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Abstract

This paper presents a simple and effective
approach to improve dependency parsing
by using subtrees from auto-parsed data.
First, we use a baseline parser to parse
large-scale unannotated data. Then we ex-
tract subtrees from dependency parse trees
in the auto-parsed data. Finally, we con-
struct new subtree-based features for pars-
ing algorithms. To demonstrate the ef-
fectiveness of our proposed approach, we
present the experimental results on the En-
glish Penn Treebank and the Chinese Penn
Treebank. These results show that our ap-
proach significantly outperforms baseline
systems. And, it achieves the best accu-
racy for the Chinese data and an accuracy
which is competitive with the best known
systems for the English data.

1 Introduction

Dependency parsing, which attempts to build de-
pendency links between words in a sentence, has
experienced a surge of interest in recent times,
owing to its usefulness in such applications as
machine translation (Nakazawa et al., 2006) and
question answering (Cui et al., 2005). To ob-
tain dependency parsers with high accuracy, super-
vised techniques require a large amount of hand-
annotated data. While hand-annotated data are
very expensive, large-scale unannotated data can
be obtained easily. Therefore, the use of large-
scale unannotated data in training is an attractive
idea to improve dependency parsing performance.

In this paper, we present an approach that ex-
tracts subtrees from dependency trees in auto-
parsed data to improve dependency parsing. The
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auto-parsed data are generated from large-scale
unannotated data by using a baseline parser. Then,
from dependency trees in the data, we extract dif-
ferent types of subtrees. Finally, we represent
subtree-based features on training data to train de-
pendency parsers.

The use of auto-parsed data is not new. How-
ever, unlike most of the previous studies (Sagae
and Tsujii, 2007; Steedman et al., 2003) that im-
proved the performance by using entire trees from
auto-parsed data, we exploit partial information
(i.e., subtrees) in auto-parsed data. In their ap-
proaches, they used entire auto-parsed trees as
newly labeled data to train the parsing models,
while we use subtree-based features and employ
the original gold-standard data to train the mod-
els. The use of subtrees instead of complete trees
can be justified by the fact that the accuracy of par-
tial dependencies is much higher than that of en-
tire dependency trees. Previous studies (McDon-
ald and Pereira, 2006; Yamada and Matsumoto,
2003; Zhang and Clark, 2008) show that the accu-
racies of complete trees are about 40% for English
and about 35% for Chinese, while the accuracies
of relations between two words are much higher:
about 90% for English and about 85% for Chinese.
From these observations, we may conjecture that
it is possible to conduct a more effective selection
by using subtrees as the unit of information.

The use of word pairs in auto-parsed data was
tried in van Noord (2007) and Chen et al. (2008).
However, the information on word pairs is limited.
To provide richer information, we consider more
words besides word pairs. Specifically, we use
subtrees containing two or three words extracted
from dependency trees in the auto-parsed data. To
demonstrate the effectiveness of our proposed ap-
proach, we present experimental results on En-
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glish and Chinese data. We show that this sim-
ple approach greatly improves the accuracy and
that the use of richer structures (i.e, word triples)
indeed gives additional improvement. We also
demonstrate that our approach and other improve-
ment techniques (Koo et al., 2008; Nivre and Mc-
Donald, 2008) are complementary and that we can
achieve very high accuracies when we combine
our method with other improvement techniques.
Specifically, we achieve the best accuracy for the
Chinese data.

The rest of this paper is as follows: Section 2
introduces the background of dependency parsing.
Section 3 proposes an approach for extracting sub-
trees and represents the subtree-based features for
dependency parsers. Section 4 explains the ex-
perimental results and Section 5 discusses related
work. Finally, in section 6 we draw conclusions.

2 Dependency parsing

Dependency parsing assigns head-dependent rela-
tions between the words in a sentence. A sim-
ple example is shown in Figure 1, where an arc
between two words indicates a dependency rela-
tion between them. For example, the arc between
“ate” and “fish” indicates that ‘““ate” is the head of
“fish” and “fish” is the dependent. The arc be-
tween “ROOT” and “ate” indicates that “ate” is the
ROOT of the sentence.

ROOT | ate the fish with a fork

Figure 1: Example for dependency structure

2.1 Parsing approach

For dependency parsing, there are two main
types of parsing models (Nivre and McDonald,
2008): graph-based model and transition-based
model, which achieved state-of-the-art accuracy
for a wide range of languages as shown in recent
CoNLL shared tasks (Buchholz et al., 2006; Nivre
et al.,, 2007). Our subtree-based features can be
applied in both of the two parsing models.

In this paper, as the base parsing system, we
employ the graph-based MST parsing model pro-
posed by McDonald et al. (2005) and McDonald
and Pereira (2006), which uses the idea of Max-
imum Spanning Trees of a graph and large mar-
gin structured learning algorithms. The details
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of parsing model were presented in McDonald et
al. (2005) and McDonald and Pereira (2006).

2.2 Baseline Parser

In the MST parsing model, there are two well-used
modes: the first-order and the second-order. The
first-order model uses first-order features that are
defined over single graph edges and the second-
order model adds second-order features that are
defined on adjacent edges.

For the parsing of unannotated data, we use the
first-order MST parsing model, because we need
to parse a large number of sentences and the parser
must be fast. We call this parser the Baseline
Parser.

3 Our approach

In this section, we describe our approach of ex-
tracting subtrees from unannotated data. First,
we preprocess unannotated data using the Baseline
Parser and obtain auto-parsed data. Subsequently,
we extract the subtrees from dependency trees in
the auto-parsed data. Finally, we generate subtree-
based features for the parsing models.

3.1 Subtrees extraction

To ease explanation, we transform the dependency
structure into a more tree-like structure as shown
in Figure 2, the sentence is the same as the one in
Figure 1.

ROOT
|
ate
3 3 the fork |
a
| ate the fish with a fork

Figure 2: Example for dependency structure in
tree-format

Our task is to extract subtrees from dependency
trees. If a subtree contains two nodes, we call it a
bigram-subtree. If a subtree contains three nodes,
we call it a trigram-subtree.

3.2 List of subtrees

We extract subtrees from dependency trees and
store them in list Lg. First, we extract bigram-
subtrees that contain two words. If two words have



a dependency relation in a tree, we add these two
words as a subtree into list L. Similarly, we can
extract trigram-subtrees. Note that the dependency
direction and the order of the words in the original
sentence are important in the extraction. To enable
this, the subtrees are encoded in the string format
that is expressed as st = w : wid : hid(—w :
wid : hid)+", where w refers to a word in the
subtree, wid refers to the ID (starting from 1) of
a word in the subtree (words are ordered accord-
ing to the positions of the original sentence)” , and
hid refers to an ID of the head of the word (hid=0
means that this word is the root of a subtree). For
example, “ate” and “fish” have a right dependency
arc in the sentence shown in Figure 2. So the
subtree is encoded as “ate:1:0-fish:2:1”. Figure 3
shows all the subtrees extracted from the sentence
in Figure 2, where the subtrees in (a) are bigram-
subtrees and the ones in (b) are trigram-subtrees.

ate fish .
\'l —>ate:1:0-with:2:1 |/ = the:1:1-fish:2:0
Wi

ate
L~ = li1:1-ate:2:0
i h the

af. — ate:1:0-fish:2:1 | &

fish
fork with

/= ai:i-fork:2:0 . = with:1:0-fork:2:1
a fork

te
. = ate:1:0-.:2:1

(@)
at\ej—x, = ate:1:0-fish:2:1-with:3:1 atev‘ = ate:1:0-with:2:1-.:3:1
fish with with .

(b)

Figure 3: Examples of subtrees

Note that we only used the trigram-subtrees
containing a head, its dependent d1, and d1’s
leftmost right sibling®>. We could not consider
the case where two children are on different
sides* of the head (for instance, “I” and “fish”
for “ate” in Figure 2). We also do not use the
child-parent-grandparent type (grandparent-type
in short) trigram-subtrees. These are due to the
limitations of the parsing algorithm of (McDonald
and Pereira, 2006), which does not allow the fea-
tures defined on those types of trigram-subtrees.

We extract the subtrees from the auto-parsed
data, then merge the same subtrees into one en-
try, and count their frequency. We eliminate all
subtrees that occur only once in the data.

'+ refers to matching the preceding element one or more
times and is the same as a regular expression in Perl.

%S0, wid is in fact redundant but we include it for ease of
understanding.

3Note that the order of the siblings is based on the order
of the words in the original sentence.

“Here, “side” means the position of a word relative to the
head in the original sentence.
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3.3 Subtree-based features

We represent new features based on the extracted
subtrees and call them subtree-based features. The
features based on bigram-subtrees correspond to
the first-order features in the MST parsing model
and those based on trigram-subtrees features cor-
respond to the second-order features.

We first group the extracted subtrees into dif-
ferent sets based on their frequencies. After ex-
periments with many different threshold settings
on development data sets, we chose the follow-
ing way. We group the subtrees into three sets
corresponding to three levels of frequency: “high-
frequency (HF)”, “middle-frequency (MF)”, and
“low-frequency (LF)”. HF, MF, and LF are used
as set IDs for the three sets. The following are the
settings: if a subtree is one of the TOP-10% most
frequent subtrees, it is in set HF; else if a subtree is
one of the TOP-20% subtrees, it is in set MF; else
it is in set LF. Note that we compute these levels
within a set of subtrees with the same number of
nodes. We store the set ID for every subtree in
Lg;. For example, if subtree “ate:1:0-with:2:1” is
among the TOP-10%, its set ID is HF.

3.3.1 First-order subtree-based features

The first-order features are based on bigram-
subtrees that are related to word pairs. We gener-
ate new features for a head h and a dependent d in
the parsing process. Figure 4-(a)> shows the words
and their surrounding words, where h_; refers to
the word to the left of the head in the sentence,
h41 refers to the word to the right of the head, d_;
refers to the word to the left of the dependent, and
d41 refers to the word to the right of the depen-
dent. Temporary bigram-subtrees are formed by
word pairs that are linked by dashed-lines in the
figure. Then we retrieve these subtrees in Lg; to
get their set IDs (if a subtree is not included in
L, its set ID is ZERO. That is, we have four sets:
HF, MF, LF, and ZERO.).

Then we generate first-order subtree-based fea-
tures, consisting of indicator functions for set IDs
of the retrieved bigram-subtrees. When generating
subtree-based features, each dashed line in Figure
4-(a) triggers a different feature.

To demonstrate how to generate first-order
subtree-based features, we use an example that is
as follows. Suppose that we are going to parse the
sentence ‘“He ate the cake with a fork.” as shown

SPlease note that d could be before h.



Figure 4. Word pairs and triple for feature repre-
sentation

in Figure 5, where h is “ate” and d is “with”.
We can generate the features for the pairs linked
by dashed-lines, such as h — d, h — d41 and so
on. Then we have the temporary bigram-subtrees
“ate:1:0-with:2:1” for h — d and “ate:1:0-a:2:1”
for h — d41, and so on. If we can find subtree
“ate:1:0-with:2:1” for h — d from L with set ID
HF, we generate the feature “H-D:HF”, and if we
find subtree “ate:1:0-a:2:1” for h—d_; with set ID
ZERO, we generate the feature “H-D+1:ZERO”.
The other three features are also generated simi-
larly.

He afé the caRAe v(ﬁth ‘a fork
h., h h d, d d

+1 +1

Figure 5: First-order subtree-based features

3.3.2 Second-order subtree-based features

The second-order features are based on trigram-
subtrees that are related to triples of words. We
generate features for a triple of a head h, its de-
pendent d1, and d1’s right-leftmost sibling d2.
The triple is shown in Figure 4-(b). A temporary
trigram-subtree is formed by the word forms of h,
dl, and d2. Then we retrieve the subtree in L to
get its set ID. In addition, we consider the triples
of “h-NULL™®, d1, and d2, which means that we
only check the words of sibling nodes without
checking the head word.

Then, we generate second-order subtree-based
features, consisting of indicator functions for set
IDs of the retrieved trigram-subtrees.

%h-NULL is a dummy token
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We also generate combined features involving
the set IDs and part-of-speech tags of heads, and
the set IDs and word forms of heads. Specifically,
for any feature related to word form, we remove
this feature if the word is not one of the Top-N
most frequent words in the training data. We used
N=1000 for the experiments in this paper. This
method can reduce the size of the feature sets.

In this paper, we only used bigram-subtrees and
the limited form of trigram-subtrees, though in
theory we can use k-gram-subtrees, which are lim-
ited in the same way as our trigram subtrees, in
(k-1)th-order MST parsing models mentioned in
McDonald and Pereira (2006) or use grandparent-
type trigram-subtrees in parsing models of Car-
reras (2007). Although the higher-order MST
parsing models will be slow with exact inference,
requiring O(n*) time (McDonald and Pereira,
2006), it might be possible to use higher-order k-
gram subtrees with approximated parsing model
in the future. Of course, our method can also be
easily extended to the labeled dependency case.

4 Experiments

In order to evaluate the effectiveness of the
subtree-based features, we conducted experiments
on English data and Chinese Data.

For English, we used the Penn Treebank (Mar-
cus et al., 1993) in our experiments and the tool
“Penn2Malt”’ to convert the data into dependency
structures using a standard set of head rules (Ya-
mada and Matsumoto, 2003). To match previ-
ous work (McDonald et al., 2005; McDonald and
Pereira, 2006; Koo et al., 2008), we split the data
into a training set (sections 2-21), a development
set (Section 22), and a test set (section 23). Fol-
lowing the work of Koo et al. (2008), we used
the MXPOST (Ratnaparkhi, 1996) tagger trained
on training data to provide part-of-speech tags for
the development and the test set, and we used 10-
way jackknifing to generate tags for the training
set. For the unannotated data, we used the BLLIP
corpus (Charniak et al., 2000) that contains about
43 million words of WSJ text.> We used the MX-
POST tagger trained on training data to assign
part-of-speech tags and used the Basic Parser to
process the sentences of the BLLIP corpus.

For Chinese, we used the Chinese Treebank

"http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
8We ensured that the text used for extracting subtrees did
not include the sentences of the Penn Treebank.



(CTB) version 4.0° in the experiments. We also
used the “Penn2Malt” tool to convert the data and
created a data split: files 1-270 and files 400-931
for training, files 271-300 for testing, and files
301-325 for development. We used gold standard
segmentation and part-of-speech tags in the CTB.
The data partition and part-of-speech settings were
chosen to match previous work (Chen et al., 2008;
Yu et al., 2008). For the unannotated data, we
used the PFR corpus!’, which has approximately
15 million words whose segmentation and POS
tags are given. We used its original segmentation
though there are differences in segmentation pol-
icy between CTB and this corpus. As for POS
tags, we discarded the original POS tags and as-
signed CTB style POS tags using a TNT-based
tagger (Brants, 2000) trained on the training data.
We used the Basic Parser to process all the sen-
tences of the PFR corpus.

We measured the parser quality by the unla-
beled attachment score (UAS), i.e., the percentage
of tokens (excluding all punctuation tokens) with
the correct HEAD. And we also evaluated on com-
plete dependency analysis.

4.1 Experimental Results

In our experiments, we used MSTParser, a
freely available implementation!! of the first- and
second-order MST parsing models. For baseline
systems, we used the first- and second-order basic
features, which were the same as the features used
by McDonald and Pereira (2006), and we used
the default settings of MSTParser throughout the
paper: iters=10; training-k=1; decode-type=proj.
We implemented our systems based on the MST-
Parser by incorporating the subtree-based features.

4.1.1 Main results of English data

English

UAS Complete
Ordl | 90.95 37.45
Ordls | 91.76(+0.81) | 40.68
Ord2 | 91.71 42.88
Ord2s | 92.51(+0.80) | 46.19
Ord2b | 92.28(+0.57) | 45.44
Ord2t | 92.06(+0.35) | 42.96

Table 1: Dependency parsing results for English

*http://www.cis.upenn.edu/ chinese/.
Onttp://www.icl.pku.edu.
http://mstparser.sourceforge.net
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The results are shown in Table 1, where
Ord1/Ord2 refers to a first-/second-order
MSTParser with basic features, Ordl1s/Ord2s
refers to a first-/second-order MSTParser with
basic+subtree-based features, and the improve-
ments by the subtree-based features over the basic
features are shown in parentheses. Note that
we use both the bigram- and trigram- subtrees
in Ord2s. The parsers using the subtree-based
features consistently outperformed those using
the basic features. For the first-order parser,
we found that there is an absolute improvement
of 0.81 points (UAS) by adding subtree-based
features. For the second-order parser, we got an
absolute improvement of 0.8 points (UAS) by
including subtree-based features. The improve-
ments of parsing with subtree-based features were
significant in McNemar’s Test (p < 1079).

We also checked the sole effect of bigram- and
trigram-subtrees. The results are also shown in
Table 1, where Ord2b/Ord2t refers to a second-
order MSTParser with bigram-/trigram-subtrees
only. The results showed that trigram-subtrees can
provide further improvement, although the effect
of the bigram-subtrees seemed larger.

4.1.2 Comparative results of English data

Table 2 shows the performance of the systems
that were compared, where Y&M?2003 refers to
the parser of Yamada and Matsumoto (2003),
CO0O2006 refers to the parser of Corston-Oliver et
al. (2006), Hall2006 refers to the parser of Hall
et al. (2006), Wang2007 refers to the parser of
Wang et al. (2007), Z&C 2008 refers to the combi-
nation graph-based and transition-based system of
Zhang and Clark (2008), KOO08-dep1c/KOOO08-
dep2c refers to a graph-based system with first-
/second-order cluster-based features by Koo et al.
(2008), and Carreras2008 refers to the paper of
Carreras et al. (2008). The results showed that
Ord2s performed better than the first five systems.
The second-order system of Koo et al. (2008) per-
formed better than our systems. The reason may
be that the MSTParser only uses sibling interac-
tions for second-order, while Koo et al. (2008)
uses both sibling and grandparent interactions, and
uses cluster-based features. Carreras et al. (2008)
reported a very high accuracy using information of
constituent structure of the TAG grammar formal-
ism. In our systems, we did not use such knowl-
edge.

Our subtree-based features could be combined



with the techniques presented in other work,
such as the cluster-based features in Koo et al.
(2008), the integrating methods of Zhang and
Clark (2008), and Nivre and McDonald (2008),
and the parsing methods of Carreras et al. (2008).

English
UAS | Complete
Y&M2003 | 90.3 38.4
C0O2006 | 90.8 37.6
Hall2006 | 89.4 36.4
Wang2007 | 89.2 344
Z&C2008 | 92.1 454
KOOO08-deplc | 92.23 -
KOOO08-dep2c | 93.16 -
Carreras2008 | 93.5 -
Ordl | 90.95 37.45
Ordls | 91.76 40.68
Ordlc | 91.88 40.71
Ordli | 91.68 41.43
Ordlsc | 92.20 42.98
Ordlsci | 92.60 44.28
Ord2 | 91.71 42.88
Ord2s | 92.51 46.19
Ord2c | 92.40 44,08
Ord2i | 92.12 44.37
Ord2sc | 92.70 46.56
Ord2sci | 93.16 47.15

Table 2: Dependency parsing results for English,
for our parsers and previous work

To demonstrate that our approach and other
work are complementary, we thus implemented
a system using all the techniques we had at hand
that used subtree- and cluster-based features
and applied the integrating method of Nivre and
McDonald (2008). We used the word clustering
tool'?, which was used by Koo et al. (2008), to
produce word clusters on the BLLIP corpus. The
cluster-based features were the same as the fea-
tures used by Koo et al. (2008). For the integrating
method, we used the transition MaxEnt-based
parser of Zhao and Kit (2008) because it was
faster than the MaltParser. The results are shown
in the bottom part of Table 2, where Ord1c/Ord2c
refers to a first-/second-order MSTParser with
cluster-based features, Ord1i/Ordli refers to a first-
/second-order MSTParser with integrating-based
features, Ord1sc/Ord2sc refers to a first-/second-
order MSTParser with subtree-based+cluster-
based features, and Ordlsci/Ord2sci refers to
a first-/second-order MSTParser with subtree-
based+cluster-based-+integrating-based features.
Ordlc/Ord2c was worse than KOOOS-deplc/-
dep2c, but Ordlsci outperformed KOOO08-deplc

http://www.cs.berkeley.edu/ pliang/software/brown-
cluster-1.2.zip
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and Ord2sci performed similarly to KOOO8-dep2c
by using all of the techniques we had. These
results indicated that subtree-based features can
provide different information and work well with
other techniques.

4.1.3 Main results of Chinese data

The results are shown in Table 3 where abbrevia-
tions are the same as in Table 1. As in the English
experiments, parsers with the subtree-based fea-
tures outperformed parsers with the basic features,
and second-order parsers outperformed first-order
parsers. For the first-order parser, the subtree-
based features provided 1.3 absolute points im-
provement. For the second-order parser, the
subtree-based features achieved an absolute im-
provement of 1.25 points. The improvements of
parsing with subtree-based features were signifi-
cant in McNemar’s Test (p < 107°).

Chinese
UAS Complete
Ordl | 86.38 40.80
Ordls | 87.68(+1.30) | 42.24
Ord2 | 88.18 47.12
Ord2s | 89.43(+1.25) | 47.53
Ord2b | 89.16(+0.98) | 47.12
Ord2t | 88.55(+0.37) | 47.12

Table 3: Dependency parsing results for Chinese.

4.14 Comparative results of Chinese data

Table 4 shows the comparative results, where
Wang2007 refers to the parser of Wang et
al. (2007), Chen2008 refers to the parser of Chen
et al. (2008), and Yu2008 refers to the parser of
Yu et al. (2008) that is the best reported results
for this data set. And “all words” refers to all the
sentences in test set and “< 40 words”!3 refers to
the sentences with the length up to 40. The table
shows that our parsers outperformed previous sys-
tems.

We also implemented integrating systems for
Chinese data as well. When we applied the
cluster-based features, the performance dropped a
little. The reason may be that we are using gold-
POS tags for Chinese data'*. Thus we did not

3Wang et al. (2007) and Chen et al. (2008) reported the
scores on these sentences.

“We tried to use the cluster-based features for Chinese
with the same setting of POS tags as English data, then the
cluster-based features did provide improvement.



use cluster-based features for the integrating sys-
tems. The results are shown in Table 4, where
Ord1si/Ord2si refers to the first-order/second-
order system with subtree-based+intergrating-
based features. We found that the integrating sys-
tems provided better results. Overall, we have
achieved a high accuracy, which is the best known
result for this dataset.

Zhang and Clark (2008) and Duan et al. (2007)
reported results on a different data split of Penn
Chinese Treebank. We also ran our systems
(Ord2s) on their data and provided UAS 86.70
(for non-root words)/77.39 (for root words), better
than their results: 86.21/76.26 in Zhang and Clark
(2008) and 84.36/73.70 in Duan et al. (2007).

Chinese
all words < 40 words
UAS | Complete | UAS | Complete
Wang2007 - - 86.6 28.4
Chen2008 | 86.52 - 88.4 -
Yu2008 | 87.26 - - -
Ordls | 87.68 42.24 91.11 54.40
Ordlsi | 88.24 43.96 91.32 55.93
Ord2s | 89.43 47.53 91.67 59.77
Ord2si | 89.91 48.56 92.34 62.83

Table 4: Dependency parsing results for Chinese,
for our parsers and for previous work

4.1.5 Effect of different sizes of unannotated
data

Here, we consider the improvement relative to the
sizes of the unannotated data. Figure 6 shows the
results of first-order parsers with different num-
bers of words in the unannotated data. Please note
that the size of full English unannotated data is
43M and the size of full Chinese unannotated data
is 15M. From the figure, we found that the parser
obtained more benefits as we added more unanno-
tated data.

92 T T T T T

920 1

89 - b

UAS

88 1
X

——

87 | X i
T English —+—

IChlnese T

86 1 1 1
0 2 4 8 16 32 43

Size of unannotated data(M)

Figure 6: Results with different sizes of large-
scale unannotated data.
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Figure 7: Improvement relative to unknown words
for English
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Figure 8: Improvement relative to unknown words
for Chinese

4.2 Additional Analysis

In this section, we investigated the results on
sentence level from different views. For Fig-
ures 7-12, we classified each sentence into one of
three classes: “Better” for those where the pro-
posed parsers provided better results relative to
the parsers with basic features, “Worse” for those
where the proposed parsers provided worse results
relative to the basic parsers, and “NoChange” for
those where the accuracies remained the same.

4.2.1 Unknown words

Here, we consider the unknown word!> problem,
which is an important issue for parsing. We cal-
culated the number of unknown words in one sen-
tence, and listed the changes of the sentences with
unknown words. Here, we compared the Ordl
system and the Ordls system.

Figures 7 and 8 show the results, where the x
axis refers to the number of unknown words in one
sentence and the y axis shows the percentages of
the three classes. For example, for the sentences
having three unknown words in the Chinese data,
31.58% improved, 23.68% worsened, and 44.74%
were unchanged. We did not show the results of

15 An unknown word is a word that is not included in the
training data.
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Figure 9: Improvement relative to number of
conjunctions for English

the sentences with more than six unknown words
because their numbers were very small. The Bet-
ter and Worse curves showed that our approach al-
ways provided better results. The results indicated
that the improvements apparently became larger
when the sentences had more unknown words for
the Chinese data. And for the English data, the
graph also showed the similar trend, although the
improvements for the sentences have three and
four unknown words were slightly less than the
others.

4.2.2 Coordinating conjunctions

We analyzed our new parsers’ behavior for coordi-
nating conjunction structures, which is a very dif-
ficult problem for parsing (Kawahara and Kuro-
hashi, 2008). Here, we compared the Ord2 system
with the Ord2s system.

Figures 9 and 10 show how the subtree-based
features affect accuracy as a function of the num-
ber of conjunctions, where the x axis refers to the
number of conjunctions in one sentence and the
y axis shows the percentages of the three classes.
The figures indicated that the subtree-based fea-
tures improved the coordinating conjunction prob-
lem. In the trigram-subtree list, many subtrees
are related to coordinating conjunctions, such as
“utilities: 1:3 and:2:3 businesses:3:0” and “pull:1:0
and:2:1 protect:3:1”. These subtrees can provide
additional information for parsing models.

4.2.3 PP attachment

We analyzed our new parsers’ behavior for
preposition-phrase attachment, which is also a dif-
ficult task for parsing (Ratnaparkhi et al., 1994).
We compared the Ord2 system with the Ord2s sys-
tem. Figures 11 and 12 show how the subtree-
based features affect accuracy as a function of the
number of prepositions, where the x axis refers to
the number of prepositions in one sentence and the
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y axis shows the percentages of the three classes.
The figures indicated that the subtree-based fea-
tures improved preposition-phrase attachment.

5 Related work

Our approach is to incorporate unannotated data
into parsing models for dependency parsing. Sev-
eral previous studies relevant to our approach have
been conducted.

Chen et al. (2008) previously proposed an ap-
proach that used the information on short de-
pendency relations for Chinese dependency pars-
ing. They only used the word pairs within two
word distances for a transition-based parsing al-
gorithm. The approach in this paper differs in
that we use richer information on trigram-subtrees
besides bigram-subtrees that contain word pairs.
And our work is focused on graph-based parsing
models as opposed to transition-based models. Yu
et al. (2008) constructed case structures from auto-
parsed data and utilized them in parsing. Com-
pared with their method, our method is much sim-
pler but has great effects.

Koo et al. (2008) used the Brown algorithm to
produce word clusters on large-scale unannotated
data and represented new features based on the
clusters for parsing models. The cluster-based fea-
tures provided very impressive results. In addition,
they used the parsing model by Carreras (2007)
that applied second-order features on both sibling
and grandparent interactions. Note that our ap-
proach and their approach are complementary in
that we can use both subtree- and cluster-based
features for parsing models. The experimental re-
sults showed that we achieved better accuracy for
first-order models when we used both of these two
types of features.

Sagae and Tsujii (2007) presented an co-
training approach for dependency parsing adap-
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tation. They used two parsers to parse the sen-
tences in unannotated data and selected only iden-
tical results produced by the two parsers. Then,

they retrained a parser on newly parsed sentences

and the original labeled data. Our approach repre-
sents subtree-based features on the original gold-
standard data to retrain parsers. McClosky et
al. (2006) presented a self-training approach for

phrase structure parsing and the approach was

shown to be effective in practice. = However,
their approach depends on a high-quality reranker,

while we simply augment the features of an ex-

isting parser. Moreover, we could use the output

of our systems for co-training/self-training tech-
niques.

6 Conclusions

We present a simple and effective approach to

improve dependency parsing using subtrees from

auto-parsed data. In our method, first we use a
baseline parser to parse large-scale unannotated
data, and then we extract subtrees from depen-
dency parsing trees in the auto-parsed data. Fi-
nally, we construct new subtree-based features for
parsing models.
proach significantly outperforms baseline systems.
We also show that our approach and other tech-
niques are complementary, and then achieve the
best reported accuracy for the Chinese data and an
accuracy that is competitive with the best known
systems for the English data.

The results show that our ap-
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