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Abstract

In previous research in automatic verb
classification, syntactic features have
proved the most useful features, although
manual classifications rely heavily on se-
mantic features. We show, in contrast
with previous work, that considerable ad-
ditional improvement can be obtained by
using semantic features in automatic clas-
sification: verb selectional preferences ac-
quired from corpus data using a fully unsu-
pervised method. We report these promis-
ing results using a new framework for
verb clustering which incorporates a re-
cent subcategorization acquisition system,
rich syntactic-semantic feature sets, and
a variation of spectral clustering which
performs particularly well in high dimen-
sional feature space.

1 Introduction
Verb classifications have attracted a great deal
of interest in natural language processing (NLP).
They have proved useful for various important
NLP tasks and applications, including e.g. parsing,
word sense disambiguation, semantic role label-
ing, information extraction, question-answering,
and machine translation (Swier and Stevenson,
2004; Dang, 2004; Shi and Mihalcea, 2005; Za-
pirain et al., 2008).

Verb classes are useful because they offer a
powerful tool for generalization and abstraction
which can be beneficial when faced e.g. with the
problem of data sparsity. Particularly useful can
be classes which capture generalizations over a
range of (cross-)linguistic properties, such as the
ones proposed by Levin (1993). Being defined in
terms of similar meaning and (morpho-)syntactic
behaviour of words, Levin style classes gener-
ally incorporate a wider range of properties than

e.g. classes defined solely on semantic grounds
(Miller, 1995).

In recent years, a variety of approaches have
been proposed for automatic induction of verb
classes from corpus data (Schulte im Walde, 2006;
Joanis et al., 2008; Sun et al., 2008; Li and Brew,
2008; Korhonen et al., 2008; Ó Séaghdha and
Copestake, 2008; Vlachos et al., 2009). This work
opens up the opportunity of learning and tuning
classifications tailored to the application and do-
main in question. Although manual classification
may always yields higher accuracy, automatic verb
classification is cost-effective and gathers statisti-
cal information as a side-effect of the acquisition
process which is difficult for humans to gather but
can be highly useful for NLP applications.

To date, both supervised and unsupervised ma-
chine learning (ML) methods have been proposed
for verb classification and used to classify a vari-
ety of features extracted from raw, tagged and/or
parsed corpus data. The best performing features
on cross-domain verb classification have been syn-
tactic in nature (e.g. syntactic slots, subcategoriza-
tion frames (SCFs)). Disappointingly, semantic
features have not yielded significant additional im-
provement, although they play a key role in man-
ual and theoretical work on verb classification and
could thus be expected to offer a considerable con-
tribution to classification performance.

Since the accuracy of automatic verb classifi-
cation shows room for improvement, we further
investigate the potential of semantic features –
verb selectional preferences (SPs) – for the task.
We introduce a novel approach to verb cluster-
ing which involves the use of (i) a recent subcate-
gorization frame (SCF) acquisition system (Preiss
et al., 2007) which produces rich lexical, SCF and
syntactic data, (ii) novel syntactic-semantic fea-
ture sets extracted from this data which incorpo-
rate a variety of linguistic information, including
SPs, and (iii) a new variation of spectral cluster-
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ing based on the MNCut algorithm (Meila and Shi,
2001) which is well-suited for dealing with the re-
sulting, high dimensional feature space.

Using this approach, we show on two well-
established test sets that automatically acquired
SPs can be highly useful for verb clustering. They
yield high performance when used in combination
with syntactic features. We obtain our promis-
ing results using a fully unsupervised approach
to SP acquisition which differs from previous
approaches in that it does not exploit WordNet
(Miller, 1995) or other lexical resources. It is
based on clustering argument head data in the
grammatical relations associated with verbs.

We describe our features in section 2 and the
clustering methods in section 3. Experimental
evaluation and results are reported in sections 4
and 5, respectively. Section 6 provides discus-
sion and describes related work, and section 7 con-
cludes.

2 Features

Our target classification is the taxonomy of Levin
(1993) where verbs taking similar diathesis al-
ternations are assumed to share meaning compo-
nents and are organized into semantically coherent
classes. The main feature of this classification is a
diathesis alternation which manifests at the level
of syntax in alternating sets of SCF (e.g. in the
causative/inchoative alternation an NP frame alter-
nates with an intransitive frame: Tony broke the
window↔ The window broke).

Since automatic detection of diathesis alterna-
tions is very challenging (McCarthy, 2001), most
work on automatic classification has exploited the
fact that similar alternations tend to result in sim-
ilar SCFs. The research reported so far1 has used
mainly syntactic features for classification, rang-
ing from shallow syntactic slots (e.g. NPs preced-
ing or following the verb) to SCFs. Some re-
searchers have discovered that supplementing ba-
sic syntactic features with information about ad-
juncts, co-occurrences, tense, and/or voice of the
verb have resulted in better performance.

However, additional information about seman-
tic SPs of verbs has not yielded considerable im-
provement on verb classification although SPs can
be strong indicators of diathesis alternations (Mc-
Carthy, 2001) and although fairly precise semantic
descriptions, including information about verb se-

1See section 6 for discussion on previous work.

lectional restrictions, can be assigned to the major-
ity of Levin classes, as demonstrated by VerbNet
(Kipper-Schuler, 2005).

SP acquisition from undisambiguated corpus
data is arguably challenging (Brockmann and La-
pata, 2003; Erk, 2007; Bergsma et al., 2008). It is
especially challenging in the context of verb clas-
sification where SP models are needed for specific
syntactic slots for which the data may be sparse,
and the resulting feature vectors integrating both
syntactic and semantic features may be high di-
mensional. However, we wanted to investigate
whether better results could be obtained if the fea-
tures were optimised for richness, the feature ex-
traction for accuracy, and a clustering method ca-
pable of dealing with the resulting high dimen-
sional feature space was employed.

2.1 Feature extraction

We adopted a recent SCF acquisition system which
has proved more accurate than previous compa-
rable systems2 but which has not been employed
for verb clustering before: the system of Preiss
et al. (2007). This system tags, lemmatizes and
parses corpus data using the current version of the
RASP (Robust Accurate Statistical Parsing) toolkit
(Briscoe et al., 2006), and on the basis of resulting
grammatical relations (GRs) assigns each occur-
rence of a verb to one of 168 verbal SCFs classes3.

The system provides a filter which can be used
to remove adjuncts from the resulting lexicon.
We do not employ this filter since adjuncts have
proved informative for verb classification (Sun
et al., 2008; Joanis et al., 2008). However, we
do frequency-based thresholding to minimise the
noise (e.g. erroneous scfs) and sparse data in verb
classification and to ensure that only features sup-
ported by several verbs are used in classification:
we only consider SCFs and GRs which have fre-
quency larger than 40 with 5 or more verbs4.

The system produces a rich lexicon which in-
cludes raw and processed input sentences and pro-
vides a variety of material for verb clustering, in-
cluding e.g. (statistical) information related to the
part-of-speech (POS) tags, GRs, SCFs, argument
heads, and adjuncts of verbs. Using this mate-
rial, we constructed a wide range of feature sets

2See Preiss et al. (2007) for the details of evaluation.
3We used an implementation of the SCF classifier pro-

vided by Paula Buttery.
4These and other threshold values mentioned in this paper

were determined empirically on corpus data.
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for experimentation, both shallow and deep syn-
tactic and semantic features. As described below,
some of the feature types have been employed in
previous works and some are novel.

2.2 Feature sets

The first feature set F1 includes information
about the lexical context (co-occurrences) of verbs
which has proved useful for supervised verb clas-
sification (Li and Brew, 2008):

F1: Co-occurrence (CO): We adopt the best
method of Li and Brew (2008) where collo-
cations are extracted from the four words im-
mediately preceding and following a lemma-
tized verb. Stop words are removed prior to
extraction, and the 600 most frequent result-
ing COs are kept.

F2-F3 provide information about lexical prefer-
ences of verbs in argument head positions of spe-
cific GRs associated with the verb:

F2: Prepositional preference (PP): the type and
frequency of prepositions in the indirect ob-
ject relation.

F3: Lexical preference (LP): the type and fre-
quency of nouns and prepositions in the sub-
ject, object, and indirect object relation.

All the other feature sets include information
about SCFs which have been widely employed in
verb classification, e.g. (Schulte im Walde, 2006;
Sun et al., 2008; Li and Brew, 2008; Korhonen
et al., 2008). F4-F7 include basic SCF information
and/or refine it with additional information which
has proved useful in previous works:

F4: SCFs and relative frequencies with verbs.
SCFs abstract over particles and prepositions.

F5: F4 with COs (F1). The SCF and CO feature
vectors are concatenated.

F6: F4 with the tense of the verb. The frequency
of verbal POS tags is calculated specific to
each SCF.

F7: F4 with PPs (F2). This feature parameterizes
SCFs for prepositions.

F8: Basic SCF feature corresponding to F4 but ex-
tracted from the VALEX lexicon (Korhonen
et al., 2006)5.

The following 9 feature sets are novel. They
build on F7, refining it further. F9-F11 refine F7
with information about LPs:

F9: F7 with F3 (subject only)

F10: F7 with F3 (object only)

F11: F7 with F3 (subject, object, indirect object)

F12-17 refine F7 with SPs. We adopt a fully un-
supervised approach to SP acquisition. We acquire
the SPs by

1. taking the GR relations (subject, object, indi-
rect object) associated with verbs,

2. extracting all the argument heads in these re-
lations which occur with frequency> 20 with
more than 3 verbs, and

3. clustering the resulting N most frequent ar-
gument heads into M classes using the spec-
tral clustering method described in the fol-
lowing section.

We tried the N settings {200, 500} and the M
settings {10, 20, 30, 80}. The best settings N =
200,M = 20 and N = 500,M = 30 are reported
in this paper. We enforce the features to be shared
by all the potential members of a verb class. The
expected class size is approximatelyN/K, and we
allow for 10% outliers (the features occurring less
than (N/K)× 0.9 verbs are thus removed).

The resulting SPs are combined with SCFs in a
similar fashion as LPs are combined with SCFs in
F9-F11:

F12-F14: as F9-F11 but SPs (20 clusters from 200
argument heads) are used instead of LPs

F15-F17: as F9-F11 but SPs (30 clusters from 500
argument heads) are used instead of LPs

5This feature was included to enable comparing the con-
tribution of the recent SCF system to that of an older, com-
parable system which was used for constructing the VALEX
lexicon.

640



3 Clustering methods
We use two clustering methods: (i) pairwise clus-
tering (PC) which obtained the best performance
in comparison with several other methods in re-
cent work on biomedical verb clustering (Korho-
nen et al., 2008), and (ii) a method which is
new to the task (and to the best of our knowl-
edge, to NLP): a variation of spectral clustering
which exploits the MNCut algorithm (Meila and
Shi, 2001) (SPEC). Spectral clustering has been
shown to be effective for high dimensional and
non-convex data in NLP (Chen et al., 2006) and
it has been applied to German verb clustering by
Brew and Schulte im Walde (2002). However, pre-
vious work has used Ng et al. (2002)’s algorithm,
while we adopt the MNCut algorithm. The lat-
ter has shown a wider applicability (von Luxburg,
2007; Verma and Meila, 2003) and it can be justi-
fied from the random walk view, which has a clear
probabilistic interpretation.

Clustering groups a given set of items (verbs in
our experiment) V = {vn}Nn=1 into a disjoint par-
tition of K classes I = {Ik}Kk=1. Both our algo-
rithms take a similarity matrix as input. We con-
struct this from the skew divergence (Lee, 2001).
The skew divergence between two feature vectors
v and v′ is dskew(v, v′) = D(v′||a ·v+(1−a) ·v′)
where D is the KL-divergence. v is smoothed
with v′. The level of smoothing is controlled by
a whose value is set to a value close to 1 (e.g.
0.9999). We symmetrize the skew divergence
as follows: d(v, v′)sskew = 1

2(dskew(v, v′) +
dskew(v′, v)).

SPEC is typically used with the Radial Basis
Function (RBF) kernel. We adopt a new kernel
similar to the symmetrized KL divergence kernel
(Moreno et al., 2004) which avoids the need for
scale parameter estimation.

w(v, v′) = exp(−dsskew(v, v′))
The similarity matrix W is constructed where
Wij = w(vi, vj).

Pairwise clustering

PC (Puzicha et al., 2000) is a method where a cost
criterion guides the search for a suitable partition.
This criterion is realized through a cost function of
the similarity matrix W and partition I:

H = −∑
nj · Avgsimj ,

Avgsimj =
P
{a,b∈Aj} w(a,b)

nj ·(nj−1)

where nj is the size of the jth cluster and Avgsimj

is the average similarity between cluster members.

Spectral clustering

In SPEC, the similarities Wij are viewed as the
weight on the edges ij of a graph G over V . The
similarity matrix W is thus the adjacency matrix
for G. The degree of a vertex i is di =

∑N
j=1wij .

A cut between two partitions A and A′ is defined
to be Cut(A,A′) =

∑
m∈A,n∈A′Wmn.

In MNCut algorithm, the similarity matrixW is
transformed to a stochastic matrix P .

P = D−1W (1)

The degree matrix D is a diagonal matrix where
Dii = di.

It was shown by Meila and Shi (2001) that if P
has the K leading eigenvectors that are piecewise
constant6 with respect to a partition I∗ and their
eigenvalues are not zero, then I∗ minimizes the
multiway normalized cut(MNCut):

MNCut(I) = K −∑K
k=1

Cut(Ik,Ik)
Cut(Ik,I)

Pmn can be interpreted as the transition probabil-
ity between vertices m,n. The criterion can thus
be expressed as MNCut(I) =

∑K
k=1(1−P (Ik →

Ik|Ik)) (Meila, 2001), which is the sum of transi-
tion probabilities across different clusters. The cri-
terion finds the partition where the random walks
are most likely to happen within the same cluster.

In practice, the K leading eigenvectors of P is
not piecewise constant. But we can extract the
partition by finding the approximately equal ele-
ments in the eigenvectors using a clustering algo-
rithm like K-means.

The numerator of MNCut is similar to the cost
function of PC. The main differences between the
two algorithms are: 1) MNCut takes into account
of the cross cluster similarity, while PC does not.
2) PC optimizes the cost function using determin-
istic annealing, whereas SPEC uses eigensystem
decomposition.

The spectral clustering algorithm is based on the
Multicut algorithm (Meila and Shi, 2001).

6The eigenvector v is piecewise constant with respect to I
if v(i) = v(j)∀i, j ∈ Ik and k ∈ 1, 2...K

641



Input: Dataset S, Number of clusters K
1. Compute similarity matrixW and Degree ma-
trix D
2. Construct stochastic matrix P using equation
1
3. Compute the eigenvalues and eigenvectors
{λn, xn}Nn=1 of P , where λn ≥ λn+1, form a
matrix X = [x2, . . . , xk] by stacking the eigen-
vectors in columns.
4. Form a matrix Y from X by normalizing the
row sums to have norm 1: Yij = Xij/(

∑
j X

2
ij)

1
2

5. Consider the row of Y to be the transformed
feature vectors for each verb and cluster them
into clusters C1 . . . Ck usingK-means clustering
algorithm.
Output: Clusters C1 . . . Ck

4 Experimental evaluation
4.1 Test sets

We employed two test sets which have been used
to evaluate previous work on English verb classi-
fication:

T1 The test set of Joanis et al. (2008) provides
a classification of 835 verbs into 15 (some
coarse, some fine-grained) Levin classes. 11
tests are provided for 2-14 way classifica-
tions. We employ the 14 way classifica-
tion because this corresponds the closest to
our target (Levin’s fine-grained) classifica-
tion7. We select 586 verbs according to Joa-
nis et al.’s selection criteria, resulting in 10-
120 verbs per class. We restrict the class
imbalance to 1:1.5.8. This yields 205 verbs
(10-15 verbs per class) which is similar to
the sub-set of T1 employed by Stevenson and
Joanis (2003).

T2 The test set of Sun et al. (2008) classifies 204
verbs to 17 fine-grained Levin classes, so that
each class has 12 member verbs.

Table 1 shows the classes in T1 and T2.

4.2 Data processing

For each verb in T1 and T2, we extracted all
the occurrences (up to 10,000) from the raw cor-
pus data gathered originally for constructing the

7However, the correspondence is not perfect with half
of the classes including two or more Levin’s fine-grained
classes.

8Otherwise, in the case of a large class imbalance the eval-
uation measure would be dominated by the classes with large
population.

T1
Object Drop 26.{1,3,7}
Recipient 13.{1,3}
Admire 31.2
Amuse 31.1
Run 51.3.2
Sound 43.2
Light & 43.{1,4}Substance
Cheat 10.6
Steal & 10.{5,1}Remove
Wipe 10.4.{1,2}
Spray / Load 9.7
Fill 9.8
Putting 9.1-6
Change of State 45.1-4

T2
Remove 10.1
Send 11.1
Get 13.5.1
Hit 18.1
Amalgamate 22.2
Characterize 29.2
Peer 30.3
Amuse 31.1
Correspond 36.1
Manner 37.3of speaking
Say 37.7
Nonverbal 40.2expression
Light 43.1
Other change 45.4of state
Mode with 47.3Motion
Run 51.3.2
Put 9.1

Table 1: Levin classes in T1 and T2

T1 T2
total avg total avg

CO F1 1328 764 743 382
LP (p) F2 61 37 55 25
LP (all) F3 2521 526 1481 295
SCF F4 88 46 86 38
SCF+CO F5 1466 833 856 422
SCF+POS F6 319 114 299 87
SCF+P F7 282 96 273 76
SCF (V) F8 - - 92 45
SCF+LP (s) F9 1747 324 1474 225
SCF+LP (o) F10 2817 424 2319 279
SCF+LP (all) F11 4250 649 3515 426
SCF+SP20 (s) F12 821 235 690 145
SCF+SP20 (o) F13 792 218 706 135
SCF+SP20 (all) F14 1333 357 1200 231
SCF+SP30 (s) F15 977 274 903 202
SCF+SP30 (o) F16 1026 273 1012 205
SCF+SP30 (all) F17 1720 451 1640 330

Table 2: (i) The total number of features and (ii)
the average per verb for all the feature sets

VALEX lexicon (Korhonen et al., 2006). The data
was gathered from five corpora, including e.g. the
British National Corpus (Leech, 1992) and the
North American News Text Corpus (Graff, 1995).
The average frequency of verbs in T1 was 1448
and T2 2166, showing that T1 is a more sparse
data set.

The data was first processed using the feature
extraction module. Table 2 shows (i) the total
number of features in each feature set and (ii) the
average per verb in the resulting lexicons for T1
and T2.

We normalized the feature vectors by the sum
of the feature values before applying the clustering
techniques. Since both clustering algorithms have
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an element of randomness, we run them multiple
times. The step 5 of SPEC (K-means) was run for
50 times. The result that minimizes the distortion
(the distances to cluster centroid) is reported. PC

was run 20 times, and the results are averaged.

4.3 Evaluation measures

To facilitate meaningful comparisons, we em-
ploy the same measures for evaluation as previ-
ously employed e.g. by Korhonen et al. (2008); Ó
Séaghdha and Copestake (2008).

The first measure is modified purity (mPUR) –
a global measure which evaluates the mean preci-
sion of clusters. Each cluster is associated with its
prevalent class. The number of verbs in a cluster
K that take this class is denoted by nprevalent(K).
Verbs that do not take it are considered as errors.
Clusters where nprevalent(K) = 1 are disregarded
as not to introduce a bias towards singletons:

mPUR =

∑
nprevalent(ki)>2

nprevalent(ki)

number of verbs

The second measure is weighted class accuracy
(ACC): the proportion of members of dominant
clusters DOM-CLUSTi within all classes ci.

ACC =
∑C

i=1 verbs in DOM-CLUSTi

number of verbs

mPUR and ACC can be seen as a measure of pre-
cision(P) and recall(R) respectively. We calculate
F measure as the harmonic mean of P and R:

F =
2 · mPUR · ACC

mPUR + ACC

The random baseline(BL) is calculated as follows:

BL = 1/number of classes

5 Results

5.1 Quantitative evaluation

Table 3 includes the F-measure results for all the
feature sets when the two methods (PC and SPEC)
are used to cluster verbs in the test sets T1 and T2,
respectively. A number of tendencies can be ob-
served in the results. Firstly, the results for T2 are
clearly better than those for T1. Including a higher
number of verbs lower in frequency from classes
of variable granularity, T1 is probably a more chal-
lenging test set than T2. T2 is controlled for the
number and frequency of verbs to facilitate cross-
class comparisons. While this may contribute to
better results, T2 is a more accurate test set for us
in the sense that it offers a better correspondence
with our target (fine-grained Levin) classes.

T1 T2
PC SPEC PC SPEC

BL 7.14 7.14 5.88 5.88
CO F1 15.62 33.85 17.86 40.94
LP (p) F2 40.40 38.97 50.98 49.02
LP (all) F3 42.94 47.50 41.08 74.55
SCF F4 34.22 36.16 52.33 57.78
SCF+CO F5 26.43 28.70 19.52 29.10
SCF+POS F6 36.14 34.75 44.44 46.70
SCF+P F7 43.57 43.85 63.40 63.28
SCF (V) F8 - - 34.08 38.30
SCF+LP (s) F9 47.72 56.09 65.94 71.65
SCF+LP (o) F10 43.09 48.43 57.11 73.97
SCF+LP (all) F11 45.87 54.63 56.30 72.97
SCF+SP20 (s) F12 46.67 57.75 39.52 71.67
SCF+SP20 (o) F13 44.95 51.70 40.76 70.78
SCF+SP20(all) F14 48.19 55.12 39.68 73.09
SCF+SP30 (s) F15 45.89 56.10 64.44 80.35
SCF+SP30 (o) F16 42.01 48.74 52.75 70.52
SCF+SP30(all) F17 46.66 52.68 51.07 68.67

Table 3: Results on testsets T1 and T2

Secondly, the difference between the two clus-
tering methods is clear: the new SPEC outperforms
PC on both test sets and across all the feature sets.
The performance of the two methods is still fairly
similar with the more basic, less sparse feature sets
(F1-F2, F4, F6-7) but when the more sophisticated
feature sets are used (F3, F5, F9-F17) SPEC per-
forms considerably better. This demonstrates that
it is clearly a better suited method for high dimen-
sional feature sets.

Comparing the feature sets, the simple co-
occurrence based F1 performs clearly better than
the random baseline. F2 and F3 which exploit lex-
ical data in the argument head positions of GRs
prove significantly better than F1. F3 yields sur-
prisingly good results on T2: it is the second best
feature set on this test set. Also on T1, F3 per-
forms better than the SCF-based feature sets F4-
F7. This demonstrates the usefulness of lexical
data when obtained from argument positions in
relevant GRs.

Our basic SCF feature set F4 performs consid-
erably better than the comparable feature set F8
obtained from the VALEX lexicon. The difference
is 19.50 in F-measure. As both lexicons were ex-
tracted from the same corpus data, the improve-
ment can be attributed to improved parser and SCF

acquisition performance (Preiss et al., 2007).
F5-F7 refine the basic SCF feature set F4 fur-

ther. F5 which combines a SCF with CO in-
formation proved the best feature set in the su-
pervised verb classification experiment of Li and
Brew (2008). In our experiment, F5 produces sub-
stantially lower result than CO and SCF alone (i.e.
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F1 and F4). However, our corpus is smaller (Li
and Brew used the large Gigaword corpus), our
SCFs are different, and our approach is unsuper-
vised, making meaningful comparisons difficult.

F6 combines F4 with information about verb
tense. This was not helpful: F6 produces worse re-
sults than F4. F7, on the other hand, yields better
results than F4 on both test sets. This demonstrates
what the previous research has shown: SCF per-
form better when parameterized for prepositions.

Looking at our novel feature sets F9-F17, F9-
F11 combine the most accurate SCF feature set
F4 with the LP-based features F2-F3. Although
the feature space gets more sparse, all the feature
sets outperform F2-F3 on T1. On T2, F3 per-
forms exceptionally well, and thus yields a better
result than F9-F11, but F9-F11 nevertheless per-
form clearly better than the best SCF-based feature
set F4 alone. The differences among F9, F10 and
F11 are small on T2, but on T1 F9 yields the best
performance. It could be that F9 works the best
for the more sparse T1 because it suffers the least
from data sparsity (it uses LPs only for the subject
relation).

F12-F17 replace the LPs in F9-F11 by semantic
SPs. When only 20 clusters are used as SP models
and acquired from the smaller sample of (200) ar-
gument heads (F12-F14), SPs do not perform bet-
ter than LPs on T2. A small improvement can be
observed on T1, especially with F12 which uses
only the subject data (yielding the best F measure
on T1: 57.75%). However, when 30 more fine-
grained clusters are acquired from a bigger sample
of (500) argument heads (F15-F17), lower results
can be seen on T1. On T2, on the other hand, F15
yields dramatic improvement and we get the best
performance for this test set: 80.35% F-measure.

The fact that no improvement is observed when
using F16 and F17 on T2 could be explained by
the fact that SPs are stronger for the subject posi-
tion which also suffers less from the sparse data
problem than e.g. i. object position. The fact that
no improvement is observed on T1 is likely to be
due to the fact that verbs have strong SPs only at
the finer-grained level of Levin classification. Re-
call that in T1, as many as half of the classes are
coarser-grained.

5.2 Qualitative evaluation

The best performing feature sets on both T1 and
T2 were thus our new SP-based feature sets. We
conducted qualitative analysis of the best 30 SP

Human mother, wife, parent, girl, child
Role patient, student, user, worker, teacher
Body-part neck, shoulder, back, knee, corner
Authority committee, police, court, council, board
Organization society, firm, union, bank, institution
Money cash, currency, pound, dollar, fund
Amount proportion, value, size, speed, degree
Time minute, moment, night, hour, year
Path street, track, road, stair, route
Building office, shop, hotel, hospital, house
Region site, field, area, land, island
Technology system, model, facility, engine, machine
Task operation, test, study, analysis, duty
Arrangement agreement, policy, term, rule, procedure
Matter aspect, subject, issue, question, case
Problem difficulty, challenge, loss, pressure, fear
Idea argument, concept, idea, theory, belief
Power control, lead, influence, confidence, ability
Form colour, style, pattern, shape, design
Item letter, book, goods, flower, card

Table 4: Cluster analysis: 20 clusters, their SP la-
bels, and prototypical member nouns

clusters in the T2 data created using SPEC to find
out whether these clusters were really semantic in
nature, i.e. captured semantically meaningful pref-
erences. As no gold standard specific to our verb
classification task was available, we did manual
cluster analysis using VerbNet (VN) as aid. In VN,
Levin classes are assigned with semantic descrip-
tions: the arguments of SCFs involved in diathesis
alternations are labeled with thematic roles some
of which are labeled with selectional restrictions.

From the 30 thematic role types in VN, as many
as 20 are associated with the 17 Levin classes in
T2. The most frequent role in T2 is agent, fol-
lowed by theme, location, patient, recipient, and
source. From the 36 possible selectional restric-
tion types, 7 appear in T2; the most frequent ones
being +animate and +organization, followed by
+concrete, +location, and +communication.

As SP clusters capture selectional preferences
rather than restrictions, we examined manu-
ally whether the 30 clusters (i) capture seman-
tically meaningful classes, and whether they (ii)
are plausible given the VN semantic descrip-
tions/restrictions for the classes in T2.

The analysis revealed that all the 30 clusters had
a predominant, semantically motivated SP sup-
ported by the majority of the member nouns. Al-
though many clusters could be further divided into
more specific SPs (and despite the fact that some
nouns were clearly misclassified), we were able to
assign each cluster a descriptive label characteriz-
ing the predominant SP. Table 4 shows 15 sam-
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ple clusters, the SP labels assigned to them, and a
number of example nouns in these clusters.

When comparing each SP cluster against the
VN semantic descriptions/restrictions for T2, we
found that each predominant SP was plausible.
Also, the SPs frequent in our data were also fre-
quent among the 17 classes according to VN. For
example, the many SP clusters labeled as arrange-
ments, issues, ideas and other abstract concepts
were also frequent in T2, e.g. among COMMUNI-
CATION (37), CHARACTERISE (29.2), AMALGA-
MATE (22.2) and other classes.

This analysis showed that the SP models which
performed well in verb clustering were semanti-
cally meaningful for our task. An independent
evaluation using one of the standard datasets avail-
able for SP acquisition research (Brockmann and
Lapata, 2003) is of course needed to determine
how well the acquisition method performs in com-
parison with other existing methods.

Finally, we evaluated the quality of the verb
clusters created using the SP-based features. We
found that some of the errors were similar to those
seen on T2 when using syntactic features: errors
due to polysemy and syntactic idiosyncracy. How-
ever, a new error type clearly due to the SP-based
feature was detected. A small number of classes
got confused because of strong similar SPs in the
subject (agent) position. For example, some PEER

(30.3) verbs (e.g. look, peer) were found in the
same cluster with SAY (37.7) verbs (e.g. shout,
yell) – an error which purely syntactic features do
not produce. Such errors were not numerous and
could be addressed by developing more balanced
SP models across different GRs.

6 Discussion and related work
Although features incorporating semantic infor-
mation about verb SPs make theoretical sense they
have not proved equally promising in previous ex-
periments which have compared them against syn-
tactic features in verb classification. Joanis et al.
(2008) incorporated an ’animacy’ feature (a kind
of a ’SP’) which was determined by classifying
e.g. pronouns and proper names in data to this sin-
gle SP class. A small improvement was obtained
when this feature was used in conjunction with
syntactic features in supervised classification.

Joanis (2002) and Schulte im Walde (2006) ex-
perimented with more conventional SPs with syn-
tactic features in English and German verb clas-
sification, respectively. They employing top level

Method Result

T1

Li et al. 2008 supervised 66.3
Joanis et al. 2008 supervised 58.4

Stevenson et al. 2003 semi-supervised 29
unsupervised 31

SPEC unsupervised 57.55

T2 Sun et al. 2008 supervised 62.50
unsupervised 51.6

Ó Séaghdha et al. 2008 supervised 67.3
SPEC unsupervised 80.35

Table 5: Previous verb classification results

WordNet (Miller, 1995) and Germanet (Kunze and
Lemnitzer, 2002) classes as SP models. Joanis
(2002) obtained no improvement over syntactic
features, whereas Schulte im Walde (2006) ob-
tained insignificant improvement.

Korhonen et al. (2008) combined SPs with SCFs
when clustering biomedical verbs. The SPs were
acquired automatically from syntactic slots of
SCFs (not from GRs as in our experiment) using
PC clustering. A small improvement was obtained
using LPs extracted from the same syntactic slots,
but the SP clusters offered no improvement. Re-
cently, Schulte im Walde et al. (2008) proposed an
interesting SP acquisition method which involves
combining EM training and the MDL principle for
an verb classification incorporating SPs. However,
no comparison against purely syntactic features is
provided.

In our experiment, we obtained a considerable
improvement over syntactic features, despite using
a fully unsupervised approach to both verb clus-
tering and SP acquisition. In addition to the rich,
syntactic-semantic feature sets, our good results
can be attributed to the clustering technique capa-
ble of dealing with them. The potential of spectral
clustering for the task was recognised earlier by
Brew and Schulte im Walde (2002). Although a
different version of the algorithm was employed
and applied to German (rather than to English),
and although no SP features were used, these ear-
lier experiments did demonstrate the ability of the
method to perform well in high dimensional fea-
ture space.

To get an idea of how our performance com-
pares with that of related approaches, we exam-
ined recent works on verb classification (super-
vised and unsupervised) which were evaluated on
same test sets using comparable evaluation mea-
sures. These works are summarized in table 5.
ACC and F-measure are shown for T1 and T2, re-
spectively.

645



On T1, the best performing supervised method
reported so far is that of Li and Brew (2008). Li
and Brew used Bayesian Multinomial Regression
for classification. A range of feature sets integrat-
ing COs, SCFs and/or LPs were evaluated. The
combination of COs and SCFs gave the best result,
shown in the table. Joanis et al. (2008) report the
second best supervised result on T1, using Support
Vector Machines for classification and features de-
rived from linguistic analysis: syntactic slots, slot
overlaps, tense, voice, aspect, and animacy of NPs.
Stevenson and Joanis (2003) report a semi- and
unsupervised experiment on T1. A feature set sim-
ilar to that of Joanis et al. (2008) was employed
(features were selected in a semi-supervised fash-
ion) and hierarchical clustering was used.

Our unsupervised method SPEC performs sub-
stantially better than the unsupervised method of
Stevenson et al. and nearly as well as the super-
vised approach of Joanis et al. (2008) (note, how-
ever, that the different experiments involved differ-
ent sub-sets of T1 so are not entirely comparable).

On T2, the best performing supervised method
so far is that of Ó Séaghdha and Copestake (2008)
which employs a distributional kernel method to
classify SCF features parameterized for preposi-
tions in the automatically acquired VALEX lexicon.
Using exactly the same data and feature set, Sun
et al. (2008) obtain a slightly lower result when us-
ing a supervised method (Gaussian) and a notably
lower result when using an unsupervised method
(PC clustering). Our method performs consider-
ably better and also outperforms the supervised
method of Ó Séaghdha and Copestake (2008).

7 Conclusion and Future Work
We introduced a new approach to verb cluster-
ing which involves the use of (i) rich lexical, SCF

and GR data produced by a recent SCF system, (ii)
novel syntactic-semantic feature sets which com-
bine a variety of linguistic information, and (iii) a
new variation of spectral clustering which is par-
ticularly suited for dealing with the resulting, high
dimensional feature space. Using this approach,
we showed on two well-established test sets that
automatically acquired SPs can be highly useful
for verb clustering. This result contrasts with most
previous works but is in line with theoretical work
on verb classification which relies not only on syn-
tactic but also on semantic features (Levin, 1993).

In addition to the ideas mentioned earlier, our
future plans include looking into optimal ways

of acquiring SPs for verb classification. Consid-
erable research has been done on SP acquisition
most of which has involved collecting argument
headwords from data and generalizing to Word-
Net classes. Brockmann and Lapata (2003) have
showed that WordNet-based approaches do not
always outperform simple frequency-based mod-
els, and a number of techniques have been re-
cently proposed which may offer ideas for refin-
ing our current unsupervised approach (Erk, 2007;
Bergsma et al., 2008). The number and type (and
combination) of GRs for which SPs can be reliably
acquired, especially when the data is sparse, re-
quires also further investigation.

In addition, we plan to investigate other po-
tentially useful features for verb classification
(e.g. named entities and preposition classes) and
explore semi-automatic ML technology and active
learning for guiding the classification. Finally, we
plan to conduct a bigger experiment with a larger
number of verbs, and conduct evaluation in the
context of practical application tasks.
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