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Abstract

Most existing information retrieval (IR)
systems do not take much advantage of
natural language processing (NLP) tech-
niques due to the complexity and limited
observed effectiveness of applying NLP
to IR. In this paper, we demonstrate that
substantial gains can be obtained over a
strong baseline using NLP techniques, if
properly handled. We propose a frame-
work for deriving semantic text matching
features from named entities identified in
Web queries; we then utilize these features
in a supervised machine-learned ranking
approach, applying a set of emerging ma-
chine learning techniques. Our approach
is especially useful for queries that contain
multiple types of concepts. Comparing to
a major commercial Web search engine,
we observe a substantial 4% DCG5 gain
over the affected queries.

Introduction

guery in a variety of document sections, such as
the document title, body text, anchor text, and so
on. Global information such as frequency of term
or term group in the corpus may also be used, as
well as its combination with local statistics — pro-
ducing relative scores such ag - idf or BM25
scores (Robertson et al.,, 1995). Matching may
be restricted to certain window sizes to enforce
proximity, or may be more lenient, allowing un-
ordered sequences and nhonconsecutive sequences
for a higher recall.

Even before machine learning was applied to
IR, NLP techniques such as Named Entity Recog-
nition (NER), Part-of-Speech (POS) tagging, and
parsing have been applied to both query model-
ing and document indexing (Smeaton and van Ri-
jsbergen, 1988; Narita and Ogawa, 2000; Sparck-
Jones, 1999). For example, statistical concept
language models generalize classigram mod-
els to concepti-gram model by enforcing query
term proximity within each concept (Srikanth and
Srihari, 2003). However, researchers have of-
ten reported limited gains or even decreased per-
formance when applying NLP to IR (Voorhees,

Most existing IR models score documents pri-1999).

marily based on various term statistics.

In tra-

Typically, concepts detected through NLP tech-

ditional models—from classic probabilistic mod- niques either in the query or in documents are
els (Croft and Harper, 1979; Fuhr, 1992), throughused as proximity constraints for text match-
vector space models (Salton et al., 1975; Nariténg (Sparck-Jones, 1999), ignoring the actual con-
and Ogawa, 2000), to well studied statistical lan-cept type. The machine learned approach to docu-
guage models (Ponte and Croft, 2000; Laffertyment ranking provides us with an opportunity to
and Zhai, 2001)—these term statistics have beerevisit the manner in which NLP information is
captured directly in the ranking formula. More re- used for ranking. Using knowledge gained from
cently, learning to rankapproaches to IR (Fried- NLP application as features rather than heuris-
man, 2002) have become prominent; in thesdically allows us much greater flexibility in the
frameworks, that aim at learning a ranking func-amount and variability of information used — e.g.,
tion from data, term statistics are often modeledncorporating knowledge about the actual entity
asterm matching featurem a machine learning types. This has several benefits: first, entity types
process.
Traditional text matching features are mainlyintent. A query consisting of a businesategory
based on frequencies of-grams of the user's and alocation (e.ghotels Palo Altp appears to be
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informational, and perhaps is best answered with

a page containing a list of hotels in Palo Alto. ‘Taggerl‘ ‘Taggerz‘__ ‘Taggan  Query
Queries containing a businesameand a location 1 ! Linguistic
(e.g.,Fuki Sushi Palo Altpare more navigational ! _ ! ! Andlysis
in nature — for many users, the intent is finding the i | Resoluion Modile__ ‘
home page of a specific business. Similarly, entity Location] Vertical Attribute

types appearing in documents are an indicator of DB

the document type. For example, if “Palo Alto” Business | Vertical Attribute | oy, ery

appears ten times in document's body text, it is 2o with

more likely to be a local listing page than a home  [yang . Yetical Atribue | Annotaions

page. For the quetyotels Palo Altga local listing DB

page may be a good page, while for the quenki ‘ Semantic Text Maiching acé‘;imem

Sushi Palo Alta listing page is not a good page.

V Semantic Features

In addition, knowledge of the particular entities i i )

in queries allows us to incorporate external knowl-

. . . Specialized Specialized | Specialized
edge about these entities, such as entity-specific | Ranking Ranking Ranking

stopwords (“inc.” as inYahoo Inc.or “services”

as inkaiser medical servigeand so on. Figure 1: Ranking with Semantic Features

Finally, even when using named entities only
for deriving proximity-related features, we can
benefit from applying different levels of proxim-

ity for different entities. For example, for enti- There is substantial body of work involving us-
ties like cities (e.g., “River Side”), the proximity age of NLP techniques to improve information re-
requirement is fairly strict: we should not allow trjeval (Brants, 2003; Strzalkowski et al., 1996).
extra words between the original terms, and prea|lan and Ragahavan (Allan and Raghavan, 2002)
serve thelr order. For other entities the proximity;ge Part-of-Speech tagging to reduce ambiguity
constraint can be relaxed—for example, for perof gifficult queries by converting short queries
son names, due to the middle name conventiong guestions. In other POS-tags work, Aram-
Hillary Clinton vs. Hillary R. Clinton patziset al. (Arampatzis et al., 1990) observed
In this paper, we propose a systematic approacn improvement when using nouns only for re-
to modeling semantic features, incorporating contrieval. Croft et al. (Croft et al., 1991) and Tong
cept types extracted from query analysis. Veret al. (Buckley et al., 1993; Tong et al., 1996) ex-
tical attributes, such as city-state relationshipsplored phrases and structured queries and found
metropolitan definition, okdf scores from a do- phrases are effective in improving retrieval per-
main specific corpus, are extracted for each conformance. Voorhees (Voohees, 1993) uses word
cept type from vertical database. The vertical atsense disambiguation to improve retrieval perfor-
tributes, together with the concept attributes, arénance. One IR domain that consistently benefits
used to compose a set of semantic features for mérom usage of various NLP techniques is question
chine learning based IR models. A few machineanswering, where queries are formed in natural
learning techniques are discussed to further imkanguage format; e.g., (Peng et al., 2005).
prove relevance for subclass of difficult queries In general, however, researchers often observe
such as queries containing multiple types of condimited gains or even degraded performance when
cepts. Figure 1 shows an overview of our ap-applying NLP to IR (Moorhees, 1999). Having
proach; after discussing related work in Section 2said this, most past studies use small datasets and
we spend Sections 3 to 5 of the paper describing modest baseline; it is unclear whether a similar
the components of our system. We then evaluateonclusion would be reached when using a state-
the effectiveness of our approach both using genef-art system such as a commercial web search
eral queries and with a set of “difficult” queries; engine as a baseline, and a full-web corpus — as
our results show that the techniques are robust, ande do in this paper. This leads to another differ-
particularly effective for this type of queries. We ence between this work and existing work involv-
conclude in Section 7. ing named entity recognition for retrieval. Most

Related Work
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previous research on usage of named entities imo this end, we utilize multiple approaches for en-

IR combines entity detection in documents andity detection and combine them into a single, co-
queries (Prager et al., 2000). Entity detection irherent “interpretation” of the query.

document has a high indexing cost that is often Given a query, we use several entity recogniz-
overlooked, but cannot be ignored in the case oérs in parallel, one for each of the common en-
commercial search engines. For this reason, wety types found in web queries. The modeling

restrict NLP processing to queries only — althoughtypes may differ between the recognizers: some
we believe that document-side NLP processingire Markovian models, while others are just dic-

will provide additional useful information. tionary lookups; the accuracy of each recognizer
is also different. We then have a machine-learned
3 Query Analysis disambiguation module that combines output from

. . . different taggers, ranking the tagging sequences.
We begin by briefly describing our approach t01e etails of scoring is out of the scope of this
named entity recognition in web queries, Whlchpaper and we omit it for simplicity.

serves as the basis for deriving the semantic text
matching features. 4 Semantic Text Matching Features

Named entity recognition (NER) is the task of
identifying and classifying entities, such as per-Our proposed semantic features operate at the
son names or locations, in text. The majority ofsemantic type level rather than at the term level:
state-of-the-art NER methods utilize a statisticainstead of matching a term (or set of terms) in doc-
approach, attempting to learn a mapping betweedments, we match their semantic type. Given the
a sequence of observations (words) and a sequené@gery San Francisco collegeand the annotation
of tags (entity types). In these methods, the sefSan Francisco|cityName [colleges]| BusinessCategory
quential nature of the data is often central to thghe semantic text matching features would de-
model, as named entities tend to appear in particuscribe how relevant a document section is for a en-
lar context in text. For example, for most types oftity of type City Name, for BusinessCategory,
text, in the two sequenceset with Xandbuy the and for their combination.
Y, the likelihood ofX being a person name is sub- Concretely, we exploit a set of features that
stantially higher than the corresponding likelihoodattempts to capture proximity, general relevance,
of Y. Indeed, many named entity taggers performaind vertical relevance for each type of semantic
well when applied to grammatical text with suf- tag and for each section of the document. We now
ficient contexts, such as newswire text (Sang anteview these feature by their broad types.
Meulder, 2003). _ o

Web queries, however, tend to be short, with®-1 Semantic Proximity Features
most queries consisting of 1-3 words, and lackProximity features—features that capture the de-
context — posing a particular challenge for iden-gree to which search terms appear close to each
tifying named entities in them. Existing work on other in a document—are among the most impor-
NER in web queries focuses on tailoring a solu-tant feature sets in ranking functions. Traditional
tion for a particular entity type and its usage inproximity features are typically designed for all
web search (Wang et al., 2005; Shen et al., 2008yjuery terms (Metzler and Croft, 2005) and may
in contrast, we aim at identifying a large rangesuffer from wrong segmentations of the query. For
of possible entities in web queries, and using axample, for the querjNew York city bus char-
generic solution for all of them. ter, a traditional proximity feature may treat “city

In web queries, different entity types may bene-bus” similarly to “York city.” But given detailed
fit from different detection techniques. For exam-information about the entities in the query in their
ple, an entity type with a large variability among types, we can enforce proximity for “New York
instances as well as existence of external resourcegty” and “bus charter” more accurately. Different
like product name calls for an approach that cariypes of entities usually have different proximity
make use of many features, such as a conditionaharacteristics in relevant documents. Strongly-
random field; for entity types that are more struc-bound entities such as city hames typically have
tured like person names, a grammar-based apery high proximity in relevant documents, while
proach can be more effective (Shen et al., 2008)ntities such as business names may have much
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lower proximity: a search foKaiser medical of- 4.1.2 Semantic Moving Average BM25
fice, for example, may be well-served with docu- (SMABM25)

ments referring td&aiser Permanente medical of- BM25, a commonly-used bag-of-words relevance
fice and as we mentioned before, person namegstimation method (Robertson et al., 1995), is de-

matches may also benefit from lenient proximityfined (when applied to document sections) as
enforcement. This is naturally addressed by treat-

ing each entity type differently. BM25 = 3 i fis(ei+1) z

We propose a set of semantic proximity fea- ; fis+eci(l—ca+ ch)
tures that associate each semantic tag type with ) . i
generic proximity measures. We also consider tagVN€e/j.s is the frequency of term in sections,

ging confidence together with term group proxim-ls is the length of §ectios1, I, is the average length
ity: we discuss these two approaches next. of document section, ¢1, cg, c3 are constants and
theidf score of terny is defined as

4.1.1 Semantic Minimum Coverage (SMC)

Minimum Coverage (MC) is a popular span based idf; = log
proximity distance measure, which is defined as

the length of the shortest document segment thavhered; is the number of sections in all collec-
cover the query term at least once in a docuiions that contains termhandcy, c5 are constants.
ment (Tao and Zhai, 2007). We extend this mea- To characterize proximity, we could use a fixed
sure to Semantic Minimum Coverage (SMC) forlength sliding window and calculate the average
each semantic typein document sectios and BM25. We further associate each sliding average

C4—dj+C5
dj+C5

define it as BM25 with each type of semantic term groups.
1 This results in a Semantic Moving Average BM25
SMCs = T — g > wiMCi, (SMABM25) of typet, which we define as fol-
kT =t} _ 2=~ .
’LE{k‘|kat} IOWS
where w; is a weight for tagged term group 1
MC, ; is the the minimum coverage of term group {k|T). = t}| Z (1/M) Z BM25,

i in document section, {k|T; = t} denotes the i€{k|T,=t}

set of all concepts having typeand|{k|T}, = t}|  wherem is a fixed length sliding windown and

is the size of the set. The definition of the weight)/ is the total number of sliding windows (that de-

w is flexible. We list a few candidate weight- pends on the length of the section window size).

ing schemes in this paper: uniform weights,

weights based oilf scores(u'df) and “strength”-

based weight:(*), which we define as follows:  Vertical databases contain a large amount of struc-
tured domain knowledge typically discarded by

4.2 Semantic Vertical Relevance Features

wb = 1; traditional web relevance features. Having access
idf ¢ to the semantic types in queries, we can tap into
o fq that knowledge to improve accuracy. For exam-

ple, term frequencies in different corpora can as-
sist in determining relevance given an entity type.
As we mentioned in Section 1, we observe that
w® = mlin M, term frequency in a database of business names
provides an indication of the business brand, the
where M} is the point-wise mutual information of key part of the business name phrase. While both
the [-th consecutive pair within the semantic tag-“yahoo” and “inc” are very common terms on the
We can also combine strength ataff scores such \yep in a database of businesses only “inc” is com-
that the weight reflects both relative importance,o, enough to be considered a stopword in the
and constraints in proximity. In this paper, we Usesgntext of business names.
v — wiwidf We propose a Vertical Moving Average BM25
(VMABMZ25) as a feature aiming at quantifying
In Section 6, we use all four weighting schemeshe vertical knowledge for web search. The ba-
mentioned above in the semantic feature set. sic idea here is to replace théf score idf of

wherec is a constant ang, is the frequency of the
term group in a large query log;
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SMABM25 with anidf score calculated from a is minimized. Herey; is the actual relevance score
vertical database for type namely id§: for the query-document pair(typically assigned
by a human) andv is the number of training sam-
1 ples.
m ‘ Z (1/M) Z BM25,,¢ As mentioned in the previous Section, an inher-
E{k|Te=t} " ent issue with semantic features is their sparse-
where ness. User queries are usually short, with an av-
Fislcl +1) erage length of less than 3 words. Text matching
features that are associated with the semantic type
of query term or term groups are clearly sparse

¢ and calcuiated from the corpus associated witt'g features — that can be derived for any query.
that type. When a feature is very sparse, it is unlikely that

VMABM?25 links vertical knowledge, proxim- it would play a very meaningful role in a machine

ity, and page relevance together; we show later thdgarned ranking function, since the erfomwould
it is one of most salient features among all semanl@rgely depend on other samples that do not con-

BM25,,; = Y idft
™ Z jfi,s+61(1—62+62%j)

J

tic features. tain the specific semantic features at all. To over-
come the spareness issue and take advantage of
4.3 Generalized Semantic Features semantic features, we suggested generalizing our

Finally, we develop a generalized feature based ofatures; but we also exploit a few ranking func-

the previous features by removing tags. Semantiion modeling techniques.

features are often sparse, as many queries containFirst, we use a “divide-and-conquer” approach.
one entity or no entities at all; generalized features-ong queries usually contain multiple concepts
increase their coverage by combining the basic seand could be difficult to retrieve relevant docu-

mantic features. An entity without tag is essen-ments. Semantic features, however, are rich in

tially a segment. this set of queries. We may train special models
A segment feature; for query: does not have to further optimize our ranking function for those
entity type and can be expressed as queries. The loss function over ranking function
K becomes
ey
Ty = 7 T(k
e Le(h) =Y (wi—h@)? (@)
i€C

where K; is the number of segments in the query
and7'(k) is the semantic type associated with ~ where C' is the training set that falls into a pre-
concept. defined subclass. For example, queries containing
Although these features are less informativeboth location and business name, queries contains
than type-specific features, one advantage of usinigoth location and business category, etc, are good
them is that they have substantially higher covercandidates to apply semantic features.
age. In our experiments, more thda% of the To this end, we first classify queries into several
queries have some identified entity. Another relclasses, each of which has multiple types of enti-
atively subtle advantage is that segment featureges. The semantic features of those types would
have no type related errors: the only possible errope dense for this subclass of queries. We then
is a mistake in entity boundaries. train models that may rank the specific class of
gueries well. This approach, however, may suf-
fer from significantly less training samples due to
The ultimate goal of the machine learning ap-training data partition resulted from the query clas-
proach to web search is to learn a ranking funcsification. Increasing the modeling accuracy, then,
tion h(x;), wherez; is a feature vector of a query- comes at a cost of reduced data available for train-

5 Ranking Function Optimization

document paii, such that the error ing. We apply two techniques to address this is-
N sue. The first approach is to over-weight subclass
L(h) = Z(yl’ — () @ training samples such that the subclass of queries

— plays a more important role in modeling while still
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keeping a large pool of the overall training sam-corresponding predicted value defined in the leave
ples. The second approach is model adaptatiomode. The basic idea of Trada is to apply piece-
a generalized incremental learning method. Hereyise linear transformation to the base model based
instead of being over-weighted in a joint optimiza-on the new training data. A set of linear transfor-
tion, the subclass of training data is used to modmations are applied to each decision node, either
ify an existing model such that the new model ispredict or split point or both, such that the new pre-
“adapted” to the subclass problem. We elaboratelict or the split point of a node in a decision tree
on our approaches as follows. satisfies

. - =(1- 0
5.1 Weighted Training Samples v={-pc)d+povc

To take advantage of both large a pool of trainingVherev denotes predict or split point of that node
samples and sparse related semantic features fét the base mode ane: denotes predict or split

a subclass of queries, we could modify the los$0int of that node using new data s6{ and
function as follows the weightpc depends on the number of origi-

nal training data and new training data that fall
Lé(h) =w Z(y" — (%)) + Z(yi — h(z;))?,  through the node. For each node, the split or pre-
icC icC dict can be estimated by
3)
whereC is the complement of sef. Here, the e
) ) \ . pC =,
weightw is a compromise between loss function n+ Bno

(1) and (2). Whenw = 1, we have . -
wheren is the number of training sample of the

LL(h) = L(h); base model that fall through the node; is the
number of new training sample that fall through
whenw— > oo the node, an@} is a parameter that can be deter-
mined using cross validation. The parameter
L& (h) = Le(h). is used to over-weight new training data, an ap-

) o o proach that is very effective in practice. For new
A large weight may help optimize the training for o4t ;res that are not included in the base model,

a special subclass of queries, and a small weight,re trees are allowed to be added to incorporate
may help to preserve good generality of the rankefy, oy,

We could use cross-validation to select the weight
w to optimize a the ranking function for a sub- g Experiments
class of queries. In practice, a smallis desired

to avoid overfitting. We now measure the effectiveness of our proposal,
_ and answer related questions, through extensive
5.2 Model Adaptation experimental evaluation. We begin by examining

Model adaptation is an emerging machine learnthe effectiveness of features as well as the model-

ing technique that is used for information retrievaling approaches introduced in Section 5 on a par-

applications with limited amount of training data. ticular class of queries—those with a local intent.

In this paper, we apply Trada, proposed by CheVe proceed by evaluating whether if typeasso-

et al. (Chen et al., 2008), as our adaptation algociated with each entity really matters by compar-

rithm. ing results with type dependent semantic features
The Trada algorithm aims at adapting tree-and segment features. Finally, we examine the ro-

based models. A popular tree based regression apustness of our features by measuring the change

proach is Gradient Boosting Trees (GBT) , whichin the accuracy of our resulting ranking function

is an additive modelh(z) = 25:1 yihi(x),  when the query analysis is wrong; we do this by

where each regression trég is sequentially op- introducing simulated noise into the query analy-

timized with a hill-climbing procedure. As with Sis results.

other decision trees, a binary regression trger)

consists of a set of decision nodes: each node &1 Dataset

associated with a feature variable and a splittingur training, validation and test sets are human-

value that partition the data into two parts, with thelabeled query-document pairs. Each item in the
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sets consists of a feature vectgf represent- 6.3 Experimental Results

ing the query and the document, and a judgywe yse Stochastic Gradient Boosting Trees
ment scorey; assigned by a human. There aresGgT) (Friedman, 2002), a robust none linear
around600 features in each vector, including both regression algorithm, for training ranking func-

the newly introduced semantic features and existgq,5 and, as mentioned earlier, Trada (Chen et al.,
ing features; features are either query-depende%os) for model adaptation.

ones, document-dependent ones, or query-and- raining parameters are selected to optimize the
document-dependent features. relevance on a separated validation set. The best

The training set is based on uniformly sampledresyjiing is evaluated against the test set; all results
Web queries from our query log, and top rankedyresented here use the test set for evaluation.
documents returned by commercial search engines

for these queries; this set consists of 1.24M query6.3.1  Feature Effectiveness with Ranking
document pairs. Function Modeling

We use two additional sets for validation andWe apply the modeling approaches introduced in
testing. One set is based on uniformly sampledsection 5 to improve feature effectiveness on “dif-
Web queries, and contaid2790 validation sam- ficult” queries—those more than one entity type;
ples and70320 test samples. The second set iswe evaluate these approaches with the semantic-
based on uniformly samplddcal queries By lo-  feature-rich set, the local query test set. We split
cal queries, we mean queries that contain at leastaining sets into two parts: one set belongs to the
two types of semantic tags: a location tag (suchocal queries, the other is the rest. We first weight
as street, city or state name) and a business tag flae local queries and use the combined dataset as
business name or business category). We refer twaining data to learn the ranking functions; we
this class of queries “local queries,” as users ofterain functions with and without the semantic fea-
type this kind of queries in local vertical search.tures. We evaluate these functions against the lo-
The local query set consists 01040 validation cal query test set. The results are summarized in
samples and9169 test samples. In the training Table 1, wherav denotes the weight assigned to
set we described above, there &6299 training  the local training set, bolded numbers are statis-
samples out of the 1.24M total number of trainingtically significant result compared to the baseline,
samples that satisfy the definition of local queriesuniformly weighted training data without seman-
We call this set local training subset. tic features (with superscrigf. It is interesting
to observe that without semantic features, over-
weighted local training data does not have statis-
To evaluate the effectiveness of our semantigically significant impact on the test performance;
features we use Discounted Cumulative Gairwith semantic features, a proper weight over train-
(DCG) (Jarvelin and Kekalainen, 2000), a widely-ing samples does improve test performance sub-
used metric for measuring Web search relevancestantially.
(Jarvelin and Kekalainen, 2000). Given a query

and a ranked list of¢ documgntsK - 5in OUr  Taple 1: Evaluation of Ranking Models Trained
experiments), the DCG for this query is defined aSAgainst Over-weighted Local Queries with Se-

mantic Features on the Local Query Test Set

6.2 Evaluation Metrics

K
_ Yi w/o semantic features w/ semantic features
DCG(K) = Z logy(1+14) (4) Weight [ DCG(5) Impr. | DCG(5) Impr.
=1 w=0 8.09° - 8.25| 2.0%
wherey; € [0,10] is a relevance score for the _w ii g-‘ig 8-%? g-gg gi?
document at po.smon f[yplcally assigned by a hu- z — =13 0:49% 517 4:1%
man, wherel0 is assigned to the most relevant—, =T1g 313 0.49% 3.30 2.6%
documents and to the least relevant ones. w = 32 8.04| —0.60% 8.27 2.2%
To measure statistical significance, we use the
Wilcoxon test (Wilcoxon, 1945); when thevalue Next, we use the local query training set as “new

is below 0.01 we consider a difference to be statiseata” in the tree adaptation approach. In tree adap-
tically significant and mark it with &old font in  tations, all parameters are set to optimize the per-
the result table. formance over the local validation set. We com-
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pare two major adaptation approaches propos . i .
in (Chen et al., 2008): adapting predict only anjﬁjable 3. Type-dependent Semantic Features vs.

adapting both predict and split. We use the mode?egment Features

. . . . . Feature set DCG(5)
trained with the combined training and uniform  —pase+type dependent semantic features 8.23
weights as the baseline; results are summarized in _base + segment features 8.19
Table 2. base + all semantic features 8.25

Table 2: Trada Algorithms with Semantic Featuressimulated errors to the output of our query analy-
on Local Query Test Set sis. Concretely, we manipulate the precision and
w/o semantic feat.| w/ semantic feat.  the recall of a specific type of entity tagger,on

Ada. Appr. DCG(5) Impr. | DCG(5) [ Impr. ‘.

Combined datal— 8.09° - 825 207 e training and test set. To decreasergwall of
Ada. predict 8.02 [ —01% 814 0.6% type ¢, we uniformly remove a set af% tags of
Ada. predict 8.00 | —0.1% 817 1.0% typet — preserving precision. To decregseci-

& split sion, we uniformly select a set of query segments

(viewing the entity detection as simple segmenta-

Comparing Tables 1 and 2, note that using thdion, as detailed earlier) and assign the semantic
combined training data with local query training tYPet to those segments. Since the newly added
samples over-weighted achieves better results thdgm group are selected from query segmentation
tree adaption. The latter approach, however, hakesults, the introduced errors are rather semantic
the advantage of far less training time, since thdyP€error than boundary error or proximity error.
adaptation is over a much smaller local queryThe total number of newly assigned typiags are
training set. With the same hardware, it take?”0 of the original number of type tags in the
just a few minutes to train an adaptation model{raining set. By doing this, we decrease the preci-
while it takes days to train a model over the entire Sion of typet while keeping the recall of it at the
combined training data. Considering that massivéame level.
model validation tasks are required to select good Suppose the original tagger achieves precision
training parameters, training many different mod-p and recallr. By removinga’% of tags, we have
els with over a million training samples becomesestimated precisiop and recall? defined as fol-
prohibitly costly. Applying tree adaptation tech- IOWs:

. . . 100r — ar
niques makes research and prototyping of these =00
models feasible. )

p=D.

6.3.2 Type Dependent Semantic Features vs.

Segment Features By addingb% more term group to this type, we

have estimated precision and recall as
Our next experiment compares type-dependent
features and segment features, evaluating models - 100p

. . . p= )
trained with these features against the local query 100 + bp
test set. No special modeling approach is applied
here; results are summarized in Table 3. We ob-
serve that by using type-dependent semantic fea- In the experiment reported here we usesi-
tures only, we can achieve as much as by usingiess NAMEas the target semantic type for this ro-
all semantic features. Since segment features onlyustness experiment. An editorial test shows that
convey proximity information while the base fea- our tagger achievesi% precision andi6% recall
ture set already contain a systematic set of proxbased on a random set of human labeled queries
imity measures, the improvement through segmerfor this entity type. We train ranking models with
features is not as significant as the the type deperarious values ofi andb. When we reduce the
dent ones. estimated recall, we evaluate these models against
the local test set since other data are not affected.
The results are summarized in Table 4.
Our final set of experiments aims at evaluating the When we reduce the precision, we evaluate the
robustness of our semantic features by introducingesulting models against the general test set as

T =r.

6.3.3 Robustness of Semantic Features
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document body text 19 times in the local listing
page body text, and only 2 times in the home page
body text. The training process learns, then, that

Table 4: Relevance with simulated error on local
query test set

a b P 7 | DCG(5) [ Impr. )

010074 066 8.05 - for a query for a local business name (rather than
10 [ 0 | 0.74 | 0.594 8.21] 0.48% a business category), home pages—even with
20 [0 [ 0.74] 0528 8.19 | 0.72% fewer location terms in them—are likel
et T O ewer location terms in them—are likely to be

more relevant than a local listing page that usually
contain high frequency location terms.
Table 5: Search relevance with simulated error for In some cases, however, our new features do

semantic features on general test set hurt performance. For the quenya treasur-
a b P 7 | DCG(5) Impr. ers office the ranking function with no seman-
0/ 0] 074/ 066] 1011 - tic features ranks the documelmttp://www.
0| 10| 0.689| 0.66| 10.11| 0.00% : ) .
0 20 | 0.6451 0.66 10.12 0.10% patreasury.org h|gheSt, while the one with
0| 40| 0571] 0.66 10.12] 0.10% semantic features ranks the pddtp://www.
0] 60]0513] 066 1012] 0.10% pikepa.org/treasurer.htm higher. The
0| 800465 066] 10.11| 0.00% I . h I L ,
0100 04251 0.66 1010 —0.10% atter page is somewhat relevant: it is a treasurer’s

office in Pennsylvania. However, it belongs to a
specific county, which makes it less relevant than
simulated errors would virtually affect any sam-the former page. This is a classic error that we ob-
ples with certain probability. Results appear inserve: a mismatch of the intended location area.
Table 5. The results are quite interesting: whenyhile users are looking for state level business,
the recall of business name entity decreases, Wge provide results of county level. To resolve

observe statistically significant relevance degradatis type of error, query analysis and semantic text
tion: if less entities are diSCOVGred, search relematching are no |Onger enough: here’ the rank-
vance is hit. The experiments with simulated preing function needs to know that Pike County is a
cision error, however, are less conclusive. Ongounty in Pennsylvania, Milford is a city in Pike

may note the experiments are conducted over theounty, and neither are referred to by the user.
general test set. Therefore, itis not clear if the prepocument-side entity recognition, however, may

cision of the NER system really has insignificantprovide this type of information, helping to ad-
impact on the IR relevance or just the impact isgress this type of errors.

diluted in a larger test set.

6.4 Case Analysis 7 Conclusion and Future Research

In this section, we take a close look at a fewln this paper, we investigate how semantic features
cases where our new semantic features helpan improve search relevance in a large-scale in-
most and where they fail. For the quesjl- formation retrieval setting; to our knowledge, it is
verado ranch in irving texaswith no semantic the first study of this approach on a web scale. We
features, the ranking function ranks a localpresent a set of features that incorporate semantic
listing page for this busineshftp://local. and vertical knowledge into the retrieval process,
yahoo.com/info-28646193 , as the top propose techniques to handle the sparseness prob-
document. With semantic features, the rankingem for these features, and describe how they fit
function ranks the business home padptp: in the learning process. We demonstrate that these
Ilwww .silveradoranchparties.com/ carefully designed features significantly improve
as top URL. Examining the two documents, therelevance, particularly for difficult queries — long
local listing page actually contains much more rel-queries with multiple entities.

evant anchor text, which are the among the most The work reported here focuses on query-side
salient features in traditional ranking models. Theprocessing, avoiding the indexing cost of docu-
home page, however, contains almost no relevamhent processing. We are currently investigating
anchor text: for a small business home page, thidocument-side analysis to complement the query-
is not a rare situation. Looking at the semanticside work, and believe that this will further boost
features of these two pages, the highest resolutiothe retrieval accuracy; we hope to report on this in
of location, the city name “Irving,” appears in the a follow-up study.
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