one or more labeled
reparanda as a “poor” indicator. Since speakers re-
pairing their speech once are often under a higher
cognitive load and thus more likely to make more
serious speech errors (in other words, there is a
higher probability of making an error given that an
error has already been made (Bard et al., 2001)).
This is a reasonable first order approach for find-
ing deeper problems.

Feature #2 (HPSG): Use deep linguistic parsers
to confirm well-formedness. Statistical context-
free parsers are highly robust and, due to smooth-
ing, can assign a non-zero probability syntac-
tic structure even for text and part-of-speech se-
quences never seen during training. However,
sometimes no output is preferable to highly er-
rorful output. Hand-built rule-based parsers can
produce extremely accurate and context-sensitive
syntactic structures, but are also brittle and do not
adapt well to never before seen input. We use this
inflexibility to our advantage.

Head-driven Phrase Structure Grammar
(HPSG) is a deep-syntax phrase structure gram-
mar which produces rich, non-context-free
syntactic analyses of input sentences based on
a collection of carefully constructed rules and
lexical item structures (Pollard and Sag, 1994;
Wahlster, 2000). Each utterance is parsed using
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the PET deep parser produced by the inter-
institutional DELPH-IN group2. The manually
compiled English Resource Grammar (ERG)
(Flickinger, 2002) rules have previously been
extended for the Verbmobil (Wahlster, 2000)
project to allow for the parsing of basic conversa-
tional elements such as SUs with no verb or basic
backchannel acknowledgements like “last thursday”
or “sure”, but still produce strict HPSG parses
based on these rules. We use the binary result of
whether or not each SU is parsable by the HPSG
ERG as binary indicator functions in our models.

There has been some work on producing partial
parses for utterances for which a full HPSG analy-
sis is not deemed possible by the grammar (Zhang
et al., 2007). This work has shown early promise
for identifying coherent substrings within error-
ful SUs given subjective analysis; as this technol-
ogy progresses, HPSG may offer informative sub-
sentential features for word-level error analysis as
well.

Feature #3 (Rules): Mark unseen phrase rule ex-
pansions. Phrase-based parses are composed of
a recursive sequence of non-terminal (NT) rule ex-
pansions, such as those detailed for the example
parse shown in Figure 3. These rules are learned
from training data such as the Switchboard tree-
bank, where telephone conversation transcripts
were manually parsed. In many statistical parsers,
new structures are generated based on the relative
frequencies of such rules in the training treebank,
conditioned on the terminal words and some local
context, and the most probable parse (roughly the
joint probability of its rule expansions) is selected.

Because parsers are often required to produce
output for words and contexts never seen in the
training corpus, smoothing is required. The
Charniak (1999) parser accomplishes this in part
through a Markov grammar which works top-
down, expanding rules to the left and right of an
expansion head M of a given rule. The non-
terminal (NT) M is first predicted from the parent
P , then – in order – L1 through Lm (stopping sym-
bol ’#’) and R1 through Rn (again ’#’), as shown
in Equation 1.

parent P → #Lm . . . L1MR1 . . . Rn# (1)

In this manner, it is possible to produce rules
never before seen in the training treebank. While

2The DEep Linguistic Processing with HPSG INitiative
(see http://www.delph-in.net/)

this may be required for parsing grammatical sen-
tences with rare elements, this SU-level error pre-
diction feature indicates whether the automatic
parse for a given SU includes an expansion never
seen in the training treebank. If an expansion rule
in the one-best parse was not seen in training (here
meaning in the SWBD treebank after EDITED
nodes have been removed), the implication is that
new rule generation is an indicator of a speaker
error within a SU.

Feature #4 (C-comm): Mark unseen rule c-
commanding NTs. In X’ theory (Chomsky,
1970), lexical categories such as nouns and verbs
are often modified by a specifier (such as the DT “a”
modifying the NN “lot” in the NP3 phrase in Figure
3 or an auxiliary verb for a verb in a verb phrase
(VBZ for VP3) and a complement (such as the ob-
ject of a verb NP3 for VBG in the phrase VP3).

In each of these cases, an NT tree node A has
the following relationship with a second NT P :

• Neither does node A dominate P nor node P
dominate A, (i.e., neither is directly above the
other in the parse tree), and

• Node A immediately precedes P in the tree
(precedence is represented graphically in left-
to-right order in the tree).

Given these relationships, we say that A locally
c-commands P and its descendants. We further
extend this definition to say that, if node Â is the
only child of node A (a unary expansion) and A lo-
cally c-commands P , then Â locally c-commands
P (so both [SBAR→ S] and [S→ NP2 VP2] are
c-commanded by VBP). See Figure 3 for other ex-
amples of non-terminal nodes in c-commanding
relationships, and the phrase expansion rule they
c-command.

The c-command relationship is fundamental in
syntactic theory, and has uses such as predicting
the scope of pronoun antecedents. In this case,
however, we use it to describe two nodes which are
in a specifier–category relationship or a category–
complement relationship (e.g., subject–verb and
verb–object, respectively). This is valuable to us
because it takes advantage of a weakness of sta-
tistical parsers: the context used to condition the
probability of a given rule expansion generally
does not reach beyond dominance relationships,
and thus parsers rarely penalize for the juxtapo-
sition of A c-commanding P and its children as
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a) S

NP1

PRP

they

VP1

VBP

are

SBAR

S

NP2

DT

that

VP2

VBZ

is

VP3

VBG

saying

NP3

DT

a

NN

lot

b) Rules expansions:
S→ NP VP
NP1→ PRP
VP1→ VBP SBAR
SBAR→ S
S→ NP2 VP2

NP2→ DT
VP2→ VBZ VP
VP3→ VBG NP
NP3→ DT NN

c) Rule expansions + c-commanding NT:
S→ NP VP no local c-command
NP1→ PRP no local c-command
VP1→ V SBAR NP1

SBAR→ S VBP
S→ NP2 VP2 VBP
NP2→ DT no local c-command
VP2→ VBZ VP NP2

VP3→ VBG NP VBZ
NP3→ DT NN VBG

Figure 3: The automatically generated parse (a) for an errorful sentence-like unit (SU), with accompa-
nying rule expansions (b) and local c-commands (c). Non-terminal indices such as NP2 are for reader
clarification only and are not considered in the feature extraction process.

long as they have previously seen NT type A pre-
ceding NT type P . Thus, we can use the children
of a parent node P as a way to enrich a NT type P
and make it more informative.

For example, in Figure 3, the rule [S → NP2

VP2] is routinely seen in the manual parses of
the SWBD treebank, as is [VP1 → VBP SBAR].
However, it is highly unusual for VBP to immedi-
ately precede SBAR or S when this rule expands
to NP2 VP2. So, not only does SBAR/S comple-
ment VBP, but a very specific type of [SBAR/S
→ NP VP] is the complement of VBP. This con-
ditional infrequency serves as an indication of
deeper structural errors.

Given these category relationship observations,
we include in our maximum entropy model a fea-
ture indicating whether a given parse includes a
c-command relationship not seen in training data.

Feature #5 (Length): Threshold sentences based
on length. Empirical observation indicates that
long sentences are more likely to contain speaker
errors, while very short sentences tend to be
backchannel acknowledgments like “yeah” or “I
know” which are not considered errorful. Oviatt
(1995) quantifies this, determining that the dis-

fluency rate in human-computer dialog increases
roughly linearly with the number of words in an
utterance.

The length-based feature value for each sen-
tence therefore is defined to be the number of word
tokens in that sentence.

Feature #6 (Backchannel): Bias backchannel
acknowledgements as non-errors A backchan-
nel acknowledgement is a short sentence-like unit
(SU) which is produced to indicate that the speaker
is still paying attention to the other speaker, with-
out requesting attention or adding new content to
the dialog. These SUs include “uh-huh”, “sure”,
or any combination of backchannel acknowledge-
ments with fillers (ex. “sure uh uh-huh”).

To assign this feature, fifty-two common
backchannel acknowledgement tokens are consid-
ered. The indicator feature is one (1) if the SU in
question is some combination of these backchan-
nel acknowledgements, and zero (0) otherwise.

3.2 SU-level error identification results
We first observe the performance of each feature
type in isolation in our maximum entropy frame-
work (Table 1(a)). The top-performing individual
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Features included
Setup JC04 HPSG Rules C-comm Length Backchannel F1-score
a) Individual features

1
√

– – – – – 79.9
2 –

√
– – – – 77.1

5 – – – –
√

– 59.7
4 – – –

√
– – 42.2

3 – –
√

– – – 23.2
6 – – – – –

√
0.0

b) All features combined
7

√ √ √ √ √ √
83.3

c) All-but-one
8 –

√ √ √ √ √
78.4 (-4.9)

9
√ √ √

–
√ √

81.2 (-2.1)
10

√
–

√ √ √ √
81.3 (-2.0)

11
√ √

–
√ √ √

82.1 (-1.2)
12

√ √ √ √ √
– 82.9 (-0.4)

13
√ √ √ √

–
√

83.2 (-0.1)

Table 1: Comparison of poor construction identification features, tested on the SSR test corpus.

feature is the JC04 edit indicator, which is not sur-
prising as this is the one feature whose existence
was designed specifically to predict speaker errors.
Following JC04 in individual performance are the
HPSG parsability feature, length feature, and un-
seen c-command rule presence feature. Backchan-
nel acknowledgements had no predictive power on
their own. This was itself unsurprising as the fea-
ture was primarily meant to reduce the probability
of selecting these SUs as errorful.

Combining all rules together (Table 1(b)), we
note an F1-score gain of 3.4 as compared to the top
individual feature JC04. (JC04 has a precision of
97.6, recall of 67.6, and F of 79.9; the combined
feature model has a precision of 93.0, a recall of
75.3, and an F of 83.3, so unsurprisingly our gain
primarily comes from increased error recall).

In order to understand the contribution of an in-
dividual feature, it helps not only to see the pre-
diction results conditioned only on that feature,
but the loss in accuracy seen when only that fea-
ture is removed from the set. We see in Table 1(c)
that, though the c-command prediction feature was
only moderately accurate in predicting SU errors
on its own, it has the second largest impact after
JC04 (an F-score loss of 2.1) when removed from
the set of features. Such a change indicates the
orthogonality of the information within this fea-
ture to the other features studied. Length, on the
other hand, while moderately powerful as a sin-

gle indicator, had negligible impact on classifica-
tion accuracy when removed from the feature set.
This indicates that the relationship between error-
ful sentences and length can be explained away by
the other features in our set.

We also note that the combination of all features
excluding JC04 is competitive with JC04 itself.
Additional complementary features seem likely to
further compete with the JC04 prediction feature.

4 Combining efforts

The FHJ work shows that the predictive power of
a CRF model could greatly improve (given a re-
striction on only altering SUs suspected to contain
errors) from an F-score of 84.7 to as high as 88.7
for rough copy (RC) errors and from an F-score of
47.5 to as high as 73.8 for non-copy (NC) errors.

Now that we have built a model to predict con-
struction errors on the utterance level, we combine
the two approaches to analyze the improvement
possible for word-level identification (measured
again by precision, recall, and F-score) and for
SU-level correction (measured by the SU Match
metric defined in Section 4.2).

4.1 Word-level evaluation of error
identification, post SU filtering

We first evaluate edit detection accuracy on those
test SUs predicted to be errorful on a per-word ba-
sis. To evaluate our progress identifying word-
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level error classes, we calculate precision, recall
and F-scores for each labeled class c in each exper-
imental scenario. As usual, these metrics are cal-
culated as ratios of correct, false, and missed pre-
dictions. However, to take advantage of the double
reconstruction annotations provided in SSR (and
more importantly, in recognition of the occasional
ambiguities of reconstruction) we modified these
calculations slightly to account for all references.

Analysis of word-level label evaluation, post SU
filtering. Word-level F1-score results for error
region identification are shown in Table 2.

By first automatically selecting testing as de-
scribed in Section 3 (with a sentence-level F-score
of 83.3, Table 1(b)), we see in Table 2 some gain in
F-score for all three error classes, though much po-
tential improvement remains based on the oracle
gain (rows indicated as having “Gold errors” test-
ing data). Note that there are no results from train-
ing only on errorful data but testing on all data, as
this was shown to yield dramatically worse results
due to data mismatch issues.

Unlike in the experiments where all data was
used for testing and training, the best NC and RC
detection performance given the automatically se-
lected testing data was achieved when training a
CRF model to detect each class separately (RC
or NC alone) and not in conjunction with filler
word detection FL. As in FHJ, training RC and NC
models separately instead of in a joint FL+RC+NC
model yielded higher accuracy.

We notice also that the F-score for RC identi-
fication is lower when automatically filtering the
test data. There are two likely causes. The most
likely issue is that the automatic SU-error clas-
sifier filtered out some SUs with true RC errors
which had previously been correctly identified, re-
ducing the overall precision ratio as well as re-
call (i.e., we no longer receive accuracy credit for
some easier errors once caught). A second, related
possibility is that the errorful SUs identified by
the Section 3 method had a higher density of er-
rors that the current CRF word-level classification
model is unable to identify (i.e. the more difficult
errors are now a higher relative percentage of the
errors we need to catch). While the former pos-
sibility seems more likely, both causes should be
investigated in future work.

The F-score gain in NC identification from 42.5
to 54.6 came primarily from a gain in precision (in
the original model, many non-errorful SUs were

mistakenly determined to include errors). Though
capturing approximately 55% of the non-copy NC
errors (for SUs likely to have errors) is an im-
provement, this remains a challenging and un-
solved task which should be investigated further
in the future.

4.2 Sentence-level evaluation of error
identification and region deletion, post
SU identification

Depending on the downstream task of speech re-
construction, it may be imperative not only to
identify many of the errors in a given spoken ut-
terance, but indeed to identify all errors (and only
those errors), yielding the exact cleaned sentence
that a human annotator might provide.

In these experiments we apply simple cleanup
(as described in Section 1.1) to both JC04 out-
put and the predicted output for each experimental
setup, deleting words when their error class is a
filler, rough copy or non-copy.

Taking advantage of the dual annotations pro-
vided for each sentence in the SSR corpus, we
can report double-reference evaluation. Thus, we
judge that if a hypothesized cleaned sentence ex-
actly matches either reference sentence cleaned in
the same manner we count the cleaned utterance as
correct, and otherwise we assign no credit. We re-
port double-reference exact match evaluation be-
tween a given SU s and references r ∈ R, as de-
fined below.

SU match =
1
S

∑
s∈S

max
r∈R

δ(s, r) (2)

Analysis of sentence level evaluation, post SU
identification. Results from this second evalua-
tion of rough copy and non-copy error reconstruc-
tion can be seen in Table 3.

As seen in word-level identification results (Ta-
ble 2), automatically selecting a subset of testing
data upon which to apply simple cleanup recon-
struction does not perform at the accuracy shown
to be possible given an oracle filtering. While
measuring improvement is difficult (here, non-
filtered data is incomparable to filtered test data
results since a majority of these sentences require
no major deletions at all), we note again that our
methods (MaxEnt/FHJ-x) outperform the baseline
of deleting nothing but filled pauses like “eh” and
“um”, as well as the state-of-the-art baseline JC04.
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Class labeled Training SUs for Testing FL RC NC
All data All SU data 71.0 80.3 47.4

FL+RC+NC Errorful only Auto ID’d SU errors 87.9 79.9 49.0
Errorful only Gold SU errors 91.6 84.1 52.2

All data All SU data - - 42.5
NC Errorful only Auto ID’d SU errors - - 54.6

Errorful only Gold SU errors - - 73.8
All data All SU data 70.8 - 47.5

NC+FL Errorful only Auto ID’d SU errors 88.8 - 53.3
Errorful only Gold SU errors 90.7 - 69.8

All data All SU data - /84.2/ -
RC Errorful only Auto ID’d SU errors - 81.3 -

Errorful only Gold SU errors - 88.7 -
All data All SU data 67.8 /84.7/ -

RC+FL Errorful only Auto ID’d SU errors 88.1 80.5 -
Errorful only Gold SU errors 92.3 87.4 -

Table 2: Error predictions, post-SU identification: F1-score results. Automatically identified “SUs for
testing” were determined via the maximum entropy classification model described earlier in this paper,
and feature set #7 from Table 1. Filler (FL), rough copy error (RC) and non-copy error (NC) results are
given in terms of word-level F1-score. Bold numbers indicate the highest performance post-automatic
filter for each of the three classes. Italicized values indicate experiments where no filtering outperformed
automatic filtering (for RC errors).

# SUs # SUs that %
Setup Classed deleted Testing (filt/unfilt) match ref accuracy
Baseline-1 only filled pauses All data 2288 1800 78.7%
JC04-1 E+FL All data 2288 1858 81.2%
MaxEnt/FHJ-1 FL+RC+NC All data 2288 1922 84.0%
Baseline-2 only filled pauses Auto ID’d 430 84 19.5%
JC04-2 E+FL Auto ID’d 430 187 43.5%
MaxEnt/FHJ-2 FL+RC+NC Auto ID’d 430 223 51.9%
Baseline-3 only filled pauses Gold errors 281 5 1.8%
JC04-3 E+FL Gold errors 281 126 44.8%
MaxEnt/FHJ-3 FL+RC+NC Gold errors 281 156 55.5%

Table 3: Error predictions, post-SU identification: Exact Sentence Match Results.
For the baseline, we delete only filled pause filler words like “eh” and “um”. For JC04 output, we deleted
any word assigned the class E or FL. Finally, for the MaxEnt/FHJ models, we used the jointly trained
FL+RC+NC CRF model and deleted all words assigned any of the three classes.

5 Future Work

While some success and improvements for the
automatic detection and deletion of fillers and
reparanda (i.e., “simple cleanup”) have been
demonstrated in this work, much remains to be
done to adequately address the issues and criteria
considered here for full reconstruction of sponta-
neous speech.

Included features for both the word level and

SU-level error detection have only skimmed the
surface of potentially powerful features for spon-
taneous speech reconstruction. There should be
continued development of complementary parser-
based features (such as those from dependency
parsers or even deep syntax parsers such as im-
plementations of HPSG as well as additional syn-
tactic features based on automatic constituent or
context-free grammar based parsers). Prosodic
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features, though demonstrated to be unnecessary
for at least moderately successful detection of sim-
ple errors, also hold promise for additional gains.
Future investigators should evaluate the gains pos-
sible by integrating this information into the fea-
tures and ideas presented here.

6 Summary and conclusions

This work was an extension of the results in FHJ,
which showed that automatically determining
which utterances contain errors before attempting
to identify and delete fillers and reparanda has the
potential to increase accuracy significantly.

In Section 3, we built a maximum entropy clas-
sification model to assign binary error classes to
spontaneous speech utterances. Six features –
JC04, HPSG, unseen rules, unseen c-command re-
lationships, utterance length, and backchannel ac-
knowledgement composition – were considered.
The combined model achieved a precision of 93.0,
a recall of 75.3, and an F1-score of 83.3.

We then, in Section 4, cascaded the sentence-
level error identification system output into the
FHJ word-level error identification and simple
cleanup system. This combination lead to non-
copy error identification with an F1-score of 54.6,
up from 47.5 in the experiments conducted on all
data instead of data identified to be errorful, while
maintaining accuracy for rough copy errors and in-
creasing filler detection accuracy as well. Though
the data setup is slightly different, the true errors
are common across both sets of SUs and thus the
results are comparable.

This work demonstrates that automatically se-
lecting a subset of SUs upon which to imple-
ment reconstruction improves the accuracy of non-
copy (restart fragment) reparanda identification
and cleaning, though less improvement results
from doing the same for rough copy identification.

Acknowledgments

The authors thank our anonymous reviewers for
their valuable comments. Support for this work
was provided by NSF PIRE Grant No. OISE-
0530118. Any opinions, findings, conclusions,
or recommendations expressed in this material are
those of the authors and do not necessarily reflect
the views of the supporting agency.

References
Ellen G. Bard, Robin J. Lickley, and Matthew P. Aylett.

2001. Is disfluency just difficult? In Disfluencies in
Spontaneous Speech Workshop, pages 97–100.

Eugene Charniak. 1999. A maximum-entropy-
inspired parser. In Proceedings of the Annual Meet-
ing of the North American Association for Compu-
tational Linguistics.

Noam Chomsky, 1970. Remarks on nominalization,
pages 184–221. Waltham: Ginn.

Christopher Cieri, Stephanie Strassel, Mohamed
Maamouri, Shudong Huang, James Fiumara, David
Graff, Kevin Walker, and Mark Liberman. 2004.
Linguistic resource creation and distribution for
EARS. In Rich Transcription Fall Workshop.
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