Accuracy-Based Scoring for DOT: Towards Direct Error Minimization for
Data-Oriented Translation

Daniel Galron Sergio Penkale, Andy Way |. Dan Melamed
CIMS CNGL AT&T Shannon Laboratory
New York University Dublin City University {l ast nane}
gal ron@s. nyu. edu {spenkal e, away} @ esearch. att.com

@onputing.dcu.ie

Abstract the decoder to find the translation with the high-
est evaluation score, we would want to score the
In this work we present a novel technique  derivations with weights that correlate well with
to rescore fragments in the Data-Oriented  the particular evaluation measure in mind.
Translation model based on their contri- Much of the work in the MT literature has
bution to translation accuracy. We de-  focysed on the scoring of translation decisions
scribe three new rescoring methods, and  ade. (Yamada and Knight, 2001) follow (Brown
present the initial results of a pilot experi- et al., 1993) in using the noisy channel model,
ment on a small subset of the Europarl cor-  py decomposing the translation decisions mod-
pus. This work is a proof-of-concept, and  gleq py the translation model into different types,
is the first step in directly optimizing trans-  anq inducing probability distributions via max-
lation decisions solely on the hypothesized  jjym likelihood estimation over each decision
accuracy of potential translations resulting type. This model is then decoded as described
from those decisions. in (Yamada and Knight, 2002). This type of ap-
proach is also followed in (Galley et al., 2006).
There has been some previous work on
The Data-Oriented Translation (DOT) (Poutsmasaccuracy-driven training techniques for SMT, such
2000) model is a tree-structured translation modelas MERT (Och, 2003) and the Simplex Armijo
in which linked subtree fragments extracted fromDownhill method (Zhao and Chen, 2009), which
a parsed bitext are composed to cover a sourcdne the parameters in a linear combination of var-
language sentence to be translated. Each linke@us phrase scores according to a held-out tun-
fragment pair consists of a source-language sid#g set. While this does tune the relative weights
and a target-language side, similar to (Wu, 1997)of the scores to maximize the accuracy of candi-
Translating a new sentence involves composinglates in the tuning set, the scores themselves in the
the linked fragments into derivations so that alinear combination are not necessarily correlated
new source-language sentence is covered by theith the accuracy of the translation. Tillmann and
source tree fragments of the linked pairs, whereZhang (2006) present a procedure to directly opti-
the yields of the target-side derivations are the canmize the global scoring function used by a phrase-
didate translations. Derivations are scored accorddased decoder on the accuracy of the translations.
ing to their likelihood, and the translation is se-Similarly to MERT, Tillmann and Zhang estimate
lected from the derivation pair with the highestthe parameters of a weight vector on a linear com-
score. However, we have no reason to believe thdtination of (binary) features using a global objec-
maximizing likelihood is the best way to maxi- tive function correlated with BLEU (Papineni et
mize translation accuracy — likelihood and accu-al., 2002).
racy do not necessarily correlate well. In this work, we prototype some methods for
We can frame the problem as a search problenmoving directly towards incorporating a measure
where we are searching a space of derivations faof the translation quality of each fragment used,
the one that yields the highest scoring translationbringing DOT more into the mainstream of cur-
By putting weights on the derivations in the searclrent SMT research. In Section 2 we describe
space, we wish to point the decoder in the direcprobability-based DOT fragment scoring. In Sec-
tion of the optimal translation. Since we wanttion 3 we describe our rescoring setup and the

1 Introduction
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-7 T~ tier node ofs; is equal to the root node of;,

J/ s \; N . and the leftmost non-terminal frontier nodesefs
n’;p/\vp K ’NP/\VP\ FE linked counterparin ¢; is equal to the root node
A~ NP NP of to. The resulting tree pair consists of a copy
@) V. NP N B ) || ,
N ol John John of s; wheres; has been inserted at the leftmost
fikes pe & NP frontier node, and a copy @f wheret, has been
PR a inserted at the node linked $@’s leftmost frontier
7 /g - ::S\ . node (Hearne and Way, 2003).
,’/\ RGN P In Figure 1, fragment pair (a) is a fragment with
’\“P /VPN/ NP /VP\\ NP NP two open substitution sites. If we compose this
(© John Y NP Y PP (d>Mgry Mgry fragment pair with fragment pair (b), the source
likes ol 5 WP side composition must take place on the leftmost
g Jo‘hn non-terminal frontier node (the leftmost NP). On

the target side we compose on the frontier linked
to the leftmost source side non-terminal frontier.

three rescoring methods. In Section 4, we describghe result is fragment pair (C). I1_‘ we now com-
our experiments. In Section 5 we compare th®©S€ the resulting fragment pair with fragment pair

results of rescoring the fragments with the thredd). We obtain a fragment pair with no open sub-
methods. In Section 6 we discuss some of thstitution sites whose source-side yield@hn likes
decisions that are affected by our rescoring methMary and whose target-side yield iary plait a
ods. Finally, we discuss the next steps in training]Ohn Note that there are two different derivations

the DOT system by optimizing over a translationUsing the fragment pajrs in Figure 1 that result in
accuracy-based objective function in Section 7. Eh;a s?dr;le fragment pair, namely (a(p) o (d), and

c) o (d).
2 DOT Scoring For a given linked fragment paifds, d;), the
0probability assigned to itis

Figure 1: Example DOT Fragments.

As described in previous work (Poutsma, 200

Hearne and Way, 2003), DOT scores translations \(dy, dy)|

according to the probabilities of the derivations, P((ds, d;)) = ek

which are in turn computed from the relative fre- 2 er(us)=r(d)Ar () =r(d) | (s ut(>1|)

guenme_s of linked tree fragments in ap_a_lrallel tr.ee{/vhereuds, d)| is the number of times the frag-
ank. Linked fragment pairs are conditionally in- . : : .

dependent, so the score of a derivation is the proc{pem pair(ds, d) is found in the bitext, and(d)

uct of the probabilities of all the linked fragments 'S 1€ root nonterminal of. Essentially, the prob-
used. To find the probability of a translation ability assigned to the fragment pair is the relative

DOT marginalizes over the scores of all deriva_frequ_ency of the fragment pair to the pair of non-
. C o . terminals that root the fragments.
tions yielding the translation. _ _

From a parallel treebank aligned at the sub- 1€, With the assumption that DOT fragments
sentential level, we extract all possible linked frag-2€ conditionally independent, the probability of a

ment pairs by first selecting all linked pairs of derivationis
nodes in the treebank to be the roots of a new sub-

tree pair, and then selecting a (possibly empty) set P(d) = P((ds,di)10...0(ds,di)n)
of linked node pairs that are descendants of the = HP(<d57dt>i) (2)
newly selected fragment roots and deleting all sub- P

tree pairs dominated by these nodes. Leaves of
fragments can either be terminals, or non-terminaln the original DOT formulation, DOT disam-
frontier nodeswhere we can compose other frag-biguated translations according to their probabil-
ments (c.f. (Eisner, 2003)). We give example DOTities. Since a translation can have many possible
fragment pairs in Figure 1. derivations, to obtain the probability of a transla-
Given two subtree pairgsi,t;) and (sqo,t2),  tion itis necessary to marginalize over the distinct
we can compose them using the DOT composiderivations yielding a translation. The probabil-
tion operatoro if the leftmost non-terminal fron- ity of a translationw, of a source sentenae, is
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given by (3): Rl -~

/835 s=s .
P('U)S,'U)t) = Z P(d<ws,wt)> (3) ,//\ - \/\ \\
deD N=N3 VP, ,7 N=N4 VPy N
‘ /\/ ‘ /\ \
and the translation is chosen so as to maximize (4): John V‘4 N7N5 Mary vV PR, |
X likes Mary lait Ps N=N7
Wy = argmax P (wsg, wy) 4) P
wi a John
) ) ) Source PCFG Target PCFG
Hearne and Way (2006) examined alternative dis-
S=S— N=N VP+2 0.5 | S=S— N=NVP+2 0.5

ambiguation strategies. They found that rather  s=s— nN=Nn+3vP+2 05| S=S— N=N+4VP+2 05

than disambiguating on the translation probability, 52511 Niniavess oo | Srert— NoNesvoss o2

the translation quality would improve by disam- N=N — John 0.5 | N=N— Mary 0.5
. . . . - . N=N+3 — John 1 N=N+4 — Mary 1
biguating on the derivation probability, as in (5): VP+2— V+4N=N 05 | VP+2— V+5PP+3 1
VP+2 — V+4 N=N+5 0.5 | V+5 — plait 1

R V+4 — likes 1 PP+3— P+6 N=N 0.5

wy = argmaxP(d) (5) N=N — Mary 05 | PP+3— P+6N=N+7 05
N=N+5 — Mary 1 P+6— a 1

N=N — John 0.5

. . . = — h
Our analysis suggest that this is because many NN+ = John !

derivations with very low probabilities generate _ _
Figure 2: A parallel tree and its corresponding Goodman re-

the same, poor translation. When applying Equag ion.

tion (3) to marginalize over those derivations, the

resulting score is higher for the poor translationfrontier nodes. A fragment pair, then, is a pair of
than a better translation with fewer derivations butsyptrees in which the root does not have an index,
where the derivations had higher likelihood. all internal nodes have indices, and all the leaves
Using the DOT model directly is difficult — are either terminals or un-indexed nodes. We give
the number of fragments extracted from a paralqgn example Goodman reduction in Figure 2.
lel treebank is exponential in the size of the tree- \yhile we store the source grammar and the tar-
bank. Therefore we use the Goodman reductior@et grammar separately, we also keep track of the
of DOT (Hearne, 2005) to create an isomorphiccorrespondence between source and target Good-
PCFG representation of the DOT model that is lin-man indices and can easily identify the alignments
ear in the size of the treebank. The idea behind thﬁccording to the Goodman indices. Probabilities
Goodman reduction is that rather than storing fragfor the PCEG rules are computed monolingually
ments in the grammar and translating via Compoys in the standard Goodman reduction for DOP
sition, we simultaneously build up the fragments(Goodman, 1996). In decoding with the Goodman
using the PCFG reduction and compose them tGreqyction, we first find the-best parses on the
gether. To perform the reduction, we first relabelggrce side, and for each source fragment, we con-
the two linked nodes (X, Y) with the new label gtrct thek-best fragments on the target side. We
X=Y. We then label each node in the parallel tree<ina|ly compute the bilingual derivation probabil-
bank with a unique Goodman index. Each binaryities py multiplying the source and target deriva-
branching node and its two children can be interyion probabilities by the target fragment relative
nal or root/frontier. We add rules to the grammargrequencies conditioned on the source fragment.
reflecting the role that each node can take, keeping there are a few problems with a likelihood-

unaligned nodes as fragment-internal nodes. So igageq scoring scheme. First, it is not clear that
the case where a node and both of its children arg 4 fragment is more likely to be seen in training

aligned, we commit 8 rules into the grammar, aSy4ta then it is more likely to be used in a correct

follows: translation of an unseen sentence. In our analysis
LHS — RHS1 RHS2 LHS+a~ RHS1 RHS2 : .
LHS — RHS1+b RHS?  LHS+as RHS1+b RHS2 of the candidate translations of the DOT system,
LHS — RHS1RHS2+c  LHS+a» RHS1 RHS2+c we observed that frequently, the highest-likelihood

LHS — RHS1+b RHS+c  LHS+a» RHS1+b RHS2+c  candidate translation output by the system was not

A category label which ends in a ‘+' symbol fol- the highest-accuracy candidate inferred. An addi-
lowed by a Goodman index is fragment-internaltional problem is that, as described in (Johnson,
and all other nodes are either fragment roots o2002), the relative frequency estimator for DOP
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(and by extension, DOT) is known to be biasedto the Goodman reduction for DOT. If we were to

and inconsistent. properly rescore each fragment, a new rule would
] need to be added to the grammar for each rule ap-
3 Accuracy-Based Fragment Scoring pearing in the fragment. Since the number of frag-

of fragment accuracy into the scoring. To do solial increase in grammar size. Instead, we rescore
we reformulate the scoring of DOT as log-linearthe individual rules in the fragments, by evenly di-

rather than probabilistic, in order to incorporateViding the total amount of scoring mass among the
non-likelihood features into the derivation scores'ules of the particular fragment, and then assigning

For all tree fragment pair§ls, d;), let them the average of the rule scores over all frag-
ments in which they appear. That is for each rule
1({ds,dys)) = log(p({ds, dt))) (6) rin a fragmentf consisting ofc(r) rules with

_scored(f), the score of the rule is given as:
The general form of a rescored tree fragment will

be

k s(r) = 2 pires T}{)/Cf(r) (11)
s((ds, dr)) = col((ds, di)) + Y i fi({ds, dr))

i=1 This has the further advantage that we are al-

(7)  lowing fragments that were unseen during tuning
where eachy; is the weight of that term in the fi- o pe rescored according to previously seen frag-
nal score, and eachy(d) is a feature. In this work, ment substructures.
we only considerf; (d), an accuracy-based score,  Tg jmplement this scheme, we select a set of or-
although in future work we will consider a wide zcle translations for each sentence in the tuning
variety of features in the scoring function, includ- gata by evaluating all the candidate translations
ing combinations of the different scoring schemeggainst the gold standard translation using the F-
described below, binary lexical features, binarygcore (Turian et al., 2003), and selecting those
source-side syntactic features, and local target sidgith the highest -measure, with exponent 1. We
features. The score of a derivation is now given by;se GTM, rather than BLEU, because BLEU is
(8): not known to work well on a per-sentence level

_ (Lavie et al., 2004) as needed for oracle selection.
s(d) = sl{ds,di)ro... 0 {ds, i) We then compare)all thierget-sidefragments in-
= > s({ds, de)i) (8)  ferred in the translation process for each candidate
g translation against the fragments that yielded the
In order to disambiguate between candidateracles. There are two relevant parts of the frag-
translations, we follow (Hearne and Way, 2006)ments —the internal yields (i.e. the terminal leaves

by using Equation (5). of the fragment) and the substitution sites (i.e. the
_ frontiers where other fragments attach). We score
3.1 Structured Fragment Rescoring the fragments rooted at the substitution sites sepa-

In all our approaches, we rescore fragments ac-ately from the parent fragment. We can uniquely
cording to their contribution to the accuracy of identify the set of fragments that can be rooted at
a translation. We would like to give fragments substitution sites by determining the span of the
that contribute to good translations relatively highlinked source-side derivation.
scores, and give fragments that contribute to bad To compare two fragments, we define an edit
translations relatively low scores, so that duringdistance between them. For a given fragmént
decoding fragments that are known to contribute tdet r(d) be the root of the fragment, le{d) —
good translations would be chosen over those thaths1 be the left subtree of(d), and letr(d) —
are known to contribute to bad translations. Fur+hs2 be the right subtree. The difference between
thermore, we would like to score each fragment ina candidate fragment. and an oracle fragment
a derivation independently, since bad translationgs is given by the equations in Table 1.
may contain good fragments, and vice-versa. These equations define a minimum edit dis-
In practice, it is infeasible to rescore only thosetance between two fragment trees, allowing sub-
fragments seen during the rescoring process, dueagment order inversion, insertion, and deletion
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5(de,dgs) = {(1) :; Z“ ; 3“ Base cased. andds are unary subtrees or substitution sites 9)
c gs

0(de — rhsl,dgs — rhsl) + §(de — rhs2,dgs — rhs2),

(
0(de — rhs2,dgs — rhsl) + §(dc — rhsl,dgs — rhs2) + 1,
_ . ) 0(de,dgs — Thsl) + |y(dgs — rhs2)|,
Oldeydye) = MY 505 dye — rhs2) + ly(dge — rhsD)], (10)
0(de — rhsl,dgs) + |y(de — rhs2)|,
0(de — Ths2,dgs) + |y(de — rhsl)|
Table 1. The recursive relation defining the fragment difference dxtvitwo fragments.
(@ A (b) A (© D tween it and the oracle fragment it is most similar
B N TN to, as in (12):
B C C B A E
| | | f((dg,dy)) = max —8(dy, d%) (12)
b c b B F e ({d ) (dg.d7) €D?:dg=d, (i)
k‘J ]‘c In practice, given the Goodman reduction for

DOT, we divide the fragment score by the number
Figure 3: Comparing trees (a) and (b) with our distance metOf rules in the fragment, and assign the average of

ric yields a value of 1. The difference between trees (a) anqhose scores for each rule instance across all frag-
(c) is 2, and for trees (b) and (c) the distance is 3.
ments rescored.

as edit operations. For example, the only dif-3.2 Normalized Structured Fragment
ference between trees (a) and (b) in Figure 3 is Rescoring

that their children have been inverted. To COM-y the structured fragment rescoring scheme, the
pare these trees using our distance metric, we firglcores that the fragments are assigned are the un-
compute the first argument of thein functionin - normajized edit distances between the two frag-
Equation (10), directly comparing the structure of ments. |t may be better to normalize the fragment
eachimmediate subtree. We then compute the Ségeres; rather than using the minimum number of
ond argument, obtaining the cost of performing anyree transformations to convert one fragment into
inversion, and f_mally compute the remaining argu+he other. We would expect that when compar-
ments, assessing the cost of allowing each tree g larger fragments, on average there would be
be a direct subtree of the other. The result of thig,,ore transformations needed to change one into
computation isl, representing the inversion oper- ihe other than when comparing small fragments.
ation required to transform tree (a) into tree (b).{owever in the previous scheme, small fragments
If we compare trees (a) and (c) in Figure 3, weyyoyid have higher scores than large fragments,

obtain a value o2, given that the minimum opera- gjnce fewer differences would be observed. The
tions required to transform tree (a) into tree (¢) arg,ormalized score is given in (13):

inserting an additional subtree at the top level and

then substituting the subtree rooted by C for thef({ds,d:)) =~ max — log(l —§(dy,df)/
subtree rooted by F. If we compare tree (b) with (d5,4g) €D0dg=ds

tree (c) then the distance ¥ since we are now max(|de|, [d7]))
required to also replace the subtree rooted by C by (13)

the one rooted by B. Essentially, we are normalizing the edit distance

Since it is not efficient to compute the differ- by the maximum edit distance possible, namely
ences directly, we utilize common substructureshe size of the largest fragment of the two being
and derive a dynamic programming implementacompared.
tion of the recursion. We compare each fragment )
against the set of oracle fragments for the sama-3 Fragment Surface Rescoring
source span, and select the lowest cost as the scofiehe disadvantage of the minimum tree fragment
assigning the candidate the negative difference beadit approach is that it explicitly takes the internal
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syntactic structure of the fragment into account _ BLEU NI ST F-SCORE
. Baseline 8.78 3.582 38.21
In comparing two fragments, they may have th R TR R R
same (or very similar) surface yields, but differ- g&g SER (1030 103111032 [ 10271 10.08
ent internal structures. The previous approach NSFR| 8.31 | 9.37 | 9.53 | 9.66 | 9.90
woul nalize th ndi fraoment. even if its FSR | 10.19| 10.25| 10.18| 10.19| 9.93
_oud_pe a € the candidate fragme t,_e enitit NisT SFR | 3.792( 3.805] 3.808 | 3.800( 3.781
yield is quite close to the oracle. In this rescor- NSFR| 3.431| 3.638| 3.661| 3.693| 3.722
ing method, we extract the leaves of the candit FSR | 3.784| 3.799| 3.792| 3.795| 3.764
: ‘F-SCORE | SFR [ 40.92( 40.82| 40.86] 40.84| 40.78
daf[e anq oracle fragments, represer?tlng th_e substi NSER| 37 53 3950 39.93| 40.38| 40,78
tution sites by the source span which their frag- FSR | 40.83| 40.85| 40.87| 40.91| 40.67

ments cover.
Damerau-Levenshtein distang&g(d., dys) (Dam-
erau, 1964) between the two fragment yields, an
score them as in (14):

We then compare them using the

Table 2: Results on test set. Rescoring

on 20K sentences.

FR stands for Structured Fragment RescorifNgFRfor

ormalized SFR an&SRfor Fragment Surface Rescoring.
systermi-j represents the corresponding system wigh= ¢
anda; = j. Underlined results are statistically significantly
better than the baselineat= 0.01.

dg,dy)) = max —oq1(d,d?) (14
f(< S t>) <dg,d?>ED°:dg:d5 dl( ty t) ( )
In Equation (14) we are selecting the maximal . BLEU NisT F-SCORE
score for(ds, ;) from its comparison to all the LE2seline 8.78 3.582 38.21
: ) [ 28] 46 | 55 | 64 | 82
possible corresponding oracle fragments. In thisg SFR 11059 1 1058 10 411 10381 10.08
way, we are choosing to scofé,, d;) against the NSFR| 8.61 | 9.71 | 9.90 | 9.96 | 9.93
oracle fragment it is closest to. FSR | 10.49] 10.48| 10.35| 10.38) 10.06
NiST SFR | 3.841 | 3.835| 3.810] 3.807| 3.785
- NSFR| 3.515| 3.694| 3.713| 3.734| 3.727
4 Experiments FSR | 3.834| 3.833| 3.820| 3.816| 3.784
. . F-SCORE | SFR | 41.12 | 40.99] 40.86| 40.88] 40.75
For our pilot (_axperlmen_ts, we tes_ted all the rescorr NSER| 38.16| 40 39| 4069 40.90| 40.75
ing methods in the previous section on Spanish-ta- FSR | 41.03| 41.02| 41.01| 40.98| 40.72

English translation against the relative-frequency ble 3 Resul 5 _ 20K y
: e 3: Results on test set. Rescoring on sentences. Un-
baseline. We randomly selected 10,000 sentenc rlined are statistically significantly better than the baseline

from the Europarl corpus (Koehn, 2005), andatp = 0.01.

parsed and aligned the bitext as described in (Tins-

ley et al., 2009). From the parallel treebank, wethen computing thé-best bilingual derivations for
extracted a Goodman reduction DOT grammar, agach source parse. In our experiments we used
described in (Hearne, 2005), although on an ordepeams ofn = 10,000 andk = 5. We also ex-

of magnitude greater amount of training data. Unperimented with different values ef, anda; in

like (Bod, 2007), we did not use the unsupervisedcquation (7). We set these parameters manually,
version of DOT, and did not attempt to scale upg|though in future work we will automatically tune
our amount of training data to his levels, althoughthem, perhaps using a MERT-like algorithm.

in ongoing work we are optimizing our systemto  \we tested our rescored grammars on a set of
be able to handle that amount of training data. T 000 randomly chosen Europarl sentences, and

perform the rescoring, we randomly chose an adysed a set of 200 randomly chosen sentences as
ditional 30K sentence pairs from the Spanish-toy development test sét.

English bitext. We rescored the grammar by trans-

lating the source side of the 10K training sentencés Results

pairs and 10K of the additional sentences, and us- . . ,

ing the methods in Section 3 to score the frag_'l'ranslatlon quality results can be found in Tables
ments derived in the translation process. We theg @nd 3. In these tables, columns labelegin--
performed the same experiment translating the fuiflicate that the corresponding system was trained
40K-sentence set. Rules in the grammar that werlSiNg parameterag = i anda; = j in Equa-
not used during tuning were rescored using a delion 7. Statistical significance tests for NIST and

fault score defined to be the median of all score?FEU were performed using Bootstrap Resam-
observed. pling (Koehn, 2004).

) Our system performs translation by first obtain- Al sentences, including the ones used for training, were
ing then-best parses for the source sentences anihited to a length of at most 20 words.
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_ BLEU NisT F-SCoRE 20.6% improvement over the baseline. We note
Baseline 10.82 3.493 42.31 . .
AT I e T T that rescoring on 20K sentences rescores approxi-
BLEU SER | 11.34| 12.12 | 11.94] 11.97| 11.78 mately 275,000 rules out of 655,000 in the gram-
NSFR| 9.68 | 10.99| 11.38| 11.63| 11.30|  mar, whereas rescoring on 40K sentences rescores

FSR | 11.40| 11.49| 11.72| 11.91| 11.72 ;
NisT SFR | 3.653| 3.727 | 3.723] 3.708] 3.694 approximately 280’000'_
NSFR| 3.376| 3.530| 3.554| 3.616| 3.572 To analyze the benefits of the rescored gram-
FSR | 3.655| 3.675| 3.698)| 3.701] 3.675|  mar, we set aside a separate development set that
F-Score NSSFI5R ﬁ:ij jg'g; ﬁ:fg ﬁ:?g ji:gg we decoded with the grammar trained on 40K sen-
FSR | 44.68| 44.91| 45.15| 45.19| 44.82| tences. The results are presented in Table 4. The
_ analysis is presented in Section 6.
l:g{grfc:eif’s””s on development test set. Rescoring on 40K e tingly, there is a large difference between
the normalized and unnormalized versions of the
o , SFR scoring scheme. Our analysis suggests that
As Table 2 indicates, all three rescoring meth, . jitterences are mostly due to numerical issues,
ods S|.gn|f|cantly outperfor_m the relative frequencynamely the difference in magnitude between the
baseline. The unnormalized structured fragmeng ser scores and the likelihood scores in the linear

rescoring method performed the b_est, with thecombina‘rion, and the default value assigned when
largest improvement of 1.5 BLEU points, a 17.5%the NSFR score was zero. In ongoing work, we
relative improvement. We note that the BLEU are working to address these issues

scores for both the baseline and the experiments For most configurations the difference between

are low. This is to be expected, because the 9rAM5ER and FSR was not statistically significant at

mar is exiracted from a very small bitext espe-p = 0.05. Our analysis indicated that surface dif-

cially when the heterogenesity of the Europarl COterences tended to co-occur with structural differ-

pus is considered. In our analysis, only 32.5 Peences. We hypothesize that as we scale up to larger

c_ent of the test sgntences had a complete SOUrcEr 4 more ambiguous grammars, the system wil
side parse, meaning that a lot of structural infor-

S S : .. Infer more derivations with the same yields, ren-
matlo'n is lost contrlbutlng to arbltrary target's'dedering a larger difference between the quality of
orde.r_lng. In these experiments we did not use ak o two scoring mechanisms.
additional language model. DOT (and many other
syntax-based SMT systems) essentially have thg Discussion
target language model encoded within the trans-
lation model, since the inferences derived dur-To analyze the advantages and disadvantages of
ing translations link source structures to targefour approach over the baseline, we closely ex-
structures, so in principle, no additional languageamined and compared the derivations made on
model should be necessary. Furthermore, we onlghe devset translation by the SFR-scored gram-
evaluate against a single reference, which alsmar and the likelihood-scored grammar. Although
contributes to the lowering of absolute scores. Tahe BLEU scores are rather low, there were sev-
provide a sanity check against a state-of-the-aréral sentences in which the SFR-scored grammar
system, we trained the Moses phrase-based M3howed a marked improvement over the baseline.
system (Koehn et al., 2007) using our trainingWe observed two types of improvements.
corpus, using no language model and using uni- The first is where the rescored grammar gave
form feature weights, to provide a fair comparisonus translations that, while still generally bad, were
against our baseline. We used this system to de:loser to the gold standard than the baseline trans-
code our development test set, and as a result wation. For example, the Spanish sentence “Y en
obtained a BLEU score of 10.72, which is compa-tercer lugar , etel problema de la aplicami uni-
rable to the score obtained by our baseline on théorme del Derecho comunitario ” translates into
same set. the gold standard “Thirdly , we have the problem

When we scale up to tuning on 40,000 sen-of the uniform application of Community law .”
tences we see an improvement in BLEU scores aghe baseline grammar translates the sentence as
well, as shown in Table 3. When tuning on 40K “on third place , Transport and Tourism . | are
sentences, we observe an increase of 1.81 BLEthe problems of the implementation standardised
points on the best-performing system, which is ds the EU law .” with a GTM F-Score of 0.378,
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Figure 4: Target side of the highest-scoring translations for a sentancerding to the baseline system (left) and the SFR
system (right). Boxed nodes are substitution sites. Scores in supt&ssigipote the score of the sub-derivation according to
the baseline and to the SFR system.

and the rescored grammar outputs the translatiois of far higher quality than the first. As we can
“to there in the third place , | are the problem of see in Figure 4, the derivation over the substring
the implementation standardised is the Commu®in both questions” gets a higher score than “in
nity law .”, with an F-Score of 0.5. While many of to make” when translated with the rescored gram-
the fragments in the derivations that yielded thesenar. In the baseline, “en dos cuestiones” is not
two translations differ, the ones we would like to translated as a whole unit —rather, the derivation of
focus on are the fragments that yield the transla®el ponente en dos cuestiones” is decomposed into
tion of “comunitario”. The grammar contains sev- four subderivations, yielding “el” “ponente” “en”
eral competing unary fragment pairs for “comuni-“dos cuestiones”, where each of those is translated
taro”. In the baseline grammar, the pagENNP  separately, into (" “the rapporteur” “in” and “to
— conuni tari o, ag=NNP — EU) has a score make”. The SFR-scored grammar, however, out-
of —0.693147, whereas the pairaQ=NNP —  puts a different bilingual derivation. The source
comuni tari 0,ag=NNP — Communi t y) hasa is decomposed into five sub-derivations, one for
score 0f—1.38629. In the rescored grammar how- each word, and each word is translated separately.
ever, @g=NNP — comuni t ari 0, ag=NNP —  Then, the rescored target fragments set the proper
EU) has a score of -0.762973, whereag£NNP  target-side word order and select the target-side
— comuni tari o, ag=NNP — Conmmuni ty) words that maximize the score of the subderiva-
has a score of -0.74399. In effect, the rescorindgion covering the source span. We note that in this
scheme rescored the word alignment itself. Thiexample, the score of translating “dos” to “make”
suggests that in future work, it may be possiblewas higher than the score of translating “dos” to
to integrate a word aligner or fragment aligner di-“both”.  However, the higher level target frag-
rectly into the MT training method. ment that composed the translation of “dos” to-
gether with the translation of “cuestiones” yielded

The other improvement was where the baselin% h|gher score when Composing “both questions"
and the SFR-scored grammar output translationggther than “to make”.

of roughly the same quality according to the eval-

uation measure, yet in terms of human evaluationy Conclusions and Future Work

the SFR translation was much better than the base-

line translation. For instance, our devset containedhe results presented above indicate that aug-
the Spanish sentence “Estoy de acuerdo con el porenting the scoring mechanism with an accuracy-
nente en dos cuestiones .” The baseline transldased measure is a promising direction for transla-
tion given is “l agree with the rapporteur in to tion quality improvement. It gives us a statistically
make .", and the SFR-scored translation given isignificant improvement over the baseline, and our
“l agree with the rapporteur in both questions .”.analysis has indicated that the system is indeed
While both translations have the same GTM scoranaking better decisions, moving us a step closer
against the gold standard “I agree with the raptowards the goal of making translation decisions
porteur on two issues .”, clearly, the second ondased on the hypothesis of the resulting transla-
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