EEG responds to conceptual stimuli and corpus semantics
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Abstract

Mitchell et al. (2008) demonstrated that
corpus-extracted models of semantic
knowledge can predict neural activation
patterns recorded wusing fMRI. This
could be a very powerful technique for
evaluating conceptual models extracted
from corpora; however, fMRI is expensive
and imposes strong constraints on data
collection.  Following on experiments
that demonstrated that EEG activation
patterns encode enough information to
discriminate broad conceptual categories,
we show that corpus-based semantic rep-
resentations can predict EEG activation
patterns with significant accuracy, and
we evaluate the relative performance of
different corpus-models on this task.

1 Introduction

Models of semantic relatedness induced from cor-
pus data have proven effective in a number of em-
pirical tasks (Sahlgren, 2006) and there is increas-
ing interest in whether distributional information
extracted from corpora correlates with aspects
of speakers’ semantic knowledge: see Lund and
Burgess (1996), Landauer and Dumais (1997), Al-
muhareb (2006), Pad6 and Lapata (2007), Schulte
im Walde (2008), among many others. For this
purpose, corpus models have been tested on data-
sets that are based on semantic judgements (met-
alinguistic or meta-cognitive intuitions about syn-
onymy, semantic distance, category-membership)
or behavioural experiments (semantic priming,
property generation, free association). While all
these data are valuable, they are indirect reflec-
tions of semantic knowledge, and when the pre-
dictions they make diverge from those of corpora,
interpretation is problematic: is the corpus model
missing essential aspects of semantics, or are non-
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semantic factors biasing the data elicited from in-
formants?

Reading semantic processes and representations
directly from the brain would be an ideal way to
get around these limitations. Until recently, anal-
ysis of linguistic quantities using neural data col-
lected with EEG (measurement at the scalp of volt-
ages induced by neuronal firing) or fMRI (mea-
surement of changes of oxygen concentrations in
the brain tied to cognitive processes) had neither
the advantages of corpora (scale) nor of infor-
mants (finer grained judgements).

However, some clear patterns of differential ac-
tivity have been found for broad semantic classes.
Viewing images of natural (typically animals and
plants) and non-natural (typically artefacts like
tools or vehicles) objects elicits different loci of
activity in fMRI (Martin and Chao, 2001) and
EEG (Kiefer, 2001), that persist across partici-
pants. Differences have also been found in re-
sponse to auditorily or visually presented words of
different lexical classes, such as abstract/concrete,
and verb/noun (Pulvermiiller, 2002). But interpre-
tation of such group results remains somewhat dif-
ficult, as they may be consistent with more than
one distinction: the natural/artefactual division
just mentioned, may rather be between living/non-
living entities, dynamic/static entities, or be based
on embodied experience (e.g. manipulable or not).

More recently, however, machine learning and
other numerical techniques have been successfully
applied to extract semantic information from neu-
ral data in a more discriminative fashion, down
to the level of individual concepts. The work
presented here builds on two strands of previ-
ous work: Murphy et al. (2008) use EEG data
to perform semantic categorisation on single stim-
uli; and Mitchell et al. (2008) introduce an fMRI-
based method that detects word level distinctions
by learning associations between features of neu-
ral activity and semantic features derived from a
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corpus. We combine these innovations by intro-
ducing a method that extracts featural represen-
tations from the EEG signal, and uses corpus-
based models to predict word level distinctions in
patterns of EEG activity. The proposed method
achieves a performance level significantly above
chance (also when distinguishing between con-
cepts from the same semantic category, e.g., dog
and cat), and approaching that achieved with
fMRI.

The paper proceeds as follows. The next section
describes a simple behavioural experiment where
Italian-speaking participants had to name photo-
graphic images of mammals and tools while their
EEG activity was being recorded, and continues
to detail how the rich and multidimensional sig-
nals collected were reduced to a small set of op-
timally informative features using a new method.
Section 3 describes a series of corpus-based se-
mantic models derived from both a raw-text web
corpus, and from various parsings of a conven-
tional corpus. In Section 4 we describe the train-
ing of a series of linear models, that each learn
the associations between a set of corpus semantic
features and an individual EEG activity feature.
By combining these models it is possible to pre-
dict the EEG activity pattern for a single unseen
word, and compare this to the observed pattern
for the corresponding concept. Results (Section
5) show that these predictions succeed at a level
significantly above chance, both for coarser dis-
tinctions between words in different superordinate
categories (e.g., differentiating between drill and
gorilla), and, at least for the model based on the
larger web corpus, for those within the same cate-
gory (e.g., drill vs spanner, koala vs gorilla).

2 Neural Activation Data

2.1 Data collection

EEG data was gathered from native speakers of
Italian during a simple behavioural experiment at
the CIMeC/DiSCoF laboratories at Trento Univer-
sity. Seven participants (five male and two fe-
male; age range 25-33; all with college educa-
tion) performed a silent naming task. Each of them
was presented! on screen with a series of contrast-
normalised greyscale photographs of tools (gar-
den and work tools) and land mammals (exclud-
ing emotionally valent domesticated animals and

!'Using the E-Prime software package: http://www.
pstnet.com/e-prime/.
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Figure 1: Presentation of image stimuli

predators), for which they had to think of the most
appropriate name (see figure 1). They were not ex-
plicitly asked to group the entities into superordi-
nate categories, or to concentrate on their seman-
tic properties, but completing the task involved re-
solving each picture to its corresponding concept.
Images remained on screen until a keyboard re-
sponse was received from the participant to indi-
cate a suitable label had been found, and presenta-
tions were interleaved with three second rest peri-
ods. Thirty stimuli in each of the two classes were
each presented six times, in random order, to give
a total of 360 image presentations in the session.
Response rates were over 95%, and a post-session
questionnaire determined that participants agreed
on image labels in approximately 90% of cases.
English terms for the concepts used are listed be-
low.

Mammals anteater, armadillo, badger, beaver, bi-
son, boar, camel, chamois, chimpanzee, deer,
elephant, fox, giraffe, gorilla, hare, hedge-
hog, hippopotamus, ibex, kangaroo, koala,
llama, mole, monkey, mouse, otter, panda,
rhinoceros, skunk, squirrel, zebra

Tools Allen key, axe, chainsaw, craft knife, crow-
bar, file, garden fork, garden trowel, hack-
saw, hammer, mallet, nail, paint brush, paint
roller, pen knife, pick axe, plaster trowel,
pliers, plunger, pneumatic drill, power drill,
rake, saw, scissors, scraper, SCrew, screw-
driver, sickle, spanner, tape measure

The EEG signals were recorded at 500Hz from
64 scalp locations based on the 10-20 standard



montage.” The EEG recording computer and stim-
ulus presentation computer were synchronised by
means of parallel port transmitted triggers. Af-
ter the experiment, pre-processing of the recorded
signals was carried out using the EEGLAB pack-
age (Delorme and Makeig, 2003): signals were
band-pass filtered at 1-50Hz to remove slow drifts
and high-frequency noise, and then down-sampled
to 120Hz. An ICA decomposition was subse-
quently applied (Makeig et al., 1996), and signal
components due to eye-movements were manually
identified and removed.

As a preliminary test to verify that the recorded
signals included category specific patterns, we
applied a discriminative classification technique
based on source-separation, similar to that de-
scribed in Murphy et al. (2008). This found that
the categories of mammals and tools could be dis-
tinguished with an accuracy ranging from 57% to
80% (mean of 72% over the seven participants).

2.2 Feature extraction

The features extracted are metrics of signal power
at a particular scalp location, in a particular fre-
quency band, and at a particular time latency rel-
ative to the presentation of each image stimulus.
Termed Event Related Synchronisation (ERS) or
Event Related Spectral Perturbation (ERSP), such
frequency-specific changes in signal amplitude are
known to correlate with a wide range of cogni-
tive functions (Pfurtscheller and Lopes da Silva,
1999), and have specifically been shown to be sen-
sitive to category distinctions during the process-
ing of linguistic and visual stimuli (Murphy et al.,
2008; Gilbert et al., 2009).

Feature extraction and selection is performed
individually on a per-participant basis. As a first
step all signal channels are z-score normalised
to control for varying conductivity at each elec-
trode site, and a Laplacian sharpening is applied
to counteract the spatial blurring of signals caused
by the skull, and so minimise redundancy of infor-
mation between channels.

For each stimulus presentation, 14,400 signal
power features are extracted: 64 electrode chan-
nels by 15 frequency bands (of width 3.3Hz, be-
tween 1 and S0Hz) by 15 time intervals (of length
67ms, in the first second after image presentation).
A z-score normalisation is carried out across all

2Using a Brain Vision BrainAmp system: http://
www.brainproducts.com/.
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Figure 2: Mean rank of selected features in the
time/frequency space (left panel) and on the scalp
(right panel) for participant E

stimulus presentations to equalise variance across
frequencies and times: to control both for the low-
pass filtering action of the skull, and for the re-
duced synchronicity of activity at increasing laten-
cies. For each stimulus a mean is then taken over
each of six presentations to arrive at a more reli-
able power estimate for each feature.’

The feature ranking method used in Mitchell et
al. (2008) evaluates the extent to which the rela-
tionship among stimuli is stable across across pre-
sentations, using a correlational measure,* but pre-
liminary analyses with this selection method on
EEG features proved disappointing. Here, two ad-
ditional ranking criteria are used: each feature is
evaluated for its noisiness (the amount of power
variation seen across presentations of the same
stimulus), and for its distinctiveness (the amount
of variation in power estimates across different
stimuli). A combination of these three strategies
is used to rank the features by their informative-
ness, and the top 50 features are then selected for
each participant.’

A qualitative evaluation of the feature selec-
tion strategy can be carried out by examining
the distribution of features selected. Figure 2
shows the distribution of selected features over the
time/frequency spectrum (left panel), and over the
scalp (right panel - viewed from above, with the
nose pointing upwards). The distribution seen is

3Stimulus power features are isolated by band-pass filter-
ing for the required frequencies, cropping following the rel-
evant time interval relative to each image presentation, and
then taking the variance of the resulting signal, which is pro-
portional to power.

“See the associated supplementary materials of Mitchell
et al. (2008) for details: http://www.sciencemag.
org/cgi/content/full/320/5880/1191/DC1.

3Several combinations of these parameters (selection
thresholds of 5, 20, 50, 100, 200 features; ranking criteria in
isolation and in combination) were investigated - the one cho-
sen gave highest overall performance with the web-derived
corpus model: 50 features, combined ranking criteria.
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Figure 3: First two components of principal com-
ponents analysis of selected features for partici-
pant E (crosses: mammals; circles: tools)

plausible in reference to previous work: lower fre-
quencies (Pfurtscheller and Lopes da Silva, 1999),
latencies principally in the first few hundred mil-
liseconds (Kiefer, 2001), and activity in the visual
centres at the rear of the head, as well as parietal
areas (Pulvermiiller, 2005). A principal compo-
nents analysis can also be performed on the se-
lected features to see if they reflect any plausi-
ble semantic space. As figure 3 shows, the fea-
ture selection stage has captured quite faithfully
the mammal/tool distinction in a totally unsuper-
vised fashion.

3 Corpus-based semantic models

Data from linguistics (Pustejovsky, 1995; Fill-
more, 1982) and neuroscience (Barsalou, 1999;
Barsalou, 2003; Pulvermiiller, 2005) underline
how certain verbs, by emphasising typical ways in
which we interact with entities and how they be-
have, are pivotal in the representation of concrete
nominal concepts. Following these traditions,
Mitchell et al. (2008) use 25 manually picked
verbs as their corpus-based features.

Here that approach is replicated by translating
these verbs into Italian. Mitchell et al. (2008) se-
lected verbs that denote our interaction with ob-
jects and living things, such as smell and ride.
While the translations are not completely faithful
(because frequent verbs of this sort tend to span
different sets of senses in the two languages), the
aim was to respect the same principle when build-
ing the Italian list. The full list, with our back
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translations into English, is presented in Table 1.
We refer to this set as the “Mitchell” verbs.

annusare “smell/sniff”
ascoltare “listen”
avvicinare “near”’
correre “run/flow”
entrare “enter”
indossare “wear”
mangiare “eat”
pulire “clean”
riempire “fill”
sentire “feel/hear”
spingere “push”
toccare “touch”

alzare “raise”
aprire “open”
assaggiare “taste”
cavalcare “ride”
dire “say/tell”
guidare “drive”
maneggiare “handle”
muovere “move”
puzzare “stink”
rompere “break”
sfregare “rub”
temere “fear”
vedere “see”

Table 1: The “Mitchell” verbs, with English trans-
lations

As in Mitchell et al. (2008), in order to find
a corpus large enough to provide reliable co-
occurrence statistics for our target concepts and
the 25 verbs, we resorted to the Web, queried us-
ing the Yahoo! APL® In particular, we represent
each concept by a vector that records how many
times it co-occurred with each target verb within
a span of 5 words left and right, according to Ya-
hoo! counts. We refer to this corpus-based model
as the yahoo-mitchell model below.

While manual verb picking has proved effec-
tive for Mitchell and colleagues (and for us, as we
will see in a moment), ultimately what we are in-
terested in is discovering the most distinctive fea-
tures of each conceptual category. We are there-
fore interested in more systematic approaches to
inducing corpus-based concept descriptions, and
in which of these approaches works best for this
task. The alternative models we consider were
not extracted from the Web, but from an existing
corpus, so that we could rely on pre-existing lin-
guistic annotation (POS tagging, lemmatization,
dependency paths), and perform more flexible,
annotation-aware queries to collect co-occurrence
statistics.

More specifically, we used the la Repub-
blica/SSLMIT corpus’, that contains about 400
million tokens of newspaper text. From this, we
extracted four models where nominal concepts are
represented in terms of patterns of co-occurrence
with verbs (we collected statistics for the top
20,000 most common nouns in the corpus, includ-
ing the concepts used as stimuli in the silent nam-

®http://developer.yahoo.com/search/
"nttp:://sslmit.unibo.it/repubblica/



ing experiment, and the top 5,000 verbs). We first
re-implemented a “classic” window-based word
space model (Sahlgren, 2006), referred to below
as repubblica-window, where each noun lemma is
represented by its co-occurrence with verb lem-
mas within the maximum span of a sentence, with
no more than one other intervening noun. The
repubblica-position model is similar, but it also
records the position of the verb with respect to
the noun (so that X-usare “X-use” and usare-X
“use-X” count as different features), analogously
to the seminal HAL model (Lund and Burgess,
1996). It has been shown that models that take
the syntactic relation between a target word and
a collocate feature into account can outperform
“flat” models in some tasks (Padé and Lapata,
2007). The next two models are based on the de-
pendency parse of the la Repubblica corpus docu-
mented by Lenci (2009). We only counted as col-
locates those verbs that were linked to nouns by
a direct path (such as subject and object) or via
preposition-mediated paths (e.g., tagliare con for-
bici “to cut with scissors”), and where the paths
were among the top 30 most frequent in the cor-
pus. In the repubblica-depfilter model, we record
co-occurrence with verbs that are linked to the
nouns by one of the top 30 paths, but we do
not preserve the paths themselves in the features.
This is analogous to the model proposed by Padé
and Lapata (2007). In the repubblica-deppath
model, we preserve the paths as part of the fea-
tures (so that subj-uccidere “subj-kill” and obj-
uccidere count as different features), analogously
to Lin (1998), Curran and Moens (2002) and oth-
ers. For all models, following standard practice in
computational linguistics (Evert, 2005), we trans-
form raw co-occurrence counts into log-likelihood
ratios.

Following the evaluation paradigm of Mitchell
et al. (2008), linear models trained on corpus-
based features are used to predict the pattern of
EEG activity for unseen concepts. This only
works if we have a very limited number of fea-
tures (or else we would have more parameters to
estimate than data-points to estimate them). The
Repubblica-based models have thousands of fea-
tures (one per verb collocate, or verb+path collo-
cate). We adopt two strategies to select a reduced
number of features. In the ropfeat versions, we
first pick the 50 features that have the highest asso-
ciation with each of the target concepts. We then

count in how many of these concept-specific top
lists a feature occurs, and we pick the 25 features
that occur in the largest number of them. The intu-
ition is that this should give us a good trade-off be-
tween how characteristic the features are (we only
use features that are highly associated with some
of our concepts), and their generalization capabili-
ties (we pick features that are associated with mul-
tiple concepts). Randomly selected examples of
the features extracted in this way for the various
Repubblica models are reported in Table 2.

repubblica-window
abbattere “demolish”
afferrare “seize”
impugnare “grasp”
tagliare “cut”

trovare “find”
repubblica-depfilter
abbattere “demolish”
correre “run”

parlare “speak”
saltare “jump”
tagliare “cut”

repubblica-position

X-ferire “X-wound”

X-usare “X-use”

dipingere-X “paint-X”
munire-X “supply-X”
tagliare-X “cut-X”
repubblica-deppath
con+tagliare “with+cut”
obj+abbattere “obj+demolish”
obj+uccidere “obj+kill”
intr-subj+vivere “intr-subj+live”
tr-subj+aprire “tr-subj+open”

Table 2: Examples of top features from the /a Re-
pubblica models

Alternatively, instead of feature selection we
perform feature reduction by means of a Singular
Value Decomposition (SVD) of the noun-by-verb
matrix. We apply the SVD to matrices that include
the top 20,000 most frequent nouns in the cor-
pus (including our target concepts) since the qual-
ity of the resulting reduced model should improve
if we can exploit richer patterns of correlations
among the columns — verbs — across rows — nouns
(Landauer and Dumais, 1997; Schiitze, 1997). In
the svd versions of our models, we pick as fea-
tures the top 25 left singular vectors, weighted
by the corresponding singular values. These fea-
tures do not have a straightforward interpretation,
but they tend to group verb meanings that belong
to broad semantic domains. For example, among
the original verbs that are most strongly correlated
with one of the top singular vectors of repubblica-
window we find giocare “play”, vincere “win” and
perdere “lose”. Another singular vector is asso-
ciated with ammontare “amount”, costare “cost”,
pagare “pay”, etc. One of the top singular vec-
tors of repubblica-deppath is strongly correlated
with in+scendere “descend into”, in+mettere “put
into”, in+entrare “enter into”, though not all sin-
gular vectors are so clearly characterized by the
verbs they correlate with.
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None of the la Repubblica models had full cov-
erage of our concept stimulus set (see the second
column of Table 3 below), because our extraction
method missed some multi-word units, and fea-
ture selection led to losing some more items due
to data sparseness (e.g., some target words had no
collocates connected by the dependency paths we
selected). The experiments reported in the next
section used all the target concepts available in
each model, but a replication using the 50 concepts
that were common to all models obtained results
that are comparable. For a direct comparison be-
tween Yahoo! and la Repubblica derived features,
we tried collecting statistics for the Mitchell verbs
from Repubblica as well, but the resulting model
was extremely sparse, and we do not report its per-
formance here.

Finally, it is important to note that any repre-
sentation yielded by a corpus semantic model does
not characterise a concept directly, but is rather an
aggregate of the various senses and usages of the
noun chosen to represent it. This obvious limita-
tion will persist until comprehensive, robust and
computationally efficient word-sense disambigua-
tion techniques become available. However these
models are designed to extract semantic (as op-
posed to syntactic or phonological) properties of
words, and as noted in the introduction, have been
demonstrated to correlate with behavioural effects
of conceptual processing.

4 Predicting EEG patterns using
corpus-based models

In Section 2.2 above we showed how we extracted
features summarizing the spatial, temporal and
frequency distribution of the EEG signal collected
while participants were processing each of the tar-
get concepts. In Section 3, we described various
ways to obtain a compact representation of the
same concepts in terms of corpus-derived features.
We will now discuss the method we employed to
verify whether the corpus-derived features can be
used to predict the EEG patterns — that is whether
semantics can be used to predict neural activity.
Our hope is that a good corpus-based model will
provide a decomposition of concepts into mean-
ingful properties, corresponding to coherent sub-
patterns of activation in the brain, and thus capture
generalizations across concepts. For example, if
a concept is particularly visually evocative (e.g.,
zebra), we might expect it to be strongly associ-
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ated with the verb see, while also causing partic-
ular activation of the vision centres of the brain.
Similarly, concepts with strong associations with
a particular sound (e.g., cuckoo) might be seman-
tically associated with hear while also dispropor-
tionately activating auditory areas of the brain. It
should thus be possible to learn a model of corpus-
to-EEG-pattern correspondences on training data,
and use it to predict the EEG activation patterns of
unseen concepts.

We follow the paradigm proposed by Mitchell et
al. (2008) for fMRI data. For each participant and
selected EEG feature, we train a model where the
level of activation of the latter in response to dif-
ferent concepts is approximated by a linear com-
bination of the corpus features:

f=C3+¢

where f is the vector of activations of a specific
EEG feature for different concepts, the matrix C
contains the values of the corpus features for the
same concepts (row-normalised to z-scores), 5 is
the weight we must learn for each corpus feature,
and €'is a vector of error terms. We use the method
of least squared errors to learn the weights that
maximize the fit of the model. We can then predict
the activation of an EEG feature in response to a
new concept that was not in the training data by a
ﬁ—weighted sum of the values of each corpus fea-
ture for the new concept. In some cases collinear-
ity in the corpus data (regular linear relationships
among the corpus-feature columns) prevented the
estimation procedure from finding a solution. In
such cases (due to the small number of data, rel-
ative to the number of unknowns), the least in-
formative corpus-features (those that correlated on
average most highly with other features) were iter-
atively removed until a solution was reached. All
models were trained with between 23 and 25 cor-
pus features.

Again following Mitchell and colleagues, we
adopt a leave-2-out paradigm in which a linear
model for each EEG feature is trained in turn on
all concepts minus 2. For each of the 2 left out
concepts, we predict the EEG activation pattern
using the trained linear model and their corpus
features, as just described. We then try to cor-
rectly match the predicted and observed activa-
tions, by measuring the Euclidean distance be-
tween the model-generated EEG activity (a vec-
tor of estimated power levels for the n EEG fea-



tures selected) and the corresponding EEG activ-
ity recorded in the experiment (other distance met-
rics gave similar results to the ones reported here).
Given the 2 left-out concepts a and b, we com-
pute 2 matched distances (i.e., distance between
predicted and observed pattern for a, and the same
for b) and 2 mismatched distances (predicted a and
observed b; predicted b and observed a). If the av-
erage of the matched distances is lower than the
average of the mismatched distances, we consider
the prediction successful — otherwise we count is
as a failed prediction. At chance levels, expected
matching accuracy is 50%.

5 Results

Table 3 shows the comparative results for all the
corpus models introduced in Section 3. The third
column (all) shows the overall accuracy in cor-
rectly matching predicted to observed EEG ac-
tivity patterns, and so successfully distinguishing
word meanings. The significance of the figures is
indicated with the conventional annotation (calcu-
lated using a one-way two-sided ¢-test across the
individual participant accuracy figures against an
expected population mean of 50%).® The second
column shows the coverage of each model of the
60 mammal and tool concepts used, which ranged
from full (for the yahoo-mitchell model) to 51 con-
cepts (for the depfilter-topfeat model). The corre-
sponding number of matching comparisons over
which accuracy was calculated ranged from 1770
down to 1225.

As suggested by previous work (Murphy et al.,
2008), and illustrated by figure 3, coarse distinc-
tions between words in different superordinate cat-
egories (e.g., hammer vs armadillo; giraffe vs
nail) may be easier to detect than those among
concepts within the same category (e.g., ham-
mer vs nail; giraffe vs armadillo). The fourth
and fifth columns give these accuracies, and while
between-category discriminations do prove more
reliable, they indicate that, for the top rated model
at least, finer within-category distinctions are also
being captured. Figures from the top two perform-
ing models are given for individual participants in
tables 4 and 5.

80n average, the difference seen between matched and
mismatched pairs was small, at about 3% of the distance
between observed and predicted representations, and was
marginally bigger for correct than for incorrect predictions
(p < 0.01).
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part. | overall | within | between
A 54 53 55
B 54 47 60
C 62 56 67
D 61 56 67
E 68 58 78
F 52 54 51
G 57 51 63

Table 4: Accuracy levels for individual participant
sessions, yahoo-mitchell web corpus

part. | overall | within | between
A 49 52 46
B 59 57 60
C 60 60 59
D 50 45 55
E 56 53 58
F 64 64 65
G 52 49 55

Table 5: Accuracy levels for individual participant
sessions, repubblica-window-svd

6 Discussion

Our results show that corpus-extracted conceptual
models can be used to distinguish between the
EEG activation levels associated with conceptual
categories to a degree that is significantly above
chance. Though category specific patterns are de-
tectable in the EEG signal alone (as illustrated by
the PCA analysis in figure 3), on that basis we can-
not be sure that semantics is being detected. Some
other property of the stimuli that co-varies with the
semantic classes of interest could be responsible,
such as visual complexity, conceptual familiarity,
lexical frequency, or phonological form. Only by
cross-training with individual corpus features and
showing that these hold a predictive relationship to
neural activity have we been able to establish that
EEG patterns encode semantics.

Present evidence indicates that fMRI may pro-
vide richer data for training such models than EEG
(Mitchell and colleagues obtain an average accu-
racy of 77%, and 65% for the within category set-
ting). However, fMRI has several clear disadvan-
tages as a tool for language researchers. First of
all, the fine spatial resolution it provides (down
to 2-3mm), while of great interest to neuroscien-
tists, is not in itself linguistically informative. Its
coarse temporal resolution (of the order of several
seconds), makes it ill-suited to analysing on-line
linguistic processes. EEG on the other hand, de-
spite its low spatial resolution (several centime-
tres), gives millisecond-level temporal resolution,



model coverage all within cat | between cat
yahoo-mitchell 100 58.3%* (5.7) | 53.6* (3.7) | 63.0%* (8.9)
repubblica-window-svd 96.7 55.7*% (5.6) 54.3 (6.5) 56.9*% (5.9)
repubblica-window-topfeat 93.3 52.1 (4.3) 48.7 (3.6) 55.4(7.0)

repubblica-deppath-svd 93.3 51.4 (8.7) 49.0 (8.0) 54.0 (10.0)
repubblica-depfilter-topfeat 85.0 51.1(9.6) 49.3 (9.6) 53.1 (10.0)
repubblica-position-topfeat 93.3 50.0 (5.2) 46.0 (4.7) 53.6 (8.0)

repubblica-deppath-topfeat 86.7 49.9 (9.0) 47.0 (9.3) 52.4 (9.6)

repubblica-position-svd 96.7 49.4 (10.2) 46.6 (9.8) 52.3 (11.3)
repubblica-depfilter-svd 93.3 489 (11.1) 47.1 (8.9) 50.6 (12.9)

Table 3: Comparison across corpus models, with percentage concept coverage, mean cross-subject per-
centage prediction accuracy and standard deviation; xp < 0.05, * * p < 0.01

enabling the separate analysis of sequential cogni-
tive processes and states (e.g., auditory process-
ing, word comprehension, semantic representa-
tion). fMRI is also prohibitively expensive for
most researchers (ca. 300 euros per hour at cost
price), compared to EEG (ca. 30 euros per hour).
Finally, there is no prospect of fMRI being minia-
turised, while wearable EEG systems are already
becoming commercially available, making exper-
imentation in more ecological settings a possibil-
ity (e.g., playing with a child, meeting at a desk,
walking around). In short, while EEG can be used
to carry out systematic investigations of categori-
cal distinctions, doing so with fMRI would be pro-
hibitively expensive.

Present results indicate that distinctions be-
tween categories are easier than distinctions be-
tween category elements; and that selecting the
conceptual features by hand gives better results
than discovering them automatically. Both of
these results however may be due to limitations
of the current method. One limitation is that we
have been using the same set of features for all
concepts, which is likely to blur the distinctions
between members of a category more than those
between categories. A second limitation of our
present methodology is that it is constrained to use
very small numbers of semantic features, which
limits its applicability. For example it is hard to
conceive of a small set of verbs, or other parts-of-
speech, whose co-occurrence patterns could suc-
cessfully characterise the full range of meaning
found in the human lexicon. Even the more eco-
nomical corpus-extracted conceptual models tend
to run in the hundreds of features (Almuhareb,
2006). We are currently working on variations in
the method that will address these shortcomings.

The web-based model with manually picked
features outperformed all la Repubblica-based
models. However, the results attained with

repubblica-window-svd are encouraging, espe-
cially considering that we are reporting results for
an EEG feature configuration optimised for the
web data (see footnote 5), and that la Repubblica
is several orders of magnitude smaller than the
web. That data sparseness might be the main is-
sue with la Repubblica models is suggested by
the fact that repubblica-window-svd is the least
sparse of them, since it does not filter data by posi-
tion or dependency path, and compresses informa-
tion from many verbs via SVD. In future research,
we plan to extract richer models from larger cor-
pora. And as the discriminative accuracy of cross-
training techniques improves, further insights into
the relative validity of corpus representations will
be attainable. One research aim is to see if individ-
ual corpus semantic properties are encoded neu-
rally, so providing strong evidence for a particular
model. These techniques may also prove more ob-
jective and reliable in evaluating representations of
abstract concepts, for which it is more difficult to
collect reliable judgements from informants.
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