
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 756–764,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Stream-based Randomised Language Models for SMT

Abby Levenberg
School of Informatics

University of Edinburgh
a.levenberg@sms.ed.ac.uk

Miles Osborne
School of Informatics

University of Edinburgh
miles@inf.ed.ac.uk

Abstract

Randomised techniques allow very big
language models to be represented suc-
cinctly. However, being batch-based
they are unsuitable for modelling an un-
bounded stream of language whilst main-
taining a constant error rate. We present a
novel randomised language model which
uses an online perfect hashfunction
to efficiently deal with unbounded text
streams. Translation experiments over
a text stream show that our online ran-
domised model matches the performance
of batch-based LMs without incurring the
computational overhead associated with
full retraining. This opens up the possibil-
ity of randomised language models which
continuously adapt to the massive volumes
of texts published on the Web each day.

1 Introduction

Language models (LM) are an integral feature
of statistical machine translation (SMT) systems.
They assign probabilities to generated hypothe-
ses in the target language informing lexical selec-
tion. The most common form of LMs in SMT
systems are smoothedn-gram models which pre-
dict a word based on a contextual history ofn− 1
words. For some languages (such as English) tril-
lions of words are available for training purposes.
This fact, along with the observation that ma-
chine translation quality improves as the amount
of monolingual training material increases, has
lead to the introduction of randomised techniques
for representing large LMs in small space (Talbot
and Osborne, 2007; Talbot and Brants, 2008).

Randomised LMs (RLMs) solve the problem of
representing large, static LMs but they arebatch
oriented and cannot incorporate new data with-
out fully retraining from scratch. This property

makes current RLMs ill-suited for modelling the
massive volume of textual material published daily
on the Web. We present a novel RLM which is
capable of incremental (re)training. We use ran-
dom hash functions coupled with an online perfect
hashing algorithm to representn-grams in small
space. This makes it well-suited for dealing with
an unbounded stream of training material. To our
knowledge this is the first stream-based RLM re-
ported in the machine translation literature. As
well as introducing the basic stream-based RLM,
we also consider adaptation strategies. Perplex-
ity and translation results show that populating
the language model with material chronologically
close to test points yields good results. As with
previous randomised language models, our experi-
ments focus on machine translation but we also ex-
pect that our findings are general and should help
inform the design of other stream-based models.

Section 2 introduces the incrementally retrain-
able randomised LM and section 3 considers re-
lated work; Section 4 then considers the question
of how unbounded text streams should be mod-
elled. Sections 5 and 6 show stream-based trans-
lation results and properties of our novel data-
structure. Section 7 concludes the paper.

2 Online Bloomier Filter LM

Our online randomised LM (O-RLM) is based
on the dynamic Bloomier filter (Mortensen et al.,
2005). It is a variant of the batch-based Bloomier
filter LM of Talbot and Brants (2008) which we
refer to as the TB-LM henceforth. As with the
TB-LM, the O-RLM uses random hash functions
to representn-grams asfingerprintswhich is the
main source of space savings for the model.

2.1 Online Perfect Hashing

The key difference in our model as compared to
the TB-LM is we use anonline perfect hashing

756

Figure 1: Inserting ann-gram into the dynamic Bloomier filter. Above: ann-gram is hashed to its target
bucket. Below: then-gram is transformed into a fingerprint and the same target bucket is scanned. If a
collision occurs thatn-gram is diverted to the overflow dictionary; otherwise the fingerprint is stored in
the bucket.

function instead of having to precompute the per-
fect hash offline prior to data insertion.

The online perfect hash function uses two data
structures:A andD. A is the main, randomised
data structure and is an array ofb dictionaries
A0, . . . , Ab−1. D is a lossless data structure which
handles collisions inA. Each of the dictionaries in
A is referred to as a ‘bucket’. In our implementa-
tion the buckets are equally sized arrays ofw-bit
cells. These cells hold the fingerprints and values
of n-grams (onen-gram-value pair per cell).

To insert an n-gram x and associated value
v(x) into the model, we select a bucketAi by
hashingx into the rangei → [0, . . . , b − 1].
Each bucket has an associated random hash func-
tion, hAi , drawn from a universal hash func-
tion (UHF) family h (Carter and Wegman, 1977),
which is then used to generate then-gram finger-
print: f(x) = hAi(x).

If the bucketAi is not full we conduct a scan of
its cells. If the fingerprintf(x) is not already en-
coded in the bucketAi we add the fingerprint and
value to the first empty cell available. We allocate
a preset number of the least significant bits of each
w-bit cell to holdv(x) and the remaining most sig-
nificant bits forf(x) but this is arbitrary. Any en-
coding scheme, such as the packed representation
of Talbot and Brants (2008), is viable here.

However, iff(x) ∈ Ai already (there is a colli-
sion) we store then-gramx and associated value
v(x) in the lossless overflow dictionaryD instead.
D also holds then-grams that were hashed to any

buckets that are already full.
To query for the value of ann-gram, we first

check if the gram is in the overflow dictionaryD.
If it is, we return the associated value. Otherwise
we queryA using the same hash functions and
procedure as insertion. If we find a matching fin-
gerprint in the appropriate bucketAi we have a
hit with high probability. Deletions andupdates
are symmetric to querying except we reset the cell
to the null value or update its value respectively.
As with other randomised models we construct
queries with the appropriatesanity checksto lower
the error rate efficiently (Talbot and Brants, 2008).

2.2 Data Insertion

Initially we seed the language model with a large
corpus S in the usual manner associated with
batch LMs. Then, when processing the stream,
we aggregaten-gram counts for some consecu-
tive portion, orepoch, of the input stream. We
can vary the size of stream window. For example
we might batch-up a day or week’s worth of mate-
rial. Intuitively, smaller windows produce results
that are sensitive to small variation in the stream,
while longer windows (corresponding to data over
a longer time period) average out local spikes. The
exact window size is a matter of experimentation.
In our MT experiments (section 5) we can com-
pute counts within the streaming window exactly
but randomised approaches (such as the approxi-
mate counting schemes from section 3) can easily
be employed instead.

757

Thesen-grams and counts are then considered
for insertion into the online model. If we decide
to insert ann-gram, we either update the count of
thatn-gram if we previously inserted it or else we
insert it as a new entry. Note that there is some
probability we may encounter a false positive and
update some othern-gram in the model.

2.3 Properties

The online perfect hash succeeds by associating
eachn-gram with onlyone cell in A rather than
having it depend on cells (or bits) which may be
shared by othern-grams as with the TB-LM. Since
eachn-gram’s encoding in the model uses distinct
bits and is independent of all other events it can
not corrupt othern-grams when deleted.

Adding the overflow dictionaryD means that
we use more space than the TB-LM for the same
support. It is shown in Mortensen et al. (2005) that
the expected size ofD is a small fraction of the to-
tal number of events and its space usage comprises
less thanO(|S|) bits with high probability.

There is a nonzero probability for false posi-
tives. Since the overflow dictionaryD has no er-
rors, the expected error rate for our dynamic struc-
ture is the probability of a random collision in the
hash range of eachhAi for each bucket cell com-
pared. In our setup we have

Pr(falsepos) =
|Ai|

2|f(x)|

where|f(x)| is the number of bits of eachw-bit
cell used for the fingerprintf(x). w also primar-
ily governs space used in the model. The O-RLM
assumes only valid updates and deletions are per-
formed (i.e. we do not remove or update entries
that were never inserted prior).

The O-RLM takes time linear to the input size
for training and uses worst-case constant time for
querying and deletions where the constant is de-
pendent on the number of cells per bucket inA.
The number of bucket cells also effects the overall
error rate significantly since smaller ranges reduce
the probability of a collision. However, too few
cells per bucket will result in many full buckets
when the bucket hash function is not highly IID.

2.4 Basic RLM Comparisons

Table 1 compares expected versus observed false
positive rates for the Bloom filter, TB-LM, and O-
RLM obtained by querying a model of approxi-
mately 280M events with 100K unseenn-grams.

LM Expected Observed RAM
Lossless 0 0 7450MB
Bloom 0.0039 0.0038 390MB
TB-LM 0.0039 0.0033 640MB
O-RLM 0.0039 0.0031 705MB

Table 1: Example false postive rates and corre-
sponding memory usage for all randomised LMs.

We see the bit-based Bloom filter uses signifi-
cantly less memory than the cell-based alternatives
and the O-RLM consumes more memory than the
TB-LM for the same expected error rate.

3 Related Work

3.1 Randomised Language Models

Talbot and Osborne (2007) used aBloom filter
(Bloom, 1970) to encode a smoothed LM. A
Bloom filter (BF) represents a setS from arbitrary
domainU and supports membership queries such
as“Isx ∈ S?”. The BF uses an array ofm bits and
k independent UHFs each with range0, . . . ,m−1.
For insertion, each item is hashed through thek
hash functions and the resulting target bits are set
to one. During testing, an eventx ∈ U is passed
through the samek hash functions and if any bit
tested is zero thenx was not in the supportS.

The Bloomier filter directly represents key-
value pairs by using a table of cells and a family of
k associated hash functions (Chazelle et al., 2004).
Each key-value pair is associated withk cells in
the table via a perfect hash function. Talbot and
Brants (2008) used a Bloomier filter to encode a
LM. Before data can be added to the Bloomier fil-
ter, a greedy perfect hashing of all entries needs to
be computed in advance; this attempts to associate
each event in the support with one unique table cell
so no other entry collides with it. The procedure
can fail and might need to be repeated many times.

Neither of these two randomised language mod-
els are suitable for modelling a stream. Given the
fact that the stream is of unbounded size, we are
forced to delete items if we wish to maintain a
constant error rate and account for noveln-grams.
However, the Bloom filter LM nor the Bloomier
Filter LM support deletions. The bit sharing of the
Bloom filter (BF) LM (Talbot and Osborne, 2007)
means deletions may corrupt shared stored events.
The Bloomier filter LM (Talbot and Brants, 2008)
has a precomputed matching of keys shared be-
tween a constant number of cells in the filter array.

758

Deleting items from a Bloomier Filter without re-
computing the perfect hash will corrupt it.

3.2 Probabilistic Counting

Concurrent work has used approximate counting
schemes based on Morris (1978) to estimate in
small space frequencies over a high volume in-
put text stream (Van Durme and Lall, 2009; Goyal
et al., 2009). The space savings are due to com-
pact storage of counts and retention of only a
small subset of the availablen-grams in the data
stream. Since the final LMs are still lossless (mod-
ulo counts), the resulting LM needs significant
space. It is trivial to use probabilistic counting
within our framework.

3.3 Compact Exact Language Models

Randomised algorithms are not the only com-
pact representation schemes. Church et al. (2007)
looked at Golomb Coding and Brants et al. (2007)
used tries in a distributed setting. These methods
are less succinct than randomised approaches.

3.4 Adaptive Language Models

There is a large literature on adaptive LMs from
the speech processing domain (Bellegarda, 2004).
The primary difference between the O-RLM and
other adaptive LMs is that we add and removen-
grams from the model instead of adapting only the
parameters of the current support set.

3.5 Domain adaptation in Machine
Translation

Within MT there has been a variety of approaches
dealing with domain adaption (for example (Wu
et al., 2008; Koehn and Schroeder, 2007). Typi-
cally LMs are interpolated with one another, yield-
ing good results. These models are usually stat-
ically trained, exact and unable to deal with an
unbounded stream of monolingual data. Domain
adaptation has similarities with streaming, in that
our stream may be non-stationary. A crucial dif-
ference however is that the stream is of unbounded
length, whereas domain adaptation usually as-
sumes some finite and fixed training set.

4 Stream-based translation

Streaming algorithms have numerous applications
in mainstream computer science (Muthukrishnan,
2003) but to date there has been very little aware-
ness of this field within computational linguistics.

Figure 2: Stream-based translation. The online
RLM uses data from the target stream and the last
test point in the source stream for adaptation.

A text streamcan be thought of as a unbounded
sequence of documents that are time-stamped and
we have access to them in strict chronological or-
der. The volume of the stream is so large we can
afford only a limited number of passes over the
data (typically one).

Text streams naturally arise on the Web when
millions of new documents are published each day
in many languages. For instance, 18 thousand
websites continuously publish news stories in 40
languages and there are millions of multilingual
blog postings per day. There are over 30 billion
e-mails sent daily and social networking sites, in-
cluding services such as Twitter, generate an adun-
dance of textual data in real time. Web crawlers
that spidered all these new documents would pro-
duce an unbounded input stream.

The stream-based translation scenario is as fol-
lows: we assume that each day we see a source
stream of many new newswire stories that need
translation. We also assume a stream of newswire
stories in the target language. Intuitively, since the
concurrent streams are from the same domain, we
can use the contexts provided in the target stream
to help with the translation of the source stream
(Figure 2). From a theoretical perspective, since
we cannot represent the entirety of the stream and
wish to maintain a constant error rate, we are
forced to throw some information away.

Given that the incoming text stream contains far
too much data to store in its entirety an immediate
question we would like to answer is: within our
LM, which subset of the target text stream should

759

 180

 200

 220

 240

 260

 280

 300

 20 25 30 35 40 45 50

p
e

rp
le

x
it
y

weeks

Reuters 96-97 LM subsets

51-week baseline
20-week subset test 1
20-week subset test 2

Figure 3: Perplexity results using streamed data.
Perplexity decreases as we retrain LMs using data
chronologically closer to the (two) test dates.

we represent in our model?
Using perplexity, we investigated this question

using a text stream based on Reuter’s RCV1 text
collection (Rose et al., 2002). This contains 800k
time-stamped newswire stories from a full calen-
der year (8.20.1996 - 8.19.1997). We used the
SRILM (Stolcke, 2002) to construct an exact tri-
gram model built using all the RCV1 data with the
exception of the final week which we held out as
test data. This served as an oracle since we store
all of the stream.

We then trained multiple exact LMs of much
smaller sizes, coinedsubset LMs, to simulate
memory constraints. For a given date in the RCV1
stream, these subset LMs were trained using a
fixed window of previously seen documents up to
that data. Then we obtained perplexity results for
each subset LM against our test set.

Figure 3 shows an example. For this experiment
subset LMs were trained using a sliding window
of 20 weeks with the window advancing over a
period of three weeks each time. The two arcs
correspond to two different test sets drawn from
different days. The arcs show thatrecency has a
clear effect: populating LMs using material closer
to the test data date produces improved perplexity
performance. The LM chronologically closest to
a given test set has perplexity closest to the results
of the significantly larger baseline LM which uses
all the stream. As expected, using all of the data
yields the lowest perplexity.

We note that this is a robust finding, since we
also observe it in other domains. For example, we

Epoch Stream Window
1 08.20.1996 to 01.01.1997
2 01.02.1997 to 04.23.1997
3 04.24.1997 to 08.18.1997

Table 2: The stream timeline is divided into win-
dowed epochs for our recency experiments.

conducted the same tests over a stream of 18 bil-
lion tokens drawn from 80 million time-stamped
blog posts downloaded from the web with match-
ing results. The effect of recency on perplexity has
also been observed elsewhere (see, for example,
Rosenfeld (1995) and Whittaker (2001)).

Our experiments show that a possible way to
tackle stream-based translation is to always focus
the attention of the LM on the most recent part
of the stream. This means we remove data from
the model that came from the receding parts of the
stream and replace it with the present.

5 SMT Experiments

5.1 Experimental Setup

We used publicly available resources for all our
tests: for decoding we used Moses (Koehn and
Hoang, 2007) and our parallel data was taken from
the Spanish-English section of Europarl. For test
material, we translated 63 documents (800 sen-
tences) from three randomly selected dates spaced
throughout the RCV1 year (January 2nd, April
24, and August 19).1 This effectively divided the
stream into threeepochsbetween the test dates (
table 2). We held out 300 sentences for minimum
error rate training (MERT) (Och, 2003) and opti-
mised the parameters of the feature functions of
the decoder for each experimental run.

The RCV1 is not a large corpus when compared
to the entire web but it is multilingual, chronologi-
cal, and large enough to enable us to test the effect
of recency in a translation setting.

5.2 Adaption

We looked at a number of ways of adapting the
O-RLM:

1. (Random) Randomly sample the stream and
for each newn-gram encountered, insert

1As RCV1 is not a parallel corpus we translated the ref-
erence documents ourselves. This parallel corpus is available
from the authors.

760

Order Full Epoch 1 Epoch 3
1 1.25M 0.6M 0.7M
2 14.6 M 6.8M 7.0M
3 50.6 M 21.3M 21.7M
4 90.3 M 34.8M 35.4M
5 114.7M 41.8M 42.6M
Total 271.5M 105M 107.5M

Table 3: Distinctn-grams (in millions) encoun-
tered in the full stream and example epochs.

it and remove some previously insertedn-
gram, irrespective of whether it was ever re-
quested by the decoder or is a prefix.

2. (Conservative) For each newn-gram en-
countered in the stream, insert it in the filter
and remove one previously insertedn-gram
which was never requested by the decoder.
To preserve consistency we do not remove
lower-order grams that are needed to estimate
backoff probability for higher-order smooth-
ing. Counts are updated forn-grams already
in the model if the new count observed is
larger than the current one.

3. (Severe) Differs from the conservative ap-
proach only in that we deleteall unusedn-
grams (i.e. all those not requested by the de-
coder in the previous translation task) from
the O-RLM before adapting with data from
the stream. This means the data structure is
sparsely populated for all runs.

All the TB-LMs and O-RLMs were unpruned 5-
gram models and usedStupid-backoffsmoothing
(Brants et al., 2007)2 with the backoff parameter
set to0.4 as suggested. The number of distinctn-
grams encountered in the stream for two epochs is
shown in Table 3.

Table 6 shows translation results using these
adaption strategies. In practice, the random ap-
proach does not work while the conservative and
severe adaption techniques produce equivalent re-
sults due to the small proportion of data in the
model that is queried during decoding. All the MT
experiments that follow use the severe method and
the overflow dictionary always holds less than1%
of the total elements in the model.

2Smoothing text input data streams poses an interesting
problem we hope to investigate in the future.

Date Lossless TB-LM O-RLM
Jan 37.83 37.12 37.17
Apr 34.88 34.21 34.79
Aug 29.05 28.52 28.44
Avg 33.92 33.28 33.46

Table 4: Baseline translation results in BLEU us-
ing data from the first stream epoch with a lossless
LM (4.5GB RAM), the TB-LM and the O-RLM
(300MB RAM). All LMs are static.

5.3 Training Regimes

We now consider stream-based translation. Our
first naive approachis to continually add new data
from the stream to the training set without delet-
ing anything. Given a constant memory bound this
strategy only increases the error rate over time as
discussed. Our second, computationally demand-
ing approach is, before each test point, to rebuild
the TB-LM from scratch using the stream data
from the most recent epoch as the training set.
This is batch retraining. The final approach in-
crementally retrains online. This utilizes the same
training data as above (the stream data from the
last epoch) but instead of full retraining it replaces
n-grams currently in the model with unseenn-
grams and counts encountered in the data stream.

5.4 Streaming Translation Results

Each table shows translation results for the three
different test times in the stream. All results re-
ported use the case-sensitive BLEU score.

For our baselines we usestaticLMs trained on
the first epoch’s data to test all three translation
points in the source stream. This is the tradi-
tional approach. We trained an exact, modified
Kneser-Ney smoothed LM (here we do not en-
force a memory constraint) and also used the TB-
LM and O-RLM to verify our structures adequecy.
Results are shown in table 4. The exact model
gives better performance overall due to the more
sophisticated smoothing used.

Table 5 shows results for a set ofstream-based
LMs using the TB-LM and the O-RLM with mem-
ory bounds of 200MB and 300MB. As expected,
the naive models performance degrades over time
as we funnel more data into the TB-LM and the
error rises. The batch retrained TB-LMs and O-
RLMs have constant error rates of1

28 and 1
212 and

so outperform the naive approach. Since the train-
ing data is identical we see (approximately) equal

761

Naive TB-LM Batch Retrained TB-LM O-RLM
Date 200MB 300MB 200MB 300MB 200MB 300MB
Jan 35.94 37.12 35.94 37.12 36.44 37.17
Apr 33.55 35.79 36.01 35.99 35.87 36.10
Aug 22.44 26.07 28.97 29.38 29.00 29.18
Avg 30.64 32.99 33.64 34.16 33.77 34.15

Table 5: Translation results for stream-based LMs in BLEU. Performance degrades with time using the
Naive approach. The batch retrained TB-LM and stream-basedO-RLM use constant error rates of128

and 1
212 .

performance from the batch retrained and online
models. We also see some improvement compared
to the static baselines when the LMs use the most
recent data from the target language stream with
respect to the current translation point.

The key difference is that each time we batch
retrain the TB-LM, we must compute a perfect
hashing of the new training set. This is computa-
tionally demanding since the perfect hashing algo-
rithm uses Monte Carlo randomisation which fails
routinely and must be repeated. To make the al-
gorithm tractable the training data set must be di-
vided into lexically sorted subsets as well. This
requires extra passes over the data which may not
be trivial in a streaming environment.

In contrast, the O-RLM is incrementally re-
trained online. This makes it more resource ef-
ficient since we find bits in the model for then-
grams dynamically without using more memory
than we intially set. Note that even though the O-
RLM is theoretically less space efficient than the
TB-LM, when using the same amount of memory
translation performance is comparable.

6 O-RLM Properties

The previous experiments confirm that the O-
RLM can be employed as a LM in an SMT setting
but it is useful to get insight into the intrinsic prop-
erties of the data structure. Many of the properties
of the model, such as the number of bits per fin-
gerprint, follow directly from the TB-LM but the
relationship between the overflow dictionary and
the randomised buckets is novel.

Figures 4 and 5 shows properties of the O-RLM
while varying only the number of cells in each
bucket and keeping all other model parameters
constant. We test membership ofn-grams in an
unseen corpus against those stored in the table.
Our tests were conducted over a larger stream of
1.25Bn-grams from the Gigaword corpus(Graff,

Date Severe Random Conservative
Jan 36.44 36.44 36.44
Apr 35.87 31.08 35.51
Aug 29.00 19.31 29.14
Avg 33.77 29.11 33.70

Table 6: Adaptation results measured in BLEU.
Random deletions degrade performance when
adapting a 200MB O-RLM.

2003). We set our space usage to match the 3.08
bytes pern-gram reported in Talbot and Brants
(2008) and held out just over 1M unseenn-grams
to test the error rates of our models.

In Figure 4 we see a direct correlation between
model error and cells per buckets. As the num-
ber of cells decreases the false positive rate drops
as well since fewer cells to compare against per
bucket means a lower chance of producing colli-
sions. If the range is decreased too much though
more data is diverted to the overflow dictionary
due to many buckets reaching capacity when in-
serting and adapting. Clearly this is less space ef-
ficient. Figure 5 shows the relationship between
the percent of data in the overflow dictionary and
the total cells per bucket.

7 Conclusions

Our experiments have shown that for stream-based
translation, using recent data can benefit perfor-
mance but simply adding entries to a randomised
representation will only reduce translation perfor-
mance over time. We have presented a novel ran-
domised language model based on dynamic per-
fect hashing that supports online insertions and
deletions. As a consequence, it is considerably
faster and more efficient than batch retraining.

While not advocating the idea that only small
amounts of data are needed for language mod-

762

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 50 100 150 200 250

fa
ls

e
 p

o
s
it
iv

e
 r

a
te

s

cells per bucket

O-RLM Error rate

Figure 4: The O-RLM error rises in correlation
with the number of cells per bucket.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 50 100 150 200 250

%
 o

f
d

a
ta

 i
n

 o
v
e

rf
lo

w
 d

ic
ti
o

n
a

ry

cells per bucket

Overflow Dictionary Size

Figure 5: Too few cells per bucket causes a higher
percentage of the data to be stored in the overflow
dictionary due to full buckets.

elling, within a bounded amount of space our re-
sults show that it is better to have a low error rate
and store a wisely chosen fraction of the data than
having a high error rate and storing more of it.
Clearly tradeoffs will vary between applications.

This is the first stream-based randomised lan-
guage model and associated machine translation
system reported in the literature. Clearly there are
many interesting open questions for future work.
For example, can we use small randomised repre-
sentations calledsketchesto compactly represent
side-information on the stream telling us which as-
pects of it we should insert into our data? How
can we efficiently deal with smoothing in this set-
ting? Our adaptation scheme is simple and our
data stream is tractable. Currently we are con-

ducting tests over much larger, higher variance
text streams from crawled blog data. In the fu-
ture we will also consider randomised representa-
tions of other adaptive LMs in the literature using
a static background LM in conjunction with our
online one. We ultimately hope to deploy large-
scale LMs which continuously adapt to the vast
amount of material published on the Web without
incurring significant computational overhead.

Acknowledgements

The authors would like to thank David Talbot,
Adam Lopez and Phil Blunsom for their valu-
able comments and insight. This work was sup-
ported in part under the GALE program of the De-
fense Advanced Research Projects Agency, Con-
tract No. HR0011-06-C-0022.

References

Jerome R. Bellegarda. 2004. Statistical language
model adaptation: review and perspectives.Speech
Communication, 42:93–108.

Burton H. Bloom. 1970. Space/time trade-offs in
hash coding with allowable errors.Commun. ACM,
13(7):422–426.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large language
models in machine translation. InProceedings
of the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 858–867.

J. Lawrence Carter and Mark N. Wegman. 1977. Uni-
versal classes of hash functions (extended abstract).
In STOC ’77: Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 106–112,
New York, NY, USA. ACM Press.

Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and
Ayellet Tal. 2004. The bloomier filter: an ef-
ficient data structure for static support lookup ta-
bles. InSODA ’04: Proceedings of the fifteenth an-
nual ACM-SIAM symposium on Discrete algorithms,
pages 30–39, Philadelphia, PA, USA. Society for In-
dustrial and Applied Mathematics.

Kenneth Church, Ted Hart, and Jianfeng Gao. 2007.
Compressing trigram language models with Golomb
coding. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 199–207,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

763

Amit Goyal, Hal Daumé III, and Suresh Venkatasub-
ramanian. 2009. Streaming for large scale NLP:
Language modeling. InNorth American Chap-
ter of the Association for Computational Linguistics
(NAACL), Boulder, CO.

David Graff. 2003. English Gigaword. Linguistic Data
Consortium (LDC-2003T05).

Philipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. InProceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 868–876.

Philipp Koehn and Josh Schroeder. 2007. Experi-
ments in domain adaptation for statistical machine
translation. InProceedings of the Second Workshop
on Statistical Machine Translation, pages 224–227,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Robert Morris. 1978. Counting large numbers
of events in small registers. Commun. ACM,
21(10):840–842.

Christian Worm Mortensen, Rasmus Pagh, and Mihai
Pǎtraçcu. 2005. On dynamic range reporting in one
dimension. InSTOC ’05: Proceedings of the thirty-
seventh annual ACM symposium on Theory of com-
puting, pages 104–111, New York, NY, USA. ACM.

S. Muthukrishnan. 2003. Data streams: algorithms
and applications. InSODA ’03: Proceedings of the
fourteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 413–413, Philadelphia, PA,
USA. Society for Industrial and Applied Mathemat-
ics.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. InACL ’03:
Proceedings of the 41st Annual Meeting on Asso-
ciation for Computational Linguistics, pages 160–
167, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Tony Rose, Mark Stevenson, and Miles Whitehead.
2002. The reuters corpus volume 1 - from yester-
days news to tomorrows language resources. InIn
Proceedings of the Third International Conference
on Language Resources and Evaluation, pages 29–
31.

Ronald Rosenfeld. 1995. Optimizing lexical and n-
gram coverage via judicious use of linguistic data.
In In Proc. European Conf. on Speech Technology,
pages 1763–1766.

A. Stolcke. 2002. Srilm – an extensible language mod-
eling toolkit. In Proc. Intl. Conf. on Spoken Lan-
guage Processing, 2002.

David Talbot and Thorsten Brants. 2008. Randomized
language models via perfect hash functions. InPro-
ceedings of ACL-08: HLT, pages 505–513, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

David Talbot and Miles Osborne. 2007. Smoothed
Bloom filter language models: Tera-scale LMs on
the cheap. InProceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 468–476.

Benjamin Van Durme and Ashwin Lall. 2009. Prob-
abilistic counting with randomized storage. In
Twenty-First International Joint Conference on Ar-
tificial Intelligence (IJCAI-09), Pasadena, CA, July.

E. W. D. Whittaker. 2001. Temporal adaptation of lan-
guage models. InIn Adaptation Methods for Speech
Recognition, ISCA Tutorial and Research Workshop
(ITRW), pages 203–206.

Hua Wu, Haifeng Wang, and Chengqing Zong. 2008.
Domain adaptation for statistical machine transla-
tion with domain dictionary and monolingual cor-
pora. In Proceedings of the 22nd International
Conference on Computational Linguistics (Coling
2008), pages 993–1000. Coling 2008 Organizing
Committee, August.

764

