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Abstract
This paper shows that discriminative
reranking with an averaged perceptron
model yields substantial improvements in
realization quality with CCG. The paper
confirms the utility of including language
model log probabilities as features in the
model, which prior work on discrimina-
tive training with log linear models for
HPSG realization had called into question.
The perceptron model allows the combina-
tion of multiple n-gram models to be opti-
mized and then augmented with both syn-
tactic features and discriminative n-gram
features. The full model yields a state-
of-the-art BLEU score of 0.8506 on Sec-
tion 23 of the CCGbank, to our knowledge
the best score reported to date using a re-
versible, corpus-engineered grammar.

1 Introduction

In this paper, we show how discriminative train-
ing with averaged perceptron models (Collins,
2002) can be used to substantially improve surface
realization with Combinatory Categorial Gram-
mar (Steedman, 2000, CCG). Velldal and Oepen
(2005) and Nakanishi et al. (2005) have shown that
discriminative training with log-linear (maximum
entropy) models is effective in realization rank-
ing with Head-Driven Phrase Structure Grammar
(Pollard and Sag, 1994, HPSG). Here we show
that averaged perceptron models also perform well
for realization ranking with CCG. Averaged per-
ceptron models are very simple, just requiring a
decoder and a simple update function, yet despite
their simplicity they have been shown to achieve
state-of-the-art results in Treebank and CCG pars-
ing (Huang, 2008; Clark and Curran, 2007a) as
well as on other NLP tasks.

Along the way, we address the question of
whether it is beneficial to incorporate n-gram log

probabilities as baseline features in a discrimina-
tively trained realization ranking model. On a lim-
ited domain corpus, Velldal & Oepen found that
including the n-gram log probability of each can-
didate realization as a feature in their log-linear
model yielded a substantial boost in ranking per-
formance; on the Penn Treebank (PTB), however,
Nakanishi et al. found that including an n-gram log
prob feature in their model was of no benefit (with
the use of bigrams instead of 4-grams suggested as
a possible explanation). With these mixed results,
the utility of n-gram baseline features for PTB-
scale discriminative realization ranking has been
unclear. In our particular setting, the question is:
Do n-gram log prob features improve performance
in broad coverage realization ranking with CCG,
where factored language models over words, part-
of-speech tags and supertags have previously been
employed (White et al., 2007; Espinosa et al.,
2008)?

We answer this question in the affirmative, con-
firming the results of Velldal & Oepen, despite
the differences in corpus size and kind of lan-
guage model. We show that including n-gram log
prob features in the perceptron model is highly
beneficial, as the discriminative models we tested
without these features performed worse than the
generative baseline. These findings are in line
with Collins & Roark’s (2004) results with incre-
mental parsing with perceptrons, where it is sug-
gested that a generative baseline feature provides
the perceptron algorithm with a much better start-
ing point for learning. We also show that discrim-
inative training allows the combination of multi-
ple n-gram models to be optimized, and that the
best model augments the n-gram log prob fea-
tures with both syntactic features and discrimina-
tive n-gram features. The full model yields a state-
of-the-art BLEU (Papineni et al., 2002) score of
0.8506 on Section 23 of the CCGbank, which is
to our knowledge the best score reported to date
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using a reversible, corpus-engineered grammar.
The paper is organized as follows. Section 2 re-

views previous work on broad coverage realization
with OpenCCG. Section 3 describes our approach
to realization reranking with averaged perceptron
models. Section 4 presents our evaluation of the
perceptron models, comparing the results of dif-
ferent feature sets. Section 5 compares our results
to those obtained by related systems and discusses
the difficulties of cross-system comparisons. Fi-
nally, Section 6 concludes with a summary and
discussion of future directions for research.

2 Background

2.1 Surface Realization with CCG

CCG (Steedman, 2000) is a unification-based cat-
egorial grammar formalism which is defined al-
most entirely in terms of lexical entries that encode
sub-categorization information as well as syntactic
feature information (e.g. number and agreement).
Complementing function application as the stan-
dard means of combining a head with its argu-
ment, type-raising and composition support trans-
parent analyses for a wide range of phenomena,
including right-node raising and long distance de-
pendencies. An example syntactic derivation ap-
pears in Figure 1, with a long-distance depen-
dency between point and make. Semantic com-
position happens in parallel with syntactic compo-
sition, which makes it attractive for generation.

OpenCCG is a parsing/generation library which
works by combining lexical categories for words
using CCG rules and multi-modal extensions on
rules (Baldridge, 2002) to produce derivations.
Surface realization is the process by which logical
forms are transduced to strings. OpenCCG uses
a hybrid symbolic-statistical chart realizer (White,
2006) which takes logical forms as input and pro-
duces sentences by using CCG combinators to
combine signs. Edges are grouped into equiva-
lence classes when they have the same syntactic
category and cover the same parts of the input log-
ical form. Alternative realizations are ranked us-
ing integrated n-gram or perceptron scoring, and
pruning takes place within equivalence classes of
edges. To more robustly support broad coverage
surface realization, OpenCCG greedily assembles
fragments in the event that the realizer fails to find
a complete realization.

To illustrate the input to OpenCCG, consider
the semantic dependency graph in Figure 2. In
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Figure 2: Semantic dependency graph from the
CCGbank for He has a point he wants to make
[. . . ], along with gold-standard supertags (cate-
gory labels)

the graph, each node has a lexical predication
(e.g. make.03) and a set of semantic features
(e.g. 〈NUM〉sg); nodes are connected via depen-
dency relations (e.g. 〈ARG0〉). (Gold-standard su-
pertags, or category labels, are also shown; see
Section 2.4 for their role in hypertagging.) In-
ternally, such graphs are represented using Hy-
brid Logic Dependency Semantics (HLDS), a
dependency-based approach to representing lin-
guistic meaning (Baldridge and Kruijff, 2002). In
HLDS, each semantic head (corresponding to a
node in the graph) is associated with a nominal
that identifies its discourse referent, and relations
between heads and their dependents are modeled
as modal relations.

2.2 Realization from an Enhanced CCGbank

Our starting point is an enhanced version of the
CCGbank (Hockenmaier and Steedman, 2007)—a
corpus of CCG derivations derived from the Penn
Treebank—with Propbank (Palmer et al., 2005)
roles projected onto it (Boxwell and White, 2008).
To engineer a grammar from this corpus suitable
for realization with OpenCCG, the derivations are
first revised to reflect the lexicalized treatment
of coordination and punctuation assumed by the
multi-modal version of CCG that is implemented
in OpenCCG (White and Rajkumar, 2008). Fur-
ther changes are necessary to support semantic de-
pendencies rather than surface syntactic ones; in
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Figure 1: Syntactic derivation from the CCGbank for He has a point he wants to make [. . . ]

particular, the features and unification constraints
in the categories related to semantically empty
function words such complementizers, infinitival-
to, expletive subjects, and case-marking preposi-
tions are adjusted to reflect their purely syntactic
status.

In the second step, a grammar is extracted from
the converted CCGbank and augmented with log-
ical forms. Categories and unary type chang-
ing rules (corresponding to zero morphemes) are
sorted by frequency and extracted if they meet the
specified frequency thresholds. A separate trans-
formation then uses a few dozen generalized tem-
plates to add logical forms to the categories, in a
fashion reminiscent of (Bos, 2005). As shown in
Figure 2, numbered semantic roles are taken from
PropBank when available, and more specific rela-
tions are introduced in the categories for closed-
class items such as determiners.

After logical form insertion, the extracted and
augmented grammar is loaded and used to parse
the sentences in the CCGbank according to the
gold-standard derivation. If the derivation can
be successfully followed, the parse yields a log-
ical form which is saved along with the corpus
sentence in order to later test the realizer. Cur-
rently, the algorithm succeeds in creating logical
forms for 98.85% of the sentences in the develop-
ment section (Sect. 00) of the converted CCGbank,
and 97.06% of the sentences in the test section
(Sect. 23). Of these, 95.99% of the development
LFs are semantic dependency graphs with a sin-
gle root, while 95.81% of the test LFs have a sin-
gle root. The remaining cases, with multiple roots,
are missing one or more dependencies required to
form a fully connected graph. Such missing de-
pendencies usually reflect remaining inadequacies
in the logical form templates.

An error analysis of OpenCCG output by Ra-
jkumar et al. (2009) recently revealed that out of

2331 named entities (NEs) annotated by the BBN
corpus (Weischedel and Brunstein, 2005), 238
were not realized correctly. For example, multi-
word NPs like Texas Instruments Japan Ltd. were
realized as Japan Texas Instruments Ltd. Accord-
ingly, inspired by Hogan et al.’s (2007)’s Experi-
ment 1, Rajkumar et al. used the BBN corpus NE
annotation to collapse certain classes of NEs. But
unlike Hogan et al.’s experiment where all the NEs
annotated by the BBN corpus were collapsed, Ra-
jkumar et al. chose to collapse into single tokens
only NEs whose exact form can be reasonably ex-
pected to be specified in the input to the realizer.
For example, while some quantificational or com-
paratives phrases like more than $ 10,000 are an-
notated as MONEY in the BBN corpus, Rajkumar
et al. only collapse $ 10,000 into an atomic unit,
with more than handled compositionally accord-
ing to the semantics assigned to it by the gram-
mar. Thus, after transferring the BBN annotations
to the CCGbank corpus, Rajkumar et al. (partially)
collapsed NEs which are CCGbank constituents
according to the following rules: (1) completely
collapse the PERSON, ORGANIZATION, GPE,
WORK OF ART major class type entitites; (2) ig-
nore phrases like three decades later, which are
annotated as DATE entities; and (3) collapse all
phrases with POS tags CD or NNP(S) or lexical
items % or $, ensuring that all prototypical named
entities are collapsed.

It is worth noting that improvements in our
corpus-based grammar engineering process—
including a more precise treatment of punctuation,
better named entity handling and the addition of
catch-all logical form templates—have resulted in
a 13.5 BLEU point improvement in our baseline
realization scores on Section 00 of the CCGbank,
from a score of 0.6567 in (Espinosa et al., 2008)
to 0.7917 in (Rajkumar et al., 2009), contribut-
ing greatly to the state-of-the-art results reported

412



in Section 4. A further 4.5 point improvement is
obtained from the use of named entity classes in
language modeling and hypertagging (Rajkumar
et al., 2009), as described next, and from our per-
ceptron reranking model, described in Section 3.

2.3 Factored Language Models
As in (White et al., 2007; Rajkumar et al., 2009),
we use factored language models (Bilmes and
Kirchhoff, 2003) over words, part-of-speech tags
and supertags1 to score partial and complete real-
izations. The trigram models were created using
the SRILM toolkit (Stolcke, 2002) on the standard
training sections (02–21) of the CCGbank, with
sentence-initial words (other than proper names)
uncapitalized. While these models are consider-
ably smaller than the ones used in (Langkilde-
Geary, 2002; Velldal and Oepen, 2005), the train-
ing data does have the advantage of being in the
same domain and genre. The models employ in-
terpolated Kneser-Ney smoothing with the default
frequency cutoffs. The best performing model
interpolates three component models using rank-
order centroid weights: (1) a word trigram model;
(2) a word model with semantic classes replac-
ing named entities; and (3) a trigram model that
chains a POS model with a supertag model, where
the POS model (P ) conditions on the previous two
POS tags, and the supertag model (S) conditions
on the previous two POS tags as well as the current
one, as shown below:

pPS(~Fi | ~F i−1
i−2 ) = p(Pi | P i−1

i−2 )p(Si | P i
i−2) (1)

Training data for the semantic class–replaced
model was created by replacing (collapsed) words
with their NE classes, in order to address data spar-
sity issues caused by rare words in the same se-
mantic class. For example, the Section 00 sen-
tence Pierre Vinken , 61 years old , will join the
board as a nonexecutive director Nov. 29 . be-
comes PERSON , DATE:AGE DATE:AGE old ,
will join the ORG DESC:OTHER as a nonexecu-
tive PER DESC DATE:DATE DATE:DATE . Dur-
ing realization, word forms are generated, but are
then replaced by their semantic classes for scoring
using the semantic class–replaced model, similar
to Oh and Rudnicky (2002).

Note that the use of supertags in the factored
language model to score possible realizations is

1With CCG, supertags (Bangalore and Joshi, 1999) are
lexical categories considered as fine-grained syntactic labels.

distinct from the prediction of supertags for lexical
category assignment: the former takes the words
in the local context into account (as in supertag-
ging for parsing), while the latter takes features of
the logical form into account. This latter process
we call hypertagging, to which we now turn.

2.4 Hypertagging

A crucial component of the OpenCCG realizer is
the hypertagger (Espinosa et al., 2008), or su-
pertagger for surface realization, which uses a
maximum entropy model to assign the most likely
lexical categories to the predicates in the input log-
ical form, thereby greatly constraining the real-
izer’s search space.2 Figure 2 shows gold-standard
supertags for the lexical predicates in the graph;
such category labels are predicted by the hyper-
tagger at run-time. As in recent work on using
supertagging in parsing, the hypertagger operates
in a multitagging paradigm (Curran et al., 2006),
where a variable number of predictions are made
per input predicate. Instead of basing category as-
signment on linear word and POS context, how-
ever, the hypertagger predicts lexical categories
based on contexts within a directed graph structure
representing the logical form (LF) of the sentence
to be realized. The hypertagger generalizes Ban-
galore and Rambow’s (2000) method of using su-
pertags in generation by using maximum entropy
models with a larger local context.

During realization, the hypertagger returns a β-
best list of supertags in order of decreasing prob-
ability. Increasing the number of categories re-
turned clearly increases the likelihood that the
most-correct supertag is among them, but at a cor-
responding cost in chart size. Accordingly, the hy-
pertagger begins with a highly restrictive value for
β, and backs off to progressively less-restrictive
values if no complete realization can be found us-
ing the set of supertags returned. Clark and Curran
(2007b) have shown this iterative relaxation strat-
egy to be highly effective in CCG parsing.

3 Perceptron Reranking

As Collins (2002) observes, perceptron training
involves a simple, on-line algorithm, with few it-
erations typically required to achieve good perfor-
mance. Moreover, averaged perceptrons—which

2The approach has been dubbed hypertagging since it op-
erates at a level “above” the syntax, moving from semantic
representations to syntactic categories.
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Input: training examples (xi, yi)
Initialization: set α = 0, or use optional input
model
Algorithm:

for t = 1 . . . T , i = 1 . . . N
zi = argmaxy∈GEN(xi)Φ(xi, y) · α
if zi 6= yi

α = α + Φ(xi, yi) − Φ(xi, zi)
Output: α =

∑T
t=1

∑N
i=1 αti/TN

Figure 3: Averaged perceptron training algorithm

approximate voted perceptrons, a maximum-
margin method with attractive theoretical
properties—seem to work remarkably well in
practice, while adding little further complexity.
Additionally, since features only take on non-
zero values when they appear in training items
requiring updates, perceptrons integrate feature
selection with, and often produce quite small
models, especially when starting with a good
baseline.

The generic averaged perceptron training algo-
rithm appears in Figure 3. In our case, the algo-
rithm trains a model for reranking the n-best real-
izations generated using our existing factored lan-
guage model for scoring, with the oracle-best re-
alization considered the correct answer. Accord-
ingly, the input to the algorithm is a list of pairs
(xi, yi), where xi is a logical form, GEN(xi) are
the n-best realizations for xi, and yi is the oracle-
best member of GEN(xi). The oracle-best realiza-
tion is determined using a 4-gram precision metric
(approximating BLEU) against the reference sen-
tence.

We have followed Huang (2008) in using
oracle-best targets for training, rather than gold
standard ones, in order to better approximate test
conditions during training. However, following
Clark & Curran (2007a), during training we seed
the realizer with the gold-standard supertags, aug-
menting the hypertagger’s β-best list, in order to
ensure that the n-best realizations are generally of
high quality; consequently, the gold standard real-
ization (i.e., the corpus sentence) usually appears
in the n-best list.3 In addition, we use a hyper-
tagger trained on all the training data, to improve
hypertagger performance, while excluding the cur-

3As in Clark & Curran’s approach, we use a single β value
during training, rather than iteratively loosening the β value;
the chosen β value determines the size of the discrimation
space.

rent training section (in jack-knifed fashion) from
the word-based parts of the language model, in or-
der to make the language model scores more re-
alistic. It remains for future work to determine
whether using a different compromise between en-
suring high-quality training data and remaining
faithful to the test conditions would yield better
results.

Since realization of the n-best lists for train-
ing is the most time-consuming part of the pro-
cess, in our current implementation we perform
this step once, generating event files along the way
containing feature vectors for each candidate real-
ization. The event files are used to calculate the
frequency distribution for the features, and mini-
mum cutoffs are chosen to trim the feature alpha-
bet to a reasonable size. Training then takes place
by iterating over the event files, ignoring features
that do not appear in the alphabet. As Figure 3
indicates, training consists of calculating the top-
ranked realization according to the current model
α, and performing an update when the top-ranked
realization does not match the oracle-best realiza-
tion. Updates to the model add the feature vec-
tor Φ(xi, yi) for the missed oracle-best realiza-
tion, and subtract the feature vector Φ(xi, zi) for
the mistakenly top-ranked realization. The final
model averages the models across the T iterations
over the training data, and N test cases within each
iteration.

Note that while training the perceptron model
involves n-best reranking, realization with the re-
sulting model can be viewed as forest rescoring,
since scoring of all partial realizations is integrated
into the realizer’s beam search. In future work, we
intend to investigate saving the realizer’s packed
charts, rather than event files, and integrating the
unpacking of the charts with the perceptron train-
ing algorithm.

The features we employ in our perceptron mod-
els are of three kinds. First, as in the log-linear
models of Velldal & Oepen and Nakanishi et al.,
we incorporate the log probability of the candidate
realization’s word sequence according to our fac-
tored language model as a single feature in the per-
ceptron model. Since our language model linearly
interpolates three component models, we also in-
clude the log prob from each component language
model as a feature, so that the combination of
these components can be optimized.

Second, we include syntactic features in our
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Feature Type Example
LexCat + Word s/s/np + before
LexCat + POS s/s/np + IN
Rule sdcl → np sdcl\np
Rule + Word sdcl → np sdcl\np + bought
Rule + POS sdcl → np sdcl\np + VBD
Word-Word 〈company, sdcl → np sdcl\np, bought〉
Word-POS 〈company, sdcl → np sdcl\np, VBD〉
POS-Word 〈NN, sdcl → np sdcl\np, bought〉
Word + ∆w 〈bought, sdcl → np sdcl\np〉 + dw

POS + ∆w 〈VBD, sdcl → np sdcl\np〉 + dw

Word + ∆p 〈bought, sdcl → np sdcl\np〉 + dp

POS + ∆p 〈VBD, sdcl → np sdcl\np〉 + dp

Word + ∆v 〈bought, sdcl → np sdcl\np〉 + dv

POS + ∆v 〈VBD, sdcl → np sdcl\np〉 + dv

Table 1: Basic and dependency features from
Clark & Curran’s (2007b) normal form model;
distances are in intervening words, punctuation
marks and verbs, and are capped at 3, 3 and 2,
respectively

model by implementing Clark & Curran’s (2007b)
normal form model in OpenCCG.4 The features of
this model are listed in Table 1; they are integer-
valued, representing counts of occurrences in a
derivation. These syntactic features are quite com-
parable to the dominance-oriented features in the
union of the Velldal & Oepen and Nakanishi et
al. models, except that our feature set does not
include grandparenting, which has been found to
have limited utility in CCG parsing. Our syntac-
tic features also include ones that measure the dis-
tance between headwords in terms of intervening
words, punctuation marks or verbs; these features
generalize the ones in Nakanishi et al.’s model.
Note that in contrast to parsing, in realization dis-
tance features are non-local, since different partial
realizations in the same equivalence class typically
differ in word order; as we are working in a rerank-
ing paradigm though, the non-local nature of these
features is unproblematic.

Third, we include discriminative n-gram fea-
tures in our model, following Roark et al.’s (2004)
approach to discriminative n-gram modeling for
speech recognition. By discriminative n-gram fea-
tures, we mean features counting the occurrences
of each n-gram that is scored by our factored lan-
guage model, rather than a feature whose value is
the log prob determined by the language model.
As Roark et al. note, discriminative training with
n-gram features has the potential to learn to nega-

4We have omitted Clark & Curran’s root features, since
the category we use for the full stop ensures that it must ap-
pear at the root of any complete derivation.

Model #Alph-feats #Feats Acc Time
full-model 2402173 576176 96.40% 08:53
lp-ngram 1127437 342025 94.52% 05:19
lp-syn 1274740 291728 85.03% 05:57

Table 2: Perceptron Training Details—number of
features in the alphabet, number of features in the
model, training accuracy and training time (hours)
for 10 iterations on a single commodity server

tively weight n-grams that appear in some of the
GEN(xi) candidates, but which never appear in
the naturally occurring corpus used to train a stan-
dard, generative language model. Since our fac-
tored language model considers words, semantic
classes, part-of-speech tags and supertags, our n-
gram features represent a considerable generaliza-
tion of the sequence-oriented features in Velldal
& Oepen’s model, which never contain more than
one word and do not include semantic classes.

4 Evaluation

4.1 Experimental Conditions
For the experiments reported below, we used a
lexico-grammar extracted from Sections 02–21 of
our enhanced CCGbank, a hypertagging model in-
corporating named entity class features, and a tri-
gram factored language model over words, named
entity classes, part-of-speech tags and supertags,
as described in the preceding section. BLEU
scores were calculated after removing the under-
scores between collapsed NEs.

Events were generated for each training section
separately. As already noted, the hypertagger and
POS/supertag language model was trained on all
the training sections, while separate word-based
models were trained excluding each of the train-
ing sections in turn. Event files for 26530 training
sentences with complete realizations were gener-
ated in 7 hours and 16 minutes on a cluster us-
ing one commodity server per section, with an av-
erage n-best list size of 18.2. Perceptron models
were trained on single machines; details for three
of the models appear in Table 2. The complete set
of models is listed in Table 3.

4.2 Results
Realization results on the development section are
given in Table 4. As the first block of rows af-
ter the baseline shows, of the models incorporating
a single kind of feature, only the one with the n-
gram log prob features beats the baseline BLEU
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Model Description
baseline-w3 No perceptron (3g wd only)
baseline No perceptron
syn-only-nodist All syntactic features except distance
ngram-only Just ngram features
syn-only Just syntactic features
lp-only Just log prob features
lp-ngram Log prob + Ngram features
lp-syn Log prob + Syntactic features
full-model Log prob + Ngram +Syntactic features

Table 3: Legend for Experimental Conditions

score, with the other models falling well below
the baseline (though faring better than the trigram-
word LM baseline). This result confirms the im-
portance of including n-gram log prob features in
discriminative realization ranking models, in line
with Velldal & Oepen’s findings, and contra those
of Nakanishi et al., even though it was Nakanishi
et al. who experimented with the Penn Treebank
corpus, while Velldal & Oepen’s experiments were
on a much smaller, limited domain corpus. The
second block of rows shows that both the discrim-
inative n-gram features and the syntactic features
provide a substantial boost when used with the n-
gram log prob features, with the syntactic features
yielding a more than 3 BLEU point gain. The
final row shows that the full model works best,
though the boosts provided by the syntactic and
discriminative n-gram features are clearly not in-
dependent. The BLEU point trends are mirrored in
the percentage of exact match realizations, which
goes up by more than 10% from the baseline. The
percentage of complete (i.e., non-fragmentary) re-
alizations, however, goes down; we expect that
this is due to the time taken up by our current
naive method of feature extraction, which does not
cache the features calculated for partial realiza-
tions. Realization results on the standard test sec-
tion appear in Table 5, confirming the gains made
by the full model over the baseline.5

We calculated statistical significance for the
main results on the development section using
bootstrap random sampling.6 After re-sampling
1000 times, significance was calculated using a
paired t-test (999 d.f.). The results indicated that
lp-only exceeded the baseline, lp-ngram and lp-

5Note that the baseline for Section 23 uses 4-grams and a
filter for balanced punctuation (White and Rajkumar, 2008),
unlike the other reported configurations, which would explain
the somewhat smaller increase seen with this section.

6Scripts for running these tests are available at
http://projectile.sv.cmu.edu/research/
public/tools/bootStrap/tutorial.htm

Model %Exact %Compl. BLEU Time
baseline-w3 26.00 83.15 0.7646 1.8

baseline 29.00 83.28 0.7963 2.0
syn-only-nodist 26.02 82.69 0.7754 3.2

ngram-only 27.67 82.95 0.7777 3.0
syn-only 28.34 82.74 0.7838 3.4
lp-only 32.01 83.02 0.8009 2.1

lp-ngram 36.31 80.47 0.8183 3.1
lp-syn 39.47 79.74 0.8323 3.5

full-model 40.11 79.63 0.8373 3.6

Table 4: Section 00 Results (98.9% coverage)—
percentage of exact match and grammatically
complete realizations, BLEU scores and average
times, in seconds

Model %Exact %Complete BLEU
baseline 33.74 85.04 0.8173

full-model 40.45 83.88 0.8506

Table 5: Section 23 Results (97.06% coverage)

syn exceeded lp-only, and the full model exceeded
lp-syn, with p < 0.0001 in each case.

4.3 Examples
Table 6 presents four examples where the full
model improves upon the baseline. Example sen-
tence wsj 0020.10 in Table 6 is a case where the
perceptron successfully weights the component
ngram models, as the lp-ngram model and those
that build on it get it right. Note that here, the mod-
ifier ordering in small video-viewing is not speci-
fied in the logical form and either ordering is pos-
sible syntactically. In wsj 0024.2, number agree-
ment between the conjoined subject noun phrase
and verb is obtained only with the full model. This
suggests that the full model is more robust to cases
where the grammar is insufficiently precise (num-
ber agreement is enforced by the grammar in only
the simplest cases). Example wsj 0034.9 corrects
a VP ordering mismatch, where the corpus sen-
tence is clearly preferred to the one where into
oblivion is shifted to the end. Finally, wsj 0047.13
corrects an animacy mismatch on the wh-pronoun,
in large part due to the high negative weight as-
signed to the discriminative n-gram feature PER-
SON , which. Note that the full model still dif-
fers from the original sentence in its placement of
the adverb reportedly, choosing the arguably more
natural position following the auxiliary.

4.4 Comparison to Other Systems
Table 7 lists our results in the context of those re-
ported for other systems on PTB Section 23. The
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Ref-wsj 0020.10 that measure could compel Taipei ’s growing number of small video-viewing parlors to pay ...
baseline,syn-only,ngram-only that measure could compel Taipei ’s growing number of video-viewing small parlors to ...
lp-only, lp-ngram, full-model that measure could compel Taipei ’s growing number of small video-viewing parlors to ...

Ref-wsj 0024.2 Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operate the fields ...
all except full-model Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operates the fields ...
full-model Esso Australia Ltd. , a unit of new york-based Exxon Corp. , and Broken Hill Pty. operate the fields ...

Ref-wsj 0034.9 they fell into oblivion after the 1929 crash .
baseline, lp-ngram they fell after the 1929 crash into oblivion .
lp-only, ngram-only, syn-only, full-model they fell into oblivion after the 1929 crash .

Ref-wsj 0047.13 Antonio Novello , whom Mr. Bush nominated to serve as surgeon general , reportedly has assured . . .
baseline,baseline-w3, lp-syn, lp-only Antonio Novello , which Mr. Bush nominated to serve as surgeon general , has reportedly assured . . .
full-model, lp-ngram, syn-only, ngram-syn Antonio Novello , whom Mr. Bush nominated to serve as surgeon general , has reportedly assured . . .

Table 6: Examples of realized output

System Coverage BLEU %Exact
Callaway (05) 98.5% 0.9321 57.5
OpenCCG (09) 97.1% 0.8506 40.5
Ringger et al. (04) 100.0% 0.836 35.7
Langkilde-Geary (02) 83% 0.757 28.2
Guo et al. (08) 100.0% 0.7440 19.8
Hogan et al. (07) ≈100.0% 0.6882
OpenCCG (08) 96.0% 0.6701 16.0
Nakanishi et al. (05) 90.8% 0.7733

Table 7: PTB Section 23 BLEU scores and exact
match percentages in the NLG literature (Nakan-
ishi et al.’s results are for sentences of length 20 or
less)

most similar systems to ours are those of Nakan-
ishi et al. (2005) and Hogan et al. (2007), as they
both involve chart realizers for reversible gram-
mars engineered from the Penn Treebank. While
direct comparisons across systems cannot really
be made when inputs vary in their semantic depth
and specificity, we observe that our all-sentences
BLEU score of 0.8506 exceeds that of Hogan et
al., who report a top score of 0.6882 (though with
coverage near 100%), and also surpasses Nakan-
ishi et al.’s score of 0.7733, despite their results be-
ing limited to sentences of length 20 or less (with
91% coverage). Velldal & Oepen’s (2005) system
is also closely related, as noted in the introduc-
tion, but as their experiments are on a limited do-
main corpus, their results cannot be compared at
all meaningfully.

5 Related Work and Discussion

As alluded to above, realization systems cannot be
easily compared, even on the same corpus, when
their inputs are not the same. This point is dra-
matically illustrated in Langkilde-Geary’s (2002)
system, where a BLEU score of 0.514 is reported
for minimally specified inputs on PTB Section 23,
while a score of 0.757 is reported for the ‘Per-

mute, no dir’ case (which perhaps most closely
resembles our inputs), and a score of 0.924 is re-
ported for the most fully specified inputs; note,
however, that in the latter case word order is deter-
mined by sibling order in the inputs, an assump-
tion not commonly made. As another example,
Guo et al. (2008) report a competitive result of
0.7440 (with 100% coverage) using a dependency-
based approach; however, their inputs, like those
of Hogan et al., include more surface syntactic in-
formation than ours, as they specify case-marking
prepositions, wh-pronouns and complementizers.
In a recent experiment to assess the impact of
input specificity, we found that including pred-
icates for all prepositions in our logical forms
boosted our baseline results by more than 3 BLEU
points, with complete realizations found in more
than 90% of the test cases, indicating that generat-
ing from a more surfacy input is indeed an easier
task than generating from a deeper representation.
Given the current lack of consensus on realizer in-
put specificity, we believe it is important to keep
in mind that within-system comparisons (such as
those in the preceding section) are the ones that
should be given the most credence.

Returning to our cross-system comparison, it is
perhaps surprising that Callaway (2005) reports
the best PTB BLEU score to date, 0.9321, with
98.5% coverage, using a purely symbolic, hand-
crafted grammar augmented to handle the most
frequent coverage issues for the PTB. While Call-
away’s inputs are unordered, word order is often
determined by positional features (e.g. front) or
by the type of modification (e.g. describer vs.
qualifier), and parts-of-speech are included
for lexical items. Additionally, in contrast to our
approach, Callaway makes use of a generation-
only grammar, rather than a reversible one, and his
approach is less well-suited to producing n-best
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outputs. Nevertheless, his high scores do suggest
the potential for precise grammar engineering to
improve realization quality.

While we have yet to perform a thorough er-
ror analysis, our impression is that although the
current set of syntactic features substantially im-
proves clausal constituent ordering, a variety of
disfluent cases remain. More thorough inves-
tigations of features for constituent ordering in
English have been performed by Ringger et al.
(2004), Filippova and Strube (2009) and Zhong
and Stent (2009), all of whom develop classifiers
for determining linear order. In future work, we
plan to investigate whether features inspired by
these approaches can be usefully integrated into
our perceptron reranker.

Also related to the present work is discrimina-
tive training in syntax-based MT (Turian et al.,
2007; Watanabe et al., 2007; Blunsom et al., 2008;
Chiang et al., 2009). Not surprisingly, since MT is
a harder problem than surface realization, syntax-
based MT systems have made use of less precise
grammars and more impoverished (target-side)
feature sets than those tackling realization rank-
ing. With progress on discriminative training with
large numbers of features in syntax-based MT, the
features found to be useful for high-quality sur-
face realization may become increasingly relevant
for MT as well.

6 Conclusions

In this paper, we have shown how discriminative
reranking with an averaged perceptron model can
be used to achieve substantial improvements in re-
alization quality with CCG. Using a comprehen-
sive feature set, we have also confirmed the util-
ity of including language model log probabilities
as features in the model, which prior work on
discriminative training with log linear models for
HPSG realization had called into question. The
perceptron model allows the combination of mul-
tiple n-gram models to be optimized and then aug-
mented with both syntactic features and discrim-
inative n-gram features, inspired by related work
in discriminative parsing and language modeling
for speech recognition. The full model yields a
state-of-the-art BLEU score of 0.8506 on Section
23 of the CCGbank, to our knowledge the best
score reported to date using a reversible, corpus-
engineered grammar, despite our use of deeper,
less specific inputs. Finally, the perceptron model

paves the way for exploring the utility of richer
feature spaces in statistical realization, including
the use of linguistically-motivated and non-local
features, a topic which we plan to investigate in
future work.
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