
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 590–598,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Adapting a Polarity Lexicon using Integer Linear Programming
for Domain-Specific Sentiment Classification

Yejin Choi and Claire Cardie

Department of Computer Science

Cornell University

Ithaca, NY 14853

{ychoi,cardie}@cs.cornell.edu

Abstract

Polarity lexicons have been a valuable re-

source for sentiment analysis and opinion

mining. There are a number of such lexi-

cal resources available, but it is often sub-

optimal to use them as is, because general

purpose lexical resources do not reflect

domain-specific lexical usage. In this pa-

per, we propose a novel method based on

integer linear programming that can adapt

an existing lexicon into a new one to re-

flect the characteristics of the data more

directly. In particular, our method collec-

tively considers the relations among words

and opinion expressions to derive the most

likely polarity of each lexical item (posi-

tive, neutral, negative, or negator) for the

given domain. Experimental results show

that our lexicon adaptation technique im-

proves the performance of fine-grained po-

larity classification.

1 Introduction

Polarity lexicons have been a valuable resource for

sentiment analysis and opinion mining. In particu-

lar, they have been an essential ingredient for fine-

grained sentiment analysis (e.g., Kim and Hovy

(2004), Kennedy and Inkpen (2005), Wilson et al.

(2005)). Even though the polarity lexicon plays an

important role (Section 3.1), it has received rela-

tively less attention in previous research. In most

cases, polarity lexicon construction is discussed

only briefly as a preprocessing step for a sentiment

analysis task (e.g., Hu and Liu (2004), Moilanen

and Pulman (2007)), but the effect of different al-

ternative polarity lexicons is not explicitly inves-

tigated. Conversely, research efforts that focus

on constructing a general purpose polarity lexicon

(e.g., Takamura et al. (2005), Andreevskaia and

Bergler (2006), Esuli and Sebastiani (2006), Rao

and Ravichandran (2009)) generally evaluate the

lexicon in isolation from any potentially relevant

NLP task, and it is unclear how the new lexicon

might affect end-to-end performance of a concrete

NLP application.

It might even be unrealistic to expect that there

can be a general-purpose lexical resource that

can be effective across all relevant NLP applica-

tions, as general-purpose lexicons will not reflect

domain-specific lexical usage. Indeed, Blitzer

et al. (2007) note that the polarity of a particu-

lar word can carry opposite sentiment depending

on the domain (e.g., Andreevskaia and Bergler

(2008)).

In this paper, we propose a novel method based

on integer linear programming to adapt an existing

polarity lexicon into a new one to reflect the char-

acteristics of the data more directly. In particular,

our method considers the relations among words

and opinion expressions collectively to derive the

most likely polarity of each word for the given do-

main.

Figure 1 depicts the key insight of our approach

using a bipartite graph. On the left hand side, each

node represents a word, and on the right hand side,

each node represents an opinion expression. There

is an edge between a word wi and an opinion ex-

pression ej , if the word wi appears in the expres-

sion ej . We assume the possible polarity of each

expression is one of the following three values:

{positive, neutral, negative}, while the possible

polarity of each word is one of: {positive, neutral,

negative or negator}. Strictly speaking, negator is

not a value for polarity, but we include them in our

lexicon, because valence shifters or negators have

been shown to play an important role for sentiment

analysis (e.g., Polanyi and Zaenen (2004), Moila-

nen and Pulman (2007), Choi and Cardie (2008)).

Typically, the ultimate goal of the sentiment

analysis task is to determine the expression-level

(or sentiment/ document-level) polarities, rather

590

than the correct word-level polarities with respect

to the domain. Therefore, word-level polarities

can be considered as latent information. In this pa-

per, we show how we can improve the word-level

polarities of a general-purpose polarity lexicon by

utilizing the expression-level polarities, and in re-

turn, how the adapted word-level polarities can

improve the expression-level polarities.

In Figure 1, there are two types of relations

we could exploit when adapting a general-purpose

polarity lexicon into a domain-specific one. The

first are word-to-word relations within each ex-

pression. That is, if we are not sure about the

polarity of a certain word, we can still make a

guess based on the polarities of other words within

the same expression and knowledge of the polar-

ity of the expression. The second type of relations

are word-to-expression relations: e.g., some words

appear in expressions that take on a variety of po-

larities, while other words are associated with ex-

pressions of one polarity class or another.

In relation to previous research, analyz-

ing word-to-word (intra-expression) relations

is most related to techniques that determine

expression-level polarity in context (e.g., Wilson

et al. (2005)), while exploring word-to-expression

(inter-expression) relations has connections to

techniques that employ more of a global-view of

corpus statistics (e.g., Kanayama and Nasukawa

(2006)).1

While most previous research exploits only one

or the other type of relation, we propose a unified

method that can exploit both types of semantic re-

lation, while adapting a general purpose polarity

lexicon into a domain specific one. We formulate

our lexicon adaptation task using integer linear

programming (ILP), which has been shown to be

very effective when solving problems with com-

plex constraints (e.g., Roth and Yih (2004), Denis

and Baldridge (2007)). And the word-to-word and

word-to-expression relations discussed above can

be encoded as soft and hard constraints in ILP. Un-

fortunately, one class of constraint that we would

like to encode (see Section 2) will require an

exponentially many number of constraints when

grounded into an actual ILP problem. We there-

fore propose an approximation scheme to make

the problem more practically solvable.

We evaluate the effect of the adapted lex-

1In case of document-level polarity classification, word-
to-expression relations correspond to word-to-document re-
lations.

exp�

exp�

exp�

exp�w� w� w�

w� w� w� w�

w� w�

w�

+

−

w�

w�

w�

w�

w�

=

+

−

−

=

−

Figure 1: The relations among words and expres-

sions. + indicates positive, - indicates negative, =

indicates neutral, and ¬ indicates a negator.

icon in the context of a concrete NLP task:

expression-level polarity classification. Experi-

mental results show that our lexicon adaptation

technique improves the accuracy of two com-

petitive expression-level polarity classifiers from

64.2% - 70.4% to 67.0% - 71.2%..

2 An Integer Linear Programming

Approach

In this section, we describe how we formulate the

lexicon adaptation task using integer linear pro-

gramming. Before we begin, we assume that we

have a general-purpose polarity lexicon L, and a

polarity classification algorithm f(el,L), that can

determine the polarity of the opinion expression el

based on the words in el and the initial lexicon L.

The polarity classification algorithm f(·) can be

either a heuristic-based one, or a machine-learning

based one – we consider it as a black box for now.

Constraints for word-level polarities: For

each word xi, we define four binary variables:

x+
i , x=

i , x−
i , x¬

i to represent positive, neutral, neg-

ative polarity, and negators respectively. If xδ
i = 1

for some δ ∈ {+, =,−,¬}, then the word xi has

the polarity δ. The following inequality constraint

states that at least one polarity value must be cho-

sen for each word.

x+
i + x=

i + x−
i + x¬

i >= 1 (1)

If we allow only one polarity per word, then the

above inequality constraint should be modified as

an equality constraint. Although most words tend

to associate with a single polarity, some can take

on more than one polarity. In order to capture this

observation, we introduce an auxiliary binary vari-

able αi for each word xi. Then the next inequality

591

constraint states that at most two polarities can be

chosen for each word.

x+
i + x=

i + x−
i + x¬

i <= 1 + αi (2)

Next we introduce the initial part of our objec-

tive function.

maximize
∑

i

(

w+
i x+

i + w=
i x=

i

+ w−
i x−

i + w¬
i x¬

i

− wααi

)

+ · · · (3)

For the auxiliary variable αi, we apply a con-

stant weight wα to discourage ILP from choosing

more than one polarity for each word. We can al-

low more than two polarities for each word, by

adding extra auxiliary variables and weights. For

each variable xδ
i , we define its weight wδ

i , which

indicates how likely it is that word xi carries the

polarity δ. We define the value of wδ
i using two

different types of information as follows:

wδ
i := Lwδ

i + Cwδ
i

where Lwδ
i is the degree of polarity δ for word xi

determined by the general-purpose polarity lexi-

con L, and Cwδ
i is the degree of polarity δ deter-

mined by the corpus statistics as follows:2

Cwδ
i :=

of xi in expressions with polarity δ

of xi in the corpus C

Note that the occurrence of word xi in an ex-

pression ej with a polarity δ does not necessar-

ily mean that the polarity of xi should also be

δ, as the interpretation of the polarity of an ex-

pression is more than just a linear sum of the

word-level polarities (e.g., Moilanen and Pulman

(2007)). Nonetheless, not all expressions require

a complicated inference procedure to determine

their polarity. Therefore, Cwδ
i still provides useful

information about the likely polarity of each word

based on the corpus statistics.

From the perspective of Chomskyan linguistics,

the weights Lwδ
i based on the prior polarity from

the lexicon can be considered as having a ”com-

petence” component , while Cwδ
i derived from

the corpus counts can be considered as a ”perfor-

mance” component (Noam Chomsky (1965)).

2If a word xi is in an expression that is not an opinion,
then we count it as an occurrence with neutral polarity.

Constraints for content-word negators: Next

we describe a constraint that exploits knowledge

of the typical distribution of content-word nega-

tors in natural language. Content-word negators

are words that are not function words, but act se-

mantically as negators (Choi and Cardie, 2008).3

Although it is possible to artificially construct a

very convoluted sentence with lots of negations, it

is unlikely for multiple layers of negations to ap-

pear very often in natural language (Pickett et al.

(1996)). Therefore, we allow at most one content-

word negator for each expression el. Because we

do not restrict the number of function-word nega-

tors, our constraint still gives room for multiple

layers of negations.

∑

i∈µ(el)

x¬
i <= 1 (4)

In the above constraint, µ(el) indicates the set

of indices of content words appearing in el . For

instance, if i ∈ µ(el), then xi appears in el. This

constraint can be polished further to accommodate

longer expressions where multiple content-word

negators are more likely to appear, by adding a

separate constraint with a sliding window.

Constraints for expression-level polarities:

Before we begin, we introduce π(el) that will be

used often in the remaining section. For each ex-

pression el, we define π(el) to be the set of con-

tent words appearing in el, together with the most

likely polarity proposed by a general-purpose po-

larity lexicon L. For instance, if x+
i ∈ π(el), then

the polarity of word xi is + according to L.

Next we encode constraints that consider

expression-level polarities. If the polarity classifi-

cation algorithm f(el,L) makes an incorrect pre-

diction for el using the original lexicon L, then we

need to encourage ILP to fix the error by suggest-

ing different word-level polarities. We capture this

idea by the following constraint:

∑

xδ

i
∈π(el)

xδ
i <= |π(el)| − 1 + βl (5)

The auxiliary binary variable βl is introduced

for each el so that the assignment π(el) does not

have to be changed if paying for the cost wβ in the

objective function. (See equation (10).) That is,

suppose the ILP solver assigns ‘1’ to all variables

3Examples of content-word negators are destroy, elimi-
nate, prevent etc.

592

in φ(el), (which corresponds to keeping the orig-

inal lexicon as it is for all words in the given ex-

pression el), then the auxiliary variable βl must be

also set as ‘1’ in order to satisfy the constraint (5).

Because βl is associated with a negative weight

in the objective function, doing so will act against

maximizing the objective function. This way, we

discourage the ILP solver to preserve the original

lexicon as it is.

To verify the constraint (5) further, suppose that

the ILP solver assigns ‘1’ for all variables in φ(el)

except for one variable. (Notice that doing so cor-

responds to proposing a new polarity for one of

the words in the given expression el.) Then the

constraint (5) will hold regardless of whether the

ILP solver assigns ‘0’ or ‘1’ to βl. Because βl is

associated with a negative weight in the objective

function, the ILP solver will then assign ‘0’ to βl to

maximize the objective function. In other words,

we encourage the ILP solver to modify the original

lexicon for the given expression el .

We use this type of soft constraint in order to

cope with the following two noise factors: first, it

is possible that some annotations are noisy. Sec-

ond, f(el,L) is not perfect, and might not be able

to make a correct prediction even with the correct

word-level polarities.

Next we encode a constraint that is the oppo-

site of the previous one. That is, if the polarity

classification algorithm f(el,L) makes a correct

prediction on el using the original lexicon L, then

we encourage ILP to keep the original word-level

polarities for words in el.

∑

xδ

i
∈π(el)

xδ
i >= |π(el)| − |π(el)|βl (6)

Interpretation of constraint (6) with the auxil-

iary binary variable βl is similar to that of con-

straint (5) elaborated above.

Notice that in equation (5), we encouraged ILP

to fix the current lexicon L for words in el, but

we have not specified the consequence of a mod-

ified lexicon (L′) in terms of expression-level po-

larity classification f(el,L
′). Certain changes to

L might not fix the prediction error for el, and

those might even cause extra incorrect predictions

for other expressions. Then it would seem that we

need to replicate constraints (5) & (6) for all per-

mutations of word-level polarities. However, do-

ing so would incur exponentially many number of

constraints (4|el|) for each expression.4

To make the problem more practically solv-

able, we only consider changes to the lexicon that

are within edit-one distance with respect to π(el).

More formally, let us define π′(el) to be the set of

content words appearing in el, together with the

most likely polarity proposed by a modified polar-

ity lexicon L′. Then we need to consider all π′(el)

such that |π′(el)∩ π(el)| = |π(el)| − 1. There are

(4−1)|el| number of different π′(el), and we index

them as π′
k(el). We then add following constraints

similarly as equation (5) & (6):

∑

xδ
i
∈π′

k
(el)

xδ
i <= |π′

k(el)| − 1 + β(l,k) (7)

if the polarity classification algorithm f(·) makes

an incorrect prediction based on π′
k(el). And,

∑

xδ
i
∈π′

k
(el)

xδ
i >= |π′

k(el)| − |π
′
k(el)|β(l,k) (8)

if the polarity classification algorithm f(·) makes

a correct prediction based on π′
k(el). Remember

that none of the constraints (5) - (8) enforces as-

signment π(el) or π′
k(el) as a hard constraint. In

order to enforce at least one of them to be chosen,

we add the following constraint:

∑

xδ
i
∈π(el)

xδ
i >= |π(el)| − 1 (9)

This constraint ensures that the modified lexi-

con L′ is not drastically different from L. Assum-

ing that the initial lexicon L is a reasonably good

one, constraining the search space for L′ will reg-

ulate that L′ does not turn into a degenerative one

that overfits to the current corpus C.

Objective function: Finally, we introduce our

full objective function.

4For certain simple polarity classification algorithm
f(el,L), it is possible to write polynomially many number of
constraints. However our approach intends to be more gen-
eral by treating f(el,L) as a black box, so that algorithms
that do not factor nicely can also be considered as an option.

593

maximize
∑

i

(

w+
i x+

i + w=
i x=

i

+ w−
i x−

i + w¬
i x¬

i

− wααi

)

−
∑

l

wβρlβl

−
∑

l,k

wβρ(l,k)β(l,k) (10)

We have already described the first part of the

objective function (equation (3)), thus we only de-

scribe the last two terms here. wβ is defined simi-

larly as wα; it is a constant weight that applies for

any auxiliary binary variable βl and β(l,k).

We further define ρl and ρ(l,k) as secondary

weights, or amplifiers to adjust the constant weight

wβ. To enlighten the motivation behind the am-

plifiers ρl and ρ(l,k), we bring out the following

observations:

1. Among the incorrect predictions for

expression-level polarity classification,

some are more incorrect than the other.

For instance, classifying positive class to

negative class is more wrong than classifying

positive class to neutral class. Therefore, the

cost of not fixing very incorrect predictions

should be higher than the cost of not fixing

less incorrect predictions. (See [R2] and

[R3] in Table 1.)

2. If the current assignment π(el) for expression

el yields a correct prediction using the classi-

fier y(el,L), then there is not much point in

changingL toL′, even if y(el,L
′) also yields

a correct prediction. In this case, we would

like to assign slightly higher confidence in the

original lexicon L then the new one L′. (See

[R1] in Table 1.)

3. Likewise, if the current assignment π(el) for

expression el yields an incorrect prediction

using the classifier y(el,L), then there is not

much point in changing L to L′, if y(el,L
′)

also yields an equally incorrect prediction.

Again we assign slightly higher confidence in

the original lexicon L than the new one L′ in

such cases. (Compare each row in [R2] with

a corresponding row in [R3] in Table 1.)

[R1] If π(el) correct ρl ← 1.5
If π′

k(el) correct ρ(l,k) ← 1.0

[R2] If π(el) very incorrect ρl ← 1.0
If π(el) less incorrect ρl ← 0.5

[R3] If π′
k(el) very incorrect ρ(l,k) ← 1.5

If π′
k(el) less incorrect ρ(l,k) ← 1.0

Table 1: The value of amplifiers ρl and ρ(l,k).

To summarize, for correct predictions, the de-

gree of ρ determines the degree of cost of (unde-

sirably) altering the current lexicon for el. For in-

correct predictions, the degree of ρ determines the

degree of cost of not fixing the current lexicon for

el.

3 Experiments

In the experiment section, we seek for answers for

the following questions:

Q1 What is the effect of a polarity lexicon on the

expression-level polarity classification task?

In particular, is it useful when using a ma-

chine learning technique that might be able to

learn the necessary polarity information just

based on the words in the training data, with-

out consulting a dictionary? (Section 3.1)

Q2 What is the effect of an adapted polarity lex-

icon on the expression-level polarity classifi-

cation task? (Section 3.2)

Notice that we include the neutral polarity in the

polarity classification. It makes our task much

harder (e.g., Wilson et al. (2009)) than those that

assume inputs are guaranteed to be either strongly

positive or negative (e.g., Pang et al. (2002), Choi

and Cardie (2008)). But in practice, one can-

not expect that a given input is strongly polar, as

automatically extracted opinions are bound to be

noisy. Furthermore, Wiebe et al. (2005) discuss

that some opinion expressions do carry a neutral

polarity.

We experiment with the Multi-Perspective

Question Answering (MPQA) corpus (Wiebe et

al., 2005) for evaluation. It contains 535 newswire

documents annotated with phrase-level subjectiv-

ity information. We evaluate on all opinion ex-

pressions that are known to have high level of

inter-annotator agreement. That is, we include

opinions with intensity marked as ‘medium’ or

594

higher, and exclude those with annotation confi-

dence marked as ‘uncertain’. To focus our study

on the direct influence of the polarity lexicon upon

the sentiment classification task, we assume the

boundaries of the expressions are given. How-

ever, our approach can be readily used in tan-

dem with a system that extracts opinion expres-

sions (e.g., Kim and Hovy (2005), Breck et al.

(2007)). Performance is reported using 10-fold

cross-validation on 400 documents, and a separate

135 documents were used as a development set.

For the general-purpose polarity lexicon, we ex-

pand the polarity lexicon of Wilson et al. (2005)

with General Inquirer dictionary as suggested by

Choi and Cardie (2008).

We report the performance in two measures: ac-

curacy for 3-way classification, and average error

distance. The reason why we consider average er-

ror distance is because classifying a positive class

into a negative class is worse than classifying a

positive class into a neutral one. We define the er-

ror distance between ‘neutral’ class and any other

class as 1, while the error distance between ‘posi-

tive’ class and ‘negative’ class as 2. If a predicted

polarity is correct, then the error distance is 0. We

compute the error distance of each prediction and

take the average over all predictions in the test

data.

3.1 Experiment-I: Effect of a Polarity

Lexicon

To verify the effect of a polarity lexicon on the

expression-level polarity classification task, we

experiment with simple classification-based ma-

chine learning technique. We use the Mallet

(McCallum, 2002) implementation of Conditional

Random Fields (CRFs) (Lafferty et al., 2001).5 To

highlight the influence of a polarity lexicon, we

compare the performance of CRFs with and with-

out features derived from polarity lexicons.

Features: We encode basic features as words

and lemmas for all content words in the given ex-

pression. The performance of CRFs using only the

basic features are given in the first row of the Ta-

ble 2. Next we encode features derived from po-

larity lexicons as follows.

• The output of Vote & Flip algorithm. (Sec-

tion 3.2 & Figure 2.)

5We use the CRF implementation of Mallet (McCallum,
2002) with Markov-order 0, which is equivalent to Maximum
Entropy models (Berger et al. (1996)).

Accuracy Avg. Error Distance

Without Lexicon 63.9 0.440

With Lexicon 70.4 0.334

Table 2: Effect of a polarity lexicon on expression-

level classification using CRFs

• Number of positive, neutral, negative, and

negators in the given expression.

• Number of positive (or negative) words in

conjunction with number of negators.

• (boolean) Whether the number of positive

words dominates negative ones.

• (boolean) Whether the number of negative

words dominates positive ones.

• (boolean) None of the above two cases

• Each of the above three boolean values in

conjunction with the number of negators.

Results: Table 2 shows the performance of

CRFs with and without features that consult the

general-purpose lexicon. As expected, CRFs can

perform reasonably well (accuracy = 63.9%) even

without consulting the dictionary, by learning di-

rectly from the data. However, having the polarity

lexicon boosts the performance significantly (ac-

curacy = 70.4%), demonstrating that lexical re-

sources are very helpful for fine-grained sentiment

analysis. The difference in performance is statisti-

cally significant by paired t-test for both accuracy

(p < 0.01) and average error distance (p < 0.01).

3.2 Experiment-II: Adapting a Polarity

Lexicon

In this section, we assess the quality of the adapted

lexicon in the context of an expression-level polar-

ity classification task. In order to perform the lex-

icon adaptation via ILP, we need an expression-

level polarity classification algorithm f(el,L) as

described in Section 2. According to Choi and

Cardie (2008), voting algorithms that recognize

content-word negators achieve a competitive per-

formance, so we will use a variant of it for sim-

plicity. Because none of the algorithms proposed

by Choi and Cardie (2008) is designed to handle

the neutral polarity, we invent our own version as

shown in Figure 2.

595

For each expression ei,

nPositive← # of positive words in ei

nNeutral ← # of neutral words in ei

nNegative← # of negative words in ei

nNegator ← # of negating words in ei

if (nNegator % 2 = 0)

then fF lipPolarity ← false

else

then fF lipPolarity ← true

if (nPositive > nNegative) & ¬ fF lipPolarity

then Polarity(ei)← positive

else if (nPositive > nNegative) & fF lipPolarity

then Polarity(ei)← negative

else if (nPositive < nNegative) & ¬ fF lipPolarity

then Polarity(ei)← negative

else if (nPositive < nNegative) & fF lipPolarity

then Polarity(ei)← neutral

else if nNeutral > 0

then Polarity(ei)← neutral

else

then Polarity(ei)← default polarity (the most

prominent polarity in the corpus)

Figure 2: Vote & Flip Algorithm

It might look a bit complex at first glance,

but the intuition is simple. The variable

fFlipPolarity determines whether we need to

flip the overall majority polarity based on the num-

ber of negators in the given expression. If the

positive (or negative) polarity words dominate the

given expression, and if there is no need to flip

the majority polarity, then we take the positive (or

negative) polarity as the overall polarity. If the

positive (or negative) polarity words dominate the

given expression, and if we need to flip the major-

ity polarity, then we take the negative (or neutral)

polarity as the overall polarity.

Notice that the result of flipping the negative po-

larity is neutral, not positive. In our pilot study, we

found that this strategy works better than flipping

the negative polarity to positive.6 Finally, if the

number of positive words and the negative words

tie, and there is any neutral word, then we assign

the neutral polarity. In this case, we don’t worry if

6This finding is not surprising. For instance, if we con-
sider the polarity of ”She did not get hurt much from the ac-
cident.”, it can be viewed as neutral; although it is good that
one did not hurt much, it is still bad that there was an acci-
dent. Hence it gives a mixed feeling, which corresponds to
the neutral polarity.

there is a negator, because flipping a neutral polar-

ity would still result in a neutral polarity. If none of

above condition is met, than we default to the most

prominent polarity of the data, which is the nega-

tive polarity in the MPQA corpus. We name this

simple algorithm as Vote & Flip algorithm. The

performance is shown in the first row in Table 2.

Next we describe the implementation part of the

ILP. For 10 fold-cross validation, we formulate the

ILP problem using the training data (360 docu-

ments), and then test the effect of the adapted lex-

icon on the remaining 40 documents. We include

only those content words that appeared more than

3 times in the training data. From the pilot test us-

ing the development set, we picked the value of

wβ as 0.1. We found that having the auxiliary

variables αl which allow more than one polarity

per word does not necessarily help with the per-

formance, so we omitted them. We suspect it is

because the polarity classifiers we experimented

with is not highly capable of disambiguating dif-

ferent lexical usages and select the right polarity

for a given context. We use CPLEX integer pro-

gramming solver to solve our ILP problems. On a

machine with 4GHz CPU, it took several minutes

to solve each ILP problem.

In order to assess the effect of the adapted lex-

icon using CRFs, we need to first train the CRFs

model. Using the same training set used for the

lexicon adaptation would be suboptimal, because

the features generated from the adapted lexicon

will be unrealistically good in that particular data.

Therefore, we prepared a separate training data for

CRFs using 135 documents from the development

set.

Results: Table 3 shows the comparison of the

original lexicon and the adapted lexicon in terms

of polarity classification performance using the

Vote & Flip algorithm. The adapted lexicon im-

proves the accuracy as well as reducing the aver-

age error distance. The difference in performance

is statistically significant by paired t-test for both

accuracy (p < 0.01) and average error distance

(p < 0.01).

Table 4 shows the comparison of the original

lexicon and the adapted lexicon using CRFs. The

improvement is not as substantial as that of Vote &

Flip algorithm but the difference in performance is

also statistically significant for both accuracy (p =
0.03) and average error distance (p = 0.04).

596

Accuracy Avg. Error Distance

Original Lexicon 64.2 0.395

Adapted Lexicon 67.0 0.365

Table 3: Effect of an adapted polarity lexicon on

expression-level classification using the Vote &

Flip Algorithm

Accuracy Avg. Error Distance

Original Lexicon 70.4 0.334

Adapted Lexicon 71.2 0.327

Table 4: Effect of an adapted polarity lexicon on

expression-level classification using CRFs

4 Related Work

There are a number of previous work that focus

on building polarity lexicons (e.g., Takamura et

al. (2005), Kaji and Kitsuregawa (2007), Rao and

Ravichandran (2009)). But most of them evalu-

ated their lexicon in isolation from any potentially

relevant NLP task, and it is unclear how the new

lexicon might affect end-to-end performance of a

concrete NLP application. Our work differs in that

we try to draw a bridge between general purpose

lexical resources and a domain-specific NLP ap-

plication.

Kim and Hovy (2005) and Banea et al. (2008)

present bootstrapping methods to construct a sub-

jectivity lexicon and measure the effect of the new

lexicon for sentence-level subjectivity classifica-

tion. However, their lexicons only tell whether a

word is a subjective one, but not the polarity of the

sentiment. Furthermore, the construction of lexi-

con is still an isolated step from the classification

task. Our work on the other hand allows the classi-

fication task to directly influence the construction

of lexicon, enabling the lexicon to be adapted for

a concrete NLP application and for a specific do-

main.

Wilson et al. (2005) pioneered the expression-

level polarity classification task using the MPQA

corpus. The experimental results are not directly

comparable to ours, because Wilson et al. (2005)

limit the evaluation only for the words that ap-

peared in their polarity lexicon. Choi and Cardie

(2008) also focus on the expression-level polarity

classification, but their evaluation setting is not as

practical as ours in that they assume the inputs are

guaranteed to be either strongly positive or nega-

tive.

5 Conclusion

In this paper, we present a novel lexicon adapta-

tion technique based on integer linear program-

ming to reflect the characteristics of the domain

more directly. In particular, our method collec-

tively considers the relations among words and

opinion expressions to derive the most likely po-

larity of each lexical item for the given domain.

We evaluate the effect of our lexicon adaptation

technique in the context of a concrete NLP ap-

plication: expression-level polarity classification.

The positive results from our experiments encour-

age further research for lexical resource adaptation

techniques.

Acknowledgments

This work was supported in part by National Sci-

ence Foundation Grant BCS-0624277 and by the

Department of Homeland Security under ONR

Grant N0014-07-1-0152. We also thank the

EMNLP reviewers for insightful comments.

References

Alina Andreevskaia and Sabine Bergler. 2008. When
Specialists and Generalists Work Together: Over-
coming Domain Dependence in Sentiment Tagging.
ACL

Alina Andreevskaia and Sabine Bergler. 2006. Min-
ing WordNet For a Fuzzy Sentiment: Sentiment Tag
Extraction From WordNet Glosses. EACL

Carmen Banea, Rada Mihalcea, and JanyceWiebe.
2008. A Bootstrapping Method for Building Sub-
jectivity Lexicons for Languages with Scarce Re-
sources. LREC

Adam Berger, Stephen Della Pietra, and Vincent Della
Pietra. 1996. A maximum entropy approach to nat-
ural language processing. In Computational Lin-
guistics, 22(1)

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, Bollywood, Boom-boxes, and
Blenders: Domain Adaptation for Sentiment Classi-
fication. Association for Computational Linguistics
- ACL 2007

Eric Breck, Yejin Choi and Claire Cardie. 2007. Iden-
tifying Expressions of Opinion in Context. In IJCAI.

Yejin Choi and Claire Cardie. 2008. Learning with
Compositional Semantics as Structural Inference for
Subsentential Sentiment Analysis. EMNLP

Noam Chomsky. 1965. Aspects of the theory of syn-
tax. Cambridge, MA: MIT Press.

597

Pascal Denis and Jason Baldridge. 2007. Joint deter-
mination of anaphoricity and coreference resolution
using integer programming. NAACL

Andrea Esuli and Fabrizio Sebastiani. 2006. Senti-
WordNet: A Publicly Available Lexical Resource
for Opinion Mining. In Proceedings of 5th Con-
ference on Language Resources and Evaluation
(LREC),.

Minqing Hu and Bing Liu. 2004. Mining and sum-
marizing customer reviews. In Proceedings of the
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD-2004).

Nobuhiro Kaji and Masaru Kitsuregawa. 2007. Build-
ing Lexicon for Sentiment Analysis from Massive
Collection of HTML Documents. In EMNLP-
CoNLL.

Hiroshi Kanayama Tetsuya Nasukawa. 2006. Fully
Automatic Lexicon Expansion for Domain-oriented
Sentiment Analysis. In ACL.

Alistair Kennedy and Diana Inkpen. 2005. Sentiment
Classification of Movie and Product Reviews Us-
ing Contextual Valence Shifters. In Proceedings of
FINEXIN 2005, Workshop on the Analysis of Infor-
mal and Formal Information Exchange during Ne-
gotiations.

Soo-Min Kim and Eduard Hovy. 2004. Determining
the sentiment of opinions. In Proceedings of COL-
ING.

Soo-Min Kim and Eduard Hovy. 2005. Automatic De-
tection of Opinion Bearing Words and Sentences. In
Companion Volume to the Proceedings of the Sec-
ond International Joint Conference on Natural Lan-
guage Processing (IJCNLP-05)

John Lafferty, Andrew Kachites McCallum and Fer-
nando Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling
Sequence Data. In ICML.

Andrew Kachites McCallum. 2002. MAL-
LET: A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu.

Karo Moilanen and Stephen Pulman. 2007. Sentiment
Composition. In Proceedings of Recent Advances in
Natural Language Processing (RANLP 2007).

Bo Pang, Lillian Lee and Shivakumar Vaithyanathan.
2002. Thumbs up? Sentiment Classification using
Machine Learning Techniques. In EMNLP.

Joseph Pickett et al. 1996. The American heritage
book of English usage: A practical and authoritative
guide to contemporary English. Houghton Mifflin
Company.

Livia Polanyi and Annie Zaenen. 2004. Contextual
lexical valence shifters. In Exploring Attitude and
Affect in Text: Theories and Applications: Papers
from the 2004 Spring Symposium, AAAI.

Delip Rao and Deepak Ravichandran. 2009. Semi-
Supervised Polarity Lexicon Induction. In EACL.

Dan Roth and Wen-tau Yih. 2004. A Linear Program-
ming Formulation for Global Inference in Natural
Language Tasks. In CoNLL.

Hiroya Takamura, Takashi Inui, and Manabu Okumura.
2005. Extracting semantic orientations of words us-
ing spin model. In ACL.

Janyce Wiebe, Theresa Wilson and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. In Language Resources and Eval-
uation (formerly Computers and the Humanities),
39(2-3):165210.

Theresa Wilson, Janyce Wiebe and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In Proceedings of
HLT/EMNLP.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2009. Recognizing Contextual Polarity: an explo-
ration of features for phrase-level sentiment analy-
sis. In Computational Linguistics 35(3).

598

