
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 698–707,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Tree Kernel-based SVM with Structured Syntactic Know-
ledge for BTG-based Phrase Reordering

Min Zhang Haizhou Li
Institute for Infocomm Research

1 Fusionopolis Way,#21-01 Connexis (South Tower)
Singapore 138632

{mzhang,hli}@i2r.a-star.edu.sg

Abstract

Structured syntactic knowledge is important
for phrase reordering. This paper proposes us-
ing convolution tree kernel over source parse
tree to model structured syntactic knowledge
for BTG-based phrase reordering in the con-
text of statistical machine translation. Our
study reveals that the structured syntactic fea-
tures over the source phrases are very effective
for BTG constraint-based phrase reordering
and those features can be well captured by the
tree kernel. We further combine the structured
features and other commonly-used linear fea-
tures into a composite kernel. Experimental re-
sults on the NIST MT-2005 Chinese-English
translation tasks show that our proposed
phrase reordering model statistically signifi-
cantly outperforms the baseline methods.

1 Introduction

Phrase-based method (Koehn et al., 2003; Och
and Ney, 2004; Koehn et al., 2007) and syntax-
based method (Wu, 1997; Yamada and Knight,
2001; Eisner, 2003; Chiang, 2005; Cowan et al.,
2006; Marcu et al., 2006; Liu et al., 2007; Zhang
et al., 2007c, 2008a, 2008b; Shen et al., 2008; Mi
and Huang, 2008) represent the state-of-the-art
technologies in statistical machine translation
(SMT). As the two technologies are complemen-
tary in many ways, an interesting research topic
is how to combine the strengths of the two me-
thods. Many research efforts have been made to
address this issue, which can be summarized into
two ideas. One is to add syntax into phrase-based
model while another one is to enhance syntax-
based model to handle non-syntactic phrases. In
this paper, we bring forward the first idea by
studying the issue of how to utilize structured

syntactic features for phrase reordering in a
phrase-based SMT system with BTG (Bracketing
Transduction Grammar) constraints (Wu, 1997).

Word and phrase reordering is a crucial com-
ponent in a SMT system. In syntax-based method,
word reordering is implicitly addressed by trans-
lation rules, thus the performance is subject to
parsing errors to a large extent (zhang et al.,
2007a) and the impact of syntax on reordering is
difficult to single out (Li et al., 2007). In phrase-
based method, local word reordering1 can be ef-
fectively captured by phrase pairs directly while
local phrase reordering is explicitly modeled by
phrase reordering model and distortion model.
Recently, many phrase reordering methods have
been proposed, ranging from simple distance-
based distortion model (Koehn et al., 2003; Och
and Ney, 2004), flat reordering model (Wu, 1997;
Zens et al., 2004), lexicalized reordering model
(Tillmann, 2004; Kumar and Byrne, 2005), to
hierarchical phrase-based model (Chiang, 2005;
Setiawan et al., 2007) and classifier-based reor-
dering model with linear features (Zens and Ney,
2006; Xiong et al., 2006; Zhang et al., 2007a;
Xiong et al., 2008). However, one of the major
limitations of these advances is the structured
syntactic knowledge, which is important to glob-
al reordering (Li et al., 2007; Elming, 2008), has
not been well exploited. This makes the phrase-
based method particularly weak in handling
global phrase reordering. From machine learning
viewpoint (Vapnik, 1995), it is computationally
infeasible to explicitly generate features involv-
ing structured information in many NLP applica-

1 This paper follows the term convention of global reorder-
ing and local reordering of Li et al. (2007), between which
the distinction is solely defined by reordering distance
(whether beyond four source words) (Li et al., 2007).

698

tions. For example, one cannot enumerate effi-
ciently all the sub-tree features for a full parse
tree. This would be the reason why structured
features are not fully utilized in previous statis-
tical feature-based phrase reordering model.

Thanks to the nice property of kernel-based
machine learning method that can implicitly ex-
plore (structured) features in a high dimensional
feature space (Vapnik, 1995), in this paper we
propose using convolution tree kernel (Haussler,
1999; Collins and Duffy, 2001) to explore the
structured syntactic knowledge for phrase reor-
dering and further combine the tree kernel with
other diverse linear features into a composite
kernel to strengthen the model’s predictive abili-
ty. Indeed, using tree kernel methods to mine
structured knowledge has shown success in some
NLP applications like parsing (Collins and Duffy,
2001), semantic role labeling (Moschitti, 2004;
Zhang et al., 2007b), relation extraction (Zhang
et al., 2006), pronoun resolution (Yang et al.,
2006) and question classification (Zhang and
Lee, 2003). However, to our knowledge, such
technique still remains unexplored for phrase
reordering.

In this paper, we look into the phrase reorder-
ing problem in two aspects: 1) how to model and
optimize structured features, and 2) how to com-
bine the structured features with other linear fea-
tures and further integrate them into the log-
linear model-based translation framework. Our
study shows that: 1) the structured syntactic fea-
tures are very useful and 2) our kernel-based
model can well explore diverse knowledge, in-
cluding previously-used linear features and the
structured syntactic features, for phrase reorder-
ing. Our model displays one advantage over the
previous work that it is able to utilize the struc-
tured syntactic features without the need for ex-
tensive feature engineering in decoding a parse
tree into a set of linear syntactic features.

To have a more insightful evaluation, we de-
sign three experiments with three different eval-
uation metrics. Experimental results on the NIST
MT-2005 Chinese-English translation tasks show
that our method statistically significantly outper-
forms the baseline methods in term of the three
different evaluation metrics.

The rest of the paper is organized as follows.
Section 2 introduces the baseline method of
BTG-based phrase translation method while sec-
tion 3 discusses the proposed method in detail.
The experimental results are reported and dis-
cussed in section 4. Finally, we conclude the pa-
per in section 5.

2 Baseline System and Method

We use the MaxEnt-based BTG translation sys-
tem (Xiong et al., 2006) as our baseline. It is a
phrase-based SMT system with BTG reordering
constraint. The system uses the BTG lexical
translation rules (ܣ ՜ ݕ/ݔ) to translate the
source phrase ݔ into target phrase ݕ , and the
BTG merging rules (ܣ ՜ ሾܣ, |ሿܣ ൏ ,ܣ ܣ ൐) to
combine two neighboring phrases with a straight
or inverted order. In the translation model, the
BTG lexical rules are weighted with several fea-
tures, such as phrase translation, word penalty
and language models, in a log-linear form. With
the BTG constraint, the reordering model Ω is
defined on the two neighboring phrases ܣଵ and ܣଶ and their order ݋ א ሼݐ݄݃݅ܽݎݐݏ, ሽ as݀݁ݐݎ݁ݒ݊݅
follows: Ω ൌ f(݋, ,ଵܣ ଶ) (1)ܣ

In the baseline system, a MaxEnt-based clas-
sifier with boundary words of the two neighbor-
ing phrases as features is used to model the
merging/reordering order. The baseline MaxEnt-
based reordering model is formulized as follows: Ω ൌ ,ଵܣ|݋)ఏ݌ (ଶܣ ൌ ௘௫௣(∑ ఏ೔௛೔(௢,஺భ,஺మ))೔∑ ௘௫௣(∑ ఏ೔௛೔(௢,஺భ,஺మ))೔೚ (2)
where the functions ݄௜(݋, ,ଵܣ (ଶܣ א ሼ0,1ሽ are
model feature functions using the boundary
words of the two neighboring phrases as features,
and ߠ௜ are feature weights that are trained based
on the MaxEnt-based criteria.

3 Tree Kernel-based Phrase Reordering
Model

3.1 Kernel-based Classifier Solution to
Phrase Reordering

In this paper, phrase reordering is recast as a
classification issue as done in previous work
(Xiong et al., 2006 & 2008; Zhang et al., 2007a).
In training, we use a machine learning algorithm
training on the annotated phrase reordering in-
stances that are automatically extracted from
word-aligned, source sentence parsed training
corpus, to learn a classifier. In testing (decoding),
the learned classifier is applied to two adjacent
source phrases to decide whether they should be
merged (straight) or reordered (inverted) and
what their probabilities are, and then these prob-
abilities are used as one feature in the log-linear
model in a phrase-based decoder.

In addition to the previously-used linear fea-
tures, we are more interested in the value of
structured syntax in phrase reordering and how
to capture it using kernel methods. However, not

699

all classifiers are able to work with kernel me-
thods. Only those dot-product-based classifiers
can work with kernels by replacing the dot prod-
uct with a kernel function, where the kernel func-
tion is able to directly calculate the similarity
between two (structured) objects without enume-
rating them into linear feature vectors. In this
paper, we select SVM as our classifier. In this
section, we first define the structured syntactic
features and introduce the commonly used linear
features, and then discuss how to utilize these
features by kernel methods together SVM for

phrase reordering

3.2 Structured Syntactic Features

A reordering instance ݔ ൌ ሼܣଵ, ଶሽ (see Eq.1) inܣ
this paper refers to two adjacent source phrases ܣଵ and ܣଶ to be translated. The structured syn-
tactic feature spaces of a reordering instance are
defined as the portion of a parse tree of the
source sentence that at least covers the span of
the reordering instance (i.e. the two neighboring
phrases). The syntactic features are defined as all

T1) Minimum Sub-Tree (MST)

T2) Minimum Sub-Structure (MSS) T4) Chunking Tree (CT)

T3) Context-sensitive Minimum Sub-Structure (CMSS)

Figure 1. Different representations of structured syntactic features of a reordering instance in the example
sentence excerpted from our training corpus “…建立/build 规模/scale 宏大/mighty 的/of 各类/various
types 人才/qualified personnel 队伍/contingent 首先/above all 迫切/urgently 需要/necessary 中央

/central authorities 统筹/overall 规划/planning…(To build a mighty contingent of qualified personnel of
various types, it is necessary, above all, for the central authorities to make overall planning.) ”, where “各
类/various types 人才/qualified personnel 队伍/contingent (contingent of qualified personnel of various
types)” is the 1st/left phrase and “首先/above all 迫切/urgent 需要/necessary (it is necessary, above all,
…)” is the 2nd/right phrase. Note that different function tags are attached to the grammar tag of each inter-
nal node.

700

the possible subtrees in the structured feature
spaces. We can see that the structured feature
spaces and their features are encapsulated by a
full parse tree of source sentences. Thus, it is
critical to understand which portion of a parse
tree (i.e. structured feature space) is the most ef-
fective to represent a reordering instance. Moti-
vated by the work of (Zhang et al., 2006), we
here examine four cases that contain different
sub-structures as shown in Fig. 1.

(1) Minimum Sub-Tree (MST): the sub-tree
rooted by the nearest common ancestor of the
two phrases. This feature records the minimum
sub-structure covering the two phrases and its
left and right contexts as shown in Fig 1.T1.

(2) Minimum Sub-Structure (MSS): the smal-
lest common sub-structure covering the two
phrases. It is enclosed by the shortest path link-
ing the two phrases. Thus, its leaf nodes exactly
consist of all the phrasal words.
(3) Context-sensitive Minimum Sub-Structure
(CMSS): the MSS extending with the 1st left
sibling node of the left phrase and the 1st right
sibling node of the right phrase and their descen-
dants. If sibling is unavailable, then we move to
the parent of current node and repeat the same
process until the sibling is available or the root of
the MST is reached.
(4) Chunking Tree (CT): the base phrase list
extracted from the MSS. We prune out all the
internal structures of the MSS and only keep the
root node and the base phrase list for generating
the chunking tree.

Fig. 1 illustrates the different representations
of an example reordering instance. T1 is the MST
for the example instance, where the sub-structure
circled by a dotted line is the MSS, which is also
shown in T2 for clarity. We can see that the MSS
is a subset of the MST. By T2 we would like to
evaluate whether the structured information is
effective for phrase reordering while by compar-
ing the system performance when using T1 and
T2, we would like to evaluate whether the struc-
tured context information embedded in the MST
is useful to phrase reordering. T3 is the CMSS,
where the two sub-structures circled by dotted
lines are included as the context to T2 and make
T3 limited context-sensitive. This is to evaluate
whether the limited context information in the
CMSS is helpful. By comparing the performance
of T1 and T3, we would like to see whether the
larger context in T1 is a noisy feature. T4 is the
CT, where only the basic structured information
is kept. By comparing the performance of T2 and

T4, we would like to study whether the high-level
structured syntactic features in T2 are useful to
phrase reordering.

After defining the four structured feature
spaces, we further partition each feature space
into five parts according to their functionalities.
Because it only makes sense to evaluate two par-
titions of the same functionality between two
reordering instances, the feature space partition
leads to a more precise similarity calculation. As
shown in Fig 1, all the internal nodes in each par-
tition are labeled with a unique function tag in
the following way:

• Left Context (-lc): nodes in this partition
do not cover any phrase word and they are
all in the left of the left phrase.

• Right Context (-rc): nodes in this partition
do not cover any phrase word and they are
all in the right of the right phrase.

• Left Phrase (-lp): nodes in this partition
only cover the first phrase and/or its left
context.

• Right Phrase (-rp): nodes in this partition
only cover the second phrase and/or its right
context.

• Shared Part (-sp): nodes in this partition at
least cover both of the two phrases partially.

No lexical word is tagged since it is not a part
of the structured features, and therefore not par-
ticipating in the tree kernel computing.

3.3 Linear Features

In our study, we define the following lexicalized
linear features which are easily to be extracted
and integrated to our composite kernel:

• Leftmost and rightmost boundary words of
the left and right source phrases

• Leftmost and rightmost boundary words of
the left and right target phrases

• Internal words of the four phrases (exclud-
ing boundary words)

• Target language model (LM) score differ-
ence (monotone-inverted)

In total, we arrive at 13 features, including 8
boundary word features, 4 (kinds of) internal
word features and 1 LM feature. The first 12 fea-
tures have been proven useful (Xiong et al.,
2006; Zhang et al., 2007a) to phrase reordering.
LM score is certainly a strong evidence for mod-
eling word orders and lexical selection. Although
it is already used as a standalone feature in the
log-linear model, we also would like to explicitly
re-optimize it together with other reordering fea-
tures in our reordering model.

701

3.4 Tree Kernel, Composite Kernel and In-
tegrating into our Reordering Model

As discussed before, we use convolution tree
kernel to capture the structured syntactic feature
implicitly by directly computing similarity be-
tween the parse-tree representations of two reor-
dering instances with explicitly enumerating all
the features one by one. In convolution tree ker-
nel (Collins and Duffy, 2001), a parse tree T is
implicitly represented by a vector of integer
counts of each sub-tree type (regardless of its
ancestors):

()Tφ = (# subtree1(T), …, # subtreen(T))
where # subtreei(T) is the occurrence number of
the ith sub-tree type (subtreei) in T. Since the
number of different sub-trees is exponential with
the parse tree size, it is computationally infeasi-
ble to directly use the feature vector ()Tφ . To
solve this computational issue, Collins and Duffy
(2001) proposed the following parse tree kernel
to calculate the dot product between the above
high dimensional vectors implicitly.

1 1 2 2

1 1 2 2

1 2 1 2

1 2

1 2

(,) (), ()

 () ()

 (,)

(() ())
i isubtree subtreei n N n N

n N n N

K T T T T

I n I n

n n

φ φ

∈ ∈

∈ ∈

=< >

=

= Δ

⋅∑ ∑ ∑
∑ ∑

where N1 and N2 are the sets of nodes in trees T1
and T2, respectively, and ()

isubtreeI n is a function
that is 1 iff the subtreei occurs with root at node n
and zero otherwise, and 1 2(,)n nΔ is the number of
the common subtrees rooted at n1 and n2, i.e.,

1 2 1 2(,) () ()
i isubtree subtreei

n n I n I nΔ = ⋅∑

1 2(,)n nΔ can be further computed efficiently by
the following recursive rules:
Rule 1: if the productions (CFG rules) at 1n and

2n are different, 1 2(,) 0n nΔ = ;
Rule 2: else if both 1n and 2n are pre-terminals

(POS tags), 1 2(,) 1n n λΔ = × ;
Rule 3: else,

1()
1 2 1 21

(,) (1 ((,), (,)))nc n

j
n n ch n j ch n jλ

=
Δ = + Δ∏ ,

where 1()nc n is the child number of 1n , ch(n,j) is
the jth child of node n and λ (0< λ <1) is the de-
cay factor in order to make the kernel value less
variable with respect to the subtree sizes. In ad-
dition, the recursive Rule 3 holds because given
two nodes with the same children, one can con-
struct common sub-trees using these children and
common sub-trees of further offspring. The time

complexity for computing this kernel is
1 2(| | | |)O N N⋅ and in practice in near to linear

computational time without the need of enume-
rating all subtree features.

In our study, the linear feature-based similarity
is simply calculated using dot-product. We then
define the following composite kernel to com-
bine the structured features-based and the linear
features-based similarities:
,ଵݔ)௖ܭ (ଶݔ ൌ ߙ · ,ଵݔ)௧ܭ (ଶݔ ൅ (1 െ (ߙ · ,ଵݔ)௟ܭ ଶ) (3)ݔ

where Kt is the tree kernel over the structured
features and Kl is the linear kernel (dot-product)
over the linear features. The composite kernel Kc
is a linear combination of the two individual ker-
nels, where the coefficient α is set to its default
value 0.3 as that in Moschitti (2004)’s implemen-
tation. The kernels return the similarities be-
tween two reordering instances based on their
features used. Our basic assumption is, the more
similar the two reordering instances of x1 and x2
are, the more chance they share the same order.

Now let us see how to integrate the kernel
functions into SVM. The linear classifier learned
by SVM is formulized as:

() sgn()i i ii
f x y a x x b= • +∑ (4)

where ia is the weight of a support vector ix (i.e.,
a support reordering instance ݔ௜ ൌ ሼܣଵ, ଶሽin ourܣ
study), iy is its class label (1: - or ݐ݄݃݅ܽݎݐݏ
in our study) and b ݀݁ݐݎ݁ݒ݊݅ :1 is the intercept
of the hyperplane. An input reordering instance x
is classified as positive (negative) if ()f x >0 (

()f x <0).
Based on the linear classifier, a kernelized

SVM can be easily implemented by simply re-
placing the dot product ix x∗ in Eq (4) with a

kernel function (,)iK x x . Thus, the kernelized
SVM classifier is formulated as:

() sgn((,))i i ii
f x y a K x x b= +∑ (5)

where (,)iK x x is either (,)c iK x x , (,)t iK x x or

(,)l iK x x in our study. Following Eq (1), our
reordering model (implemented by the kerne-
lized SVM) can be formulized as follows:
 Ω ൌ f(݋, ,ଵܣ (ଶܣ ൌ ݔ|݋)௦௩௠݌ ൌ ሼܣଵ, ଶሽ) ൌܣ ∑)݊݃ݏ ,ݔ)ܭ௜ܽ௜ݕ) (௜ݔ ൅ ܾ)௜) (6)

A reordering instance x is classified as straight
(or inverted) if ݌௦௩௠(ݔ|݋) ൐ 0 (or ݌௦௩௠(ݔ|݋) ൏0). Eq (6) and Eq (2) show the difference be-
tween our kernalized SVM-based reordering

702

model and the MaxEnt-based reordering model.
The main difference between them lies in that
our model is able to utilize structured syntactic
features by kernalized SVM while the previous
work can only use lexicalized word features by
MaxEnt-based classifier.

Finally, because the return value of ݌௦௩௠(ݔ|݋) is a distance function rather than a
probability, we use a sigmoid function to convert ݌௦௩௠(ݔ|݋) to a posterior probability as shown
using the following to functions and apply it as
one feature to the log-linear model in the decod-
ing.

(|)

1(|)
1 svmp o xP straight x

e−=
+

 and

(|)

1(|)
1 svmp o xP inverted x

e
=

+

where straight represents a positive instance and
inverted represents a negative instance.

4 Experiments and Discussion

4.1 Experimental Settings

Basic Settings: we evaluate our method on Chi-
nese-English translation task. We use the FBIS
corpus as training set, the NIST MT-2002 test set
as development (dev) set and the NIST MT-2005
test set as test set. The Stanford parser (Klein and
Manning, 2003) is used to parse Chinese sen-
tences on the training, dev and test sets. GIZA++
(Och and Ney, 2004) and the heuristics “grow-
diag-final-and” are used to generate m-to-n word
alignments. The translation model is trained on
the FBIS corpus and a 4-gram language model is
trained on the Xinhua portion of the English Gi-
gaword corpus using the SRILM Toolkits
(Stolcke, 2002) with modified Kneser-Ney
smoothing (Kenser and Ney, 1995). For the
MER training (Och, 2003), we modify Koehn’s
MER trainer (Koehn, 2004) to train our system.
For significance test, we use Zhang et al’s im-
plementation (Zhang et al, 2004).

Baseline Systems: we set three baseline sys-
tems: B1) Moses (Koehn et al., 2007) that uses
lexicalized unigram reordering model to predict
three orientations: monotone, swap and discon-
tinuous; B2) MaxEnt-based reordering model
with lexical boundary word features only (Xiong
et al., 2006); B3) Linguistically annotated reor-
dering model for BTG-based (LABTG) SMT
(Xiong et al., 2008). For Moses, we used the de-
fault settings. We build a CKY-style decoder and
integrate the corresponding reordering modelling
methods into the decoder to implement the 2nd

and the 3rd baseline systems and our system. Ex-
cept reordering models, all the four systems use
the same features in translation model, language
model and distortion model as Moses in the log-
linear framework. We tune the four systems us-
ing the strategies as discussed previously in this
section.

Reordering Model Training: we extract all
reordering instances from the m-to-n word-
aligned training corpus. The reordering instances
include the two source phrases, two target phras-
es, order label and its corresponding parse tree.
We generate the boundary word features from
the extracted reordering instances in the same
way as discussed in Xiong et al. (2006) and use
Zhang’s MaxEnt Tools 2 to train a reordering
model for the 2nd baseline system. Similarly, we
use the algorithm 1 in Xiong et al. (2008) to ex-
tract features and use the same MaxEnt Tools to
train a reordering model for the 3rd baseline sys-
tem. Based on the extracted reordering instances,
we generate the four structured features and the
linear features, and then use the Tree Kernel
Tools (Moschitti, 2004) to train our kernel-based
reordering model (linear, tree and composite).

Experimental Design and Evaluation Met-
rics: we design three experiments and evaluate
them using three metrics.

 Classification-based: in the first experiment,
we extract all reordering instances and their fea-
tures from the dev and test sets, and then use the
reordering models trained on the training set to
classify (label) those instances extracted from the
dev and test sets. In this way, we can isolate the
reordering problem from the influence of others,
such as translation model, pruning and decoding
strategies, to better examine the reordering mod-
els’ ability and to give analytical insights into the
features. Classification Accuracy (CAcc), the
percentage of the correctly labeled instances over
all trials, is used as the evaluation metric.

Forced decoding3-based and normal decoding-
based: the two experiments evaluate the reorder-
ing models through a real SMT system. The
reordering model and the language model are the
same in the two experiments. However, in forced
decoding, we train two translation models, one
using training data only while another using both

2 http://homepages.inf.ed.ac.uk/s0450736/maxent.html
3 A normal SMT decoder filters a translation model accord-
ing to the source sentences, whereas in forced decoding, a
translation model is filtered based on both source sentence
and target references. In other words, in forced decoding,
the decoder is forced to use those phrases whose translations
are already in the references.

703

training, dev and test data. By forced decoding,
we aim to isolate the reordering problem from
those of OOV and lexical selections resulting
from imperfect translation model in the context
of a real SMT task. Besides the the case-sensitive
BLEU-4 (Papineni et al., 2002) used in the two
experiments, we design another evaluation me-
trics Reordering Accuracy (RAcc) for forced de-
coding evaluation. RAcc is the percentage of the
adjacent word pairs with correct word order 4
over all words in one-best translation results.
Similar to BLEU score, we also use the similar
Brevity Penalty BP (Papineni et al., 2002) to pe-
nalize the short translations in computing RAcc.
Finally, please note for the three evaluation me-
trics, the higher values represent better perfor-
mance.

Feature Spaces CAcc (%)
Dev Test

Minimum Sub-Tree (MST) 89.87 89.92
Minimum Sub-Structure (MSS) 87.95 87.88
Context-Sensitive MSS (CMSS) 89.11 89.01
Chunking Tree (CT) 86.17 86.21
Linear Features (Kl) 90.79 90.46
Kl w/o using LM feature (Kl-LM) 84.24 84.06
Composite Kernel (Kc: MST+Kl) 92.98 92.67
MST w/o the 5 function tags 86.94 87.03
All are straight (monotonic) 78.92 78.67

Table 1: Performance of our methods on the
dev and test sets with different feature combi-
nations

4.2 Experimental Results

Classification of Instances: Table 1 reports the
performance of our defined four structured fea-
tures, linear feature and the composite kernel.
The results are summarized as follows.

The last row reports the performance without
using any reordering features. We just suppose
that all the translations are monotonic, no reor-
dering happens. The CAccs of 78.92% and 78.67%
serve as the bottom line in our study. Compared
with the bottom line, the tree kernels over the 4
structured features are very effective for phrase

4 An adjacent word pair wiwi+1 in a translation have correct
word order if and only if wi appears before wi+1 in transla-
tion references. Note than the two words may not be adja-
cent in the references even if they have correct word order.

reordering since only structured information is
used in the tree kernel5.

The CTs performs the worst among the 4
structured features. This suggests that the middle
and high-level structures beyond base phrases are
very useful for phrase reordering. The MSSs
show lower performance than the CMSSs and
the MSTs achieve the best performance. This
clearly indicates that the structured context in-
formation is useful for phrase reordering. For this
reason, the subsequent discussions are focused
on the MSTs, unless otherwise specified. The
MSSs without using the 5 function tags perform
much worse than the original ones. This suggests
that the partitions of the structured feature spaces
are very helpful, which can effectively avoid the
undesired matching between partitions of differ-
ent functionalities. Comparison of Kl and Kl-LM
shows the LM plays an important role in phrase
reordering. The composite kernel (Kc) performs
much better than the two individual kernels. This
suggests that the structured and linear features
are complementary and the composite kernel can
well integrate them for phrase reordering.

Methods CAcc (%)
Dev Test

Minimum Sub-Tree (MST) 89.87 89.92
Linear Features (Kl) 90.79 90.46
Composite Kernel (Kc: MST+Kl) 92.98 92.67
MaxEnt+boundary word (B2) 88.33 86.97
MaxEnt+linguistic features (B3_1) 84.83 83.92
MaxEnt+LABTG (B3: B2+ B3_1) 88.82 88.18

Table 2: Performance comparison of different me-

thods

Table 2 compares the performance of the base-
line methods with ours. Comparison between
B3_1 and MST clearly demonstrates that the
structured syntactic features are much more ef-
fective than the linear syntactic features that are
manually extracted via heuristics. It also suggests
that the tree kernel can well capture the struc-
tured features implicitly. Kl outperforms B2. This
is mainly due to the contribution of LM features.
B2 (MaxEnt-based) significantly outperforms Kl-

LM in Table 1 (SVM-based). This suggests that
phrase reordering may not be a good linearly bi-
nary-separable task if only boundary word fea-
tures are used. Our composite kernel (Kc) signifi-
cantly outperforms LABTG (B3). This mainly

5 The tree kernel algorithm only compares internal struc-
tures. It does not concern any lexical leaf nodes.

704

attributes to the contributions of structured syn-
tactic features, LM and the tree kernel.

Forced Decoding: Table 3 compares the per-
formance of our composite kernel with that of
the LABTG (Baseline 3) in forced decoding. As
discussed before, here we try two translation
models.

The composite kernel outperforms the
LABTG in all test cases. This further validates
the effectiveness of the kernel methods in phrase
reordering. There are still around 30% words
reordered incorrectly even if we use the transla-
tion model trained on both training, dev and test
sets. This reveals the limitations of current SMT
modeling methods and suggests interesting fu-
ture work in this area. The source language
OOV6 rate in forced decoding (13.6%) is much
higher that in normal decoding (6.22%, see table
4). This is mainly due to the fact that the phrase
table in forced decoding is filtered out based on
both source and target languages while in normal
decoding it is based on source language only. As
a result, more phrases are filtered out in the
forced decoding. There is 1.4% OOV even if the
translation model is trained on the test set. This is
due to the incorrect word alignment, large-span
word alignment and different English tokeniza-
tion strategies used in BLEU-scoring tool and
ours.

Methods Test Set (%)
RAcc OOV BLEU

Composite Kernel (Kc)
 +translation model on
 Training, dev and test

51.03
72.67

13.6
1.41

38.56
62.87

MaxEnt+LABTG (B3)
 +translation model on
 training, dev and test

48.96
71.45

13.6
1.41

37.32
62.14

Table 3: Performance comparison of forced de-
coding

Methods Test Set
 BLEU(%) OOV(%)

Composite Kernel (Kc) 27.65 6.26
Moses (B1) 25.71 6.17
MaxEnt+boundary word(B2) 25.99 6.22
MaxEnt+LABTG (B3) 26.63 6.22

Table 4: Performance comparison

6 OOV means a source words has no any English translation
according to the translation model. OOV rate is the percent-
age of the number of OOV words over all the source words.

Normal Decoding/Translation: Table 4 reports
the translation performance of our system and
the three baseline systems.

Moses (B1) and the MaxEnt-based boundary
word model (B2) achieve comparable perfor-
mance. This means the lexicalized orientation-
based reordering model in Moses performs simi-
larly to the boundary word-based reordering
model since the two models are both lexical
word-based. However, theoretically, the Max-
Ent-based model may suffer less from data
sparseness issue since it does not depends on
internal phrasal words and uses MaxEnt to op-
timize feature weights while the orientation-
based model uses relative frequency of the entire
phrases to compute the posterior probabilities. s.
The MaxEnt-based LABTG model significantly
outperforms (p<0.05) the MaxEnt-based boun-
dary word model and the lexicalized orientation-
based reordering model. This indicates that the
linearly linguistically syntactic information is a
useful feature to phrase reordering.

Our composite kernel-based model signifi-
cantly outperforms (p<0.01) the three baseline
methods. This again proves that the structured
syntactic features are much more effective than
the linear syntactic features for phrase reordering
and the tree kernel method can well capture the
informative structured features. The four me-
thods show very slight difference in OOV rates.
This is mainly due to the difference in implemen-
tation detail, such as different OOV penalties and
other pruning thresholds.

5 Conclusion and Future Work

Structured syntactic knowledge is very useful to
phrase reordering. This paper provides insights
into how the structured feature can be used for
phrase reordering. In previous work, the struc-
tured features are selected manually by heuristics
and represented by a linear feature vector. This
may largely compromise the contribution of the
structured features to phrase reordering. Thanks
to the nice properties of kernel-based learning
method and SVM classifier, we propose leverag-
ing on the kernelized SVM learning algorithm to
address the problem. Specifically, we propose
using convolution tree kernel to capture the
structured features and design a composite kernel
to combine the structured features and other li-
near features for phrase reordering. The tree ker-
nel is able to directly take the structured reorder-
ing instances as inputs and compute their similar-
ities without enumerating them into a set of liner

705

features. In addition, we also study how to find
the optimal structured feature space and how to
partition the structured feature spaces according
to their functionalities. Finally, we evaluate our
method on the NIST MT-2005 Chinese-English
translation tasks. To provide insights into the
model, we design three kinds of experiments to-
gether with three different evaluation metrics.
Experimental results show that the structured
features are very effective and our composite
kernel can well capture both the structured and
the linear features without the need for extensive
feature engineering. It also shows that our me-
thod significantly outperforms the baseline me-
thods.

The tree kernel-based phrase reordering me-
thod is not only applicable to adjacent phrases. It
is able to work with any long phrase pairs with
gap of any length in-between. We will study this
case in the near future. We would also like to use
one individual tree kernel for one partition in a
structured feature space. In doing so, we are able
to give different weights to different partitions
according to their functionalities and contribu-
tions. Note that these weights can be automati-
cally tuned and optimized easily against a dev
set.

References
David Chiang. 2005. A hierarchical phrase-based

model for SMT. ACL-05. 263-270.
Michael Collins and N. Duffy. 2001. Convolution

Kernels for Natural Language. NIPS-2001.
M. R. Costa-jussà and J.A.R. Fonollosa. 2006. Statis-

tical Machine Reordering. EMNLP-06. 70-76.
Brooke Cowan, Ivona Kucerova and Michael Collins.

2006. A discriminative model for tree-to-tree trans-
lation. EMNLP-06. 232-241.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for MT. ACL-03 (companion volume).

Jakob Elming. 2008. Syntactic Reordering Integrated
with Phrase-Based SMT. COLING-08. 209-216.

Michel Galley and Christopher D. Manning. 2008. A
Simple and Effective Hierarchical Phrase Reorder-
ing Model. EMNLP-08. 848-856.

David Haussler. 1999. Convolution Kernels on Dis-
crete Structures. TR UCS-CRL-99-10.

T. Joachims. 1998. Text Categorization with SVM:
learning with many relevant features. ECML-98.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. ACL-03. 423-430.

Reinhard Kenser and Hermann Ney. 1995. Improved
backing-off for M-gram language modeling.
ICASSP-95, 181-184

Philipp Koehn, F. Och and D. Marcu. 2003. Statistical
phrase-based translation. HLT-NAACL-03.

Philipp Koehn, H. Hoang, A. Birch, C. C.-Burch, M.
Federico, N. Bertoldi, B. Cowan, W. Shen, C. Mo-
ran, R. Zens, C. Dyer, O. Bojar, A. Constantin and
E. Herbst. 2007. Moses: Open Source Toolkit for
SMT. ACL-07 (poster). 77-180.

Shankar Kumar and William Byrne. 2005. Local
Phrase Reordering Models for Statistical Machine
Translation. HLT-EMNLP-2005. 161-168.

Chi-Ho Li, Dongdong Zhang, Mu Li, Ming Zhou,
Minghui Li and Yi Guan. 2007. A Probabilistic
Approach to Syntax-based Reordering for Statis-
tical Machine Translation. ACL-07. 720-727.

Yang Liu, Yun Huang, Qun Liu and Shouxun Lin.
2007. Forest-to-String Statistical Translation
Rules. ACL-07. 704-711.

Daniel Marcu, W. Wang, A. Echihabi and K. Knight.
2006. SPMT: SMT with Syntactified Target Lan-
guage Phrases. EMNLP-06. 44-52.

Haitao Mi and Liang Huang. 2008. Forest-based
Translation Rule Extraction. EMNLP-08. 206-214.

Alessandro Moschitti. 2004. A Study on Convolution
Kernels for Shallow Semantic Parsing. ACL-04.

Masaaki Nagata, Kuniko Saito, Kazuhide Yamamoto
and Kazuteru Ohashi. 2006. A Clustered Global
Phrase Reordering Model for Statistical Machine
Translation. COLING-ACL-06. 713-720.

Franz J. Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statis-
tical machine translation. ACL-02. 295-302.

Franz J. Och. 2003. Minimum error rate training in
statistical machine translation. ACL-03. 160-167.

Franz J. Och and H. Ney. 2003. A Systematic Com-
parison of Various Statistical Alignment Methods.
Computational Linguistics, 29(1):20-51.

Franz J. Och and H. Ney. 2004. The alignment tem-
plate approach to statistical machine translation.
Computational Linguistics, 30(4):417-449.

Kishore Papineni, S. Roukos, T. and W. Zhu. 2002.
BLEU: a method for automatic evaluation of ma-
chine translation. ACL-02. 311-318.

Hendra Setiawan, Min-Yen Kan and Haizhou Li.
2007. Ordering Phrases with Function Words.
ACL-07. 712-719.

Libin Shen, Jinxi Xu and Ralph Weischedel. 2008. A
New String-to-Dependency Machine Translation
Algorithm with a Target Dependency Language
Model. ACL-HLT-08. 577-585.

Andreas Stolcke. 2002. SRILM - an extensible lan-
guage modeling toolkit. ICSLP-02. 901-904.

Christoph Tillmann. 2004. A Unigram Orientation
Model for Statistical Machine Translation. HLT-
NAACL-04 (short paper).

Vladimir N. Vapnik. 1995. The Nature of Statistical
Learning Theory. Springer.

706

Chao Wang, M. Collins and P. Koehn. 2007. Chinese
Syntactic Reordering for Statistical Machine
Translation. EMNLP-CONLL-07. 734-745.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpo-
ra. Computational Linguistics, 23(3):377-403.

Fei Xia and Michael McCord. 2004. Improving a Sta-
tistical MT System with Automatically Learned
Rewrite Patterns. COLING-04.

Deyi Xiong, Qun Liu and Shouxun Lin. 2006. Maxi-
mum Entropy Based Phrase Reordering Model for
SMT. COLING-ACL-06. 521–528.

Deyi Xiong, Min Zhang, Aiti Aw and Haizhou Li.
2008. A Linguistically Annotated Reordering Mod-
el for BTG-based Statistical Machine Translation.
ACL-HLT-08 (short paper). 149-152.

Kenji Yamada and K. Knight. 2001. A syntax-based
statistical translation model. ACL-01. 523-530.

Xiaofeng Yang, Jian Su and Chew Lim Tan. 2006.
Kernel-Based Pronoun Resolution with Structured
Syntactic Knowledge. COLING-ACL-06. 41-48.

Richard Zens, H. Ney, T. Watanabe and E. Sumita.
2004. Reordering Constraints for Phrase-Based
Statistical Machine Translation. COLING-04.

Richard Zens and Hermann Ney. 2006. Discrimina-
tive Reordering Models for Statistical Machine
Translation. WSMT-2006.

Dell Zhang and W. Lee. 2003. Question classification
using support vector machines. SIGIR-03.

Min Zhang, Jie Zhang, Jian Su and GuoDong Zhou.
2006. A Composite Kernel to Extract Relations be-
tween Entities with Both Flat and Structured Fea-
tures. COLING-ACL-06. 825-832.

Dongdong Zhang, M. Li, C.H. Li and M. Zhou.
2007a. Phrase Reordering Model Integrating Syn-
tactic Knowledge for SMT. EMNLP-CONLL-07.
533-540.

Min Zhang, W. Che, A. Aw, C. Tan, G. Zhou, T. Liu
and S. Li. 2007b. A Grammar-driven Convolution
Tree Kernel for Semantic Role Classification.
ACL-07. 200-207.

Min Zhang, Hongfei Jiang, Ai Ti Aw, Jun Sun, Sheng
Li and Chew Lim Tan. 2007c. A Tree-to-Tree
Alignment-based Model for Statistical Machine
Translation.MT-Summit-07. 535-542

Min Zhang, Hongfei Jiang, Ai Ti Aw, Haizhou Li,
Chew Lim Tan and Chew Lim Tan and Sheng Li.
2008a. A Tree Sequence Alignment-based Tree-to-
Tree Translation Model. ACL-HLT-08. 559-567.

Min Zhang, Hongfei Jiang, Haizhou Li, Aiti Aw,
Sheng Li. 2008b. Grammar Comparison Study for
Translational Equivalence Modeling and Statistic-
al Machine Translation. COLING-08. 1097-1104

Ying Zhang, Stephan Vogel and Alex Waibel. 2004.
Interpreting BLEU/NIST scores: How much im-

provement do we need to have a better system?
LREC-04. 2051-2054.

707

