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Abstract

We present an implicit discourse relation
classifier in the Penn Discourse Treebank
(PDTB). Our classifier considers the con-
text of the two arguments, word pair infor-
mation, as well as the arguments’ internal
constituent and dependency parses. Our
results on the PDTB yields a significant
14.1% improvement over the baseline. In
our error analysis, we discuss four chal-
lenges in recognizing implicit relations in
the PDTB.

1 Introduction

In the field of discourse modeling, it is widely
agreed that text is not understood in isolation, but
in relation to its context. One focus in the study
of discourse is to identify and label the relations
between textual units (clauses, sentences, or para-
graphs). Such research can enable downstream
natural language processing (NLP) such as sum-
marization, question answering, and textual entail-
ment. For example, recognizing causal relations
can assist in answering why questions. Detect-
ing contrast and restatements is useful for para-
phrasing and summarization systems. While dif-
ferent discourse frameworks have been proposed
from different perspectives (Mann and Thompson,
1988; Hobbs, 1990; Lascarides and Asher, 1993;
Knott and Sanders, 1998; Webber, 2004), most ad-
mit these basic types of discourse relationships be-
tween textual units.

When there is a discourse connective (e.g., be-
cause) between two text spans, it is often easy to
recognize the relation between the spans, as most
connectives are unambiguous (Miltsakaki et al.,
2005; Pitler et al., 2008). On the other hand, it is
difficult to recognize the discourse relations when
there are no explicit textual cues. We term these
cases explicit and implicit relations, respectively.

While the recognition of discourse structure has
been studied in the context of explicit relations
(Marcu, 1998) in the past, little published work
has yet attempted to recognize implicit discourse
relations between text spans.

Detecting implicit relations is a critical step
in forming a discourse understanding of text, as
many text spans do not mark their discourse re-
lations with explicit cues. Recently, the Penn Dis-
course Treebank (PDTB) has been released, which
features discourse level annotation on both explicit
and implicit relations. It provides a valuable lin-
guistic resource towards understanding discourse
relations and a common platform for researchers
to develop discourse-centric systems. With the
recent release of the second version of this cor-
pus (Prasad et al., 2008), which provides a cleaner
and more thorough implicit relation annotation,
there is an opportunity to address this area of work.

In this paper, we provide classification of im-
plicit discourse relations on the second version of
the PDTB. The features we used include contex-
tual modeling of relation dependencies, features
extracted from constituent parse trees and depen-
dency parse trees, and word pair features. We
show an accuracy of 40.2%, which is a significant
improvement of 14.1% over the majority baseline.

After reviewing related work, we first give an
overview of the Penn Discourse Treebank. We
then describe our classification methodology, fol-
lowed by experimental results. We give a detailed
discussion on the difficulties of implicit relation
classification in the PDTB, and then conclude the
paper.

2 Related Work

One of the first works that use statistical meth-
ods to detect implicit discourse relations is that
of Marcu and Echihabi (2002). They showed that
word pairs extracted from two text spans provide
clues for detecting the discourse relation between
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the text spans. They used a set of textual patterns
to automatically construct a large corpus of text
span pairs from the web. These text spans were
assumed to be instances of specific discourse re-
lations. They removed the discourse connectives
from the pairs to form an implicit relation corpus.
From this corpus, they collected word pair statis-
tics, which were used in a Naı̈ve Bayes framework
to classify discourse relations.

Saito et al. (2006) extended this theme, to show
that phrasal patterns extracted from a text span
pair provide useful evidence in the relation clas-
sification. For example, the pattern “... should
have done ...” usually signals a contrast. The au-
thors combined word pairs with phrasal patterns,
and conducted experiments with these two feature
classes to recognize implicit relations between ad-
jacent sentences in a Japanese corpus.

Both of these previous works have the short-
coming of downgrading explicit relations to im-
plicit ones by removing the explicit discourse con-
nectives. While this is a good approach to auto-
matically create large corpora, natively implicit re-
lations may be signaled in different ways. The fact
that explicit relations are explicitly signaled indi-
cates that such relations need a cue to be unam-
biguous to human readers. Thus, such an artificial
implicit relation corpus may exhibit marked dif-
ferences from a natively implicit one. We validate
this claim later in this work.

Wellner et al. (2006) used multiple knowledge
sources to produce syntactic and lexico-semantic
features, which were then used to automatically
identify and classify explicit and implicit dis-
course relations in the Discourse Graphbank (Wolf
and Gibson, 2005). Their experiments show that
discourse connectives and the distance between
the two text spans have the most impact, and
event-based features also contribute to the perfor-
mance. However, their system may not work well
for implicit relations alone, as the two most promi-
nent features only apply to explicit relations: im-
plicit relations do not have discourse connectives
and the two text spans of an implicit relation are
usually adjacent to each other.

The work that is most related to ours is the
forthcoming paper of Pitler et al. (2009) on im-
plicit relation classification on the second ver-
sion of the PDTB. They performed classification
of implicit discourse relations using several lin-
guistically informed features, such as word polar-

ity, verb classes, and word pairs, showing perfor-
mance increases over a random classification base-
line.

3 Overview of the Penn Discourse
Treebank

The Penn Discourse Treebank (PDTB) is a dis-
course level annotation (Prasad et al., 2008) over
the one million word Wall Street Journal corpus.
The PDTB adopts the predicate-argument view of
discourse relations, where a discourse connective
(e.g., because) is treated as a predicate that takes
two text spans as its arguments. The argument
that the discourse connective structurally attaches
to is called Arg2, and the other argument is called
Arg1. The PDTB provides annotations for explicit
and implicit discourse relations. By definition, an
explicit relation contains an explicit discourse con-
nective. In the PDTB, 100 explicit connectives are
annotated. Example 1 shows an explicit Contrast
relation signaled by the discourse connective but.
The last line shows the relation type and the file in
the PDTB from which the example is drawn.

(1) Arg1: In any case, the brokerage firms are
clearly moving faster to create new ads than
they did in the fall of 1987.
Arg2: But it remains to be seen whether
their ads will be any more effective.

(Contrast - wsj 2201)

In the PDTB, implicit relations are constrained
by adjacency: only pairs of adjacent sentences
within paragraphs are examined for the existence
of implicit relations. When an implicit relation
was inferred by an annotator, he/she inserted an
implicit connective that best reflects the relation.
Example 2 shows an implicit relation, where the
annotator inferred a Cause relation and inserted an
implicit connective so (i.e., the original text does
not include so). The text in the box (he says)
shows the attribution, i.e., the agent that expresses
the arguments. The PDTB provides annotation for
the attributions and supplements of the arguments.

(2) Arg1: “A lot of investor confidence comes
from the fact that they can speak to us,”
he says .

Arg2: [so] “To maintain that dialogue is
absolutely crucial.”

(Cause - wsj 2201)
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The PDTB provides a three level hierarchy of
relation tags for its annotation. The first level
consists of four major relation classes: Temporal,
Contingency, Comparison, and Expansion. For
each class, a second level of types is defined to pro-
vide finer semantic distinctions. A third level of
subtypes is defined for only some types to specify
the semantic contribution of each argument. Rela-
tion classes and types in the PDTB are reproduced
in the first two columns of Table 1.

We focus on implicit relation classification of
the Level 2 types in the PDTB, as we feel that
Level 1 classes are too general and coarse-grained
for downstream applications, while Level 3 sub-
types are too fine-grained and are only provided
for some types. Table 1 shows the distribution of
the 16 Level 2 relation types of the implicit rela-
tions from the training sections, i.e., Sections 2
– 21. As there are too few training instances for
Condition, Pragmatic Condition, Pragmatic Con-
trast, Pragmatic Concession, and Exception, we
removed these five types from further considera-
tion. We thus use the remaining 11 Level 2 types
in our work. The initial distribution and adjusted
distribution are shown in the last two columns of
the table. We see that the three predominant types
are Cause (25.63%), Conjunction (22.25%), and
Restatement (19.23%).

Level 1 Class Level 2 Type Training % Adjusted %
instances

Temporal Asynchronous 583 4.36 4.36
Synchrony 213 1.59 1.59

Contingency Cause 3426 25.61 25.63
Pragmatic 69 0.52 0.52
Cause
Condition 1 0.01 –
Pragmatic 1 0.01 –
Condition

Comparison Contrast 1656 12.38 12.39
Pragmatic 4 0.03 –
Contrast
Concession 196 1.47 1.47
Pragmatic 1 0.01 –
Concession

Expansion Conjunction 2974 22.24 22.25
Instantiation 1176 8.79 8.80
Restatement 2570 19.21 19.23
Alternative 158 1.18 1.18
Exception 2 0.01 –
List 345 2.58 2.58

Total 13375
Adjusted total 13366

Table 1: Distribution of Level 2 relation types of
implicit relations from the training sections (Sec.
2 – 21). The last two columns show the initial
distribution and the distribution after removing the
five types that have only a few training instances.

4 Methodology

Our implicit relation classifier is built using super-
vised learning on a maximum entropy classifier.
As such, our approach processes the annotated ar-
gument pairs into binary feature vectors suitable
for use in training a classifier. Attributions and
supplements are ignored from the relations, as our
system does not make use of them. We chose the
following four classes of features as they represent
a wide range of information – contextual, syntac-
tic, and lexical – that have been shown to be help-
ful in previous works and tasks. We now discuss
the four categories of features used in our frame-
work.

Figure 1: Two types of discourse dependency
structures. Top: fully embedded argument, bot-
tom: shared argument.

Contextual Features. Lee et al. (2006) showed
that there are a variety of possible dependencies
between pairs of discourse relations: independent,
fully embedded argument, shared argument, prop-
erly contained argument, pure crossing, and par-
tially overlapping argument. They argued that the
last three cases – properly contained argument,
pure crossing, and partially overlapping argument
– can be factored out by appealing to discourse no-
tions such as anaphora and attribution. Moreover,
we also observed from the PDTB corpus that fully
embedded argument and shared argument are the
most common patterns, which are shown in Fig-
ure 1. The top portion of Figure 1 shows a case
where relation r1 is fully embedded in Arg1 of re-
lation r2, and the bottom portion shows r1 and r2

sharing an argument. We model these two patterns
as contextual features. We believe that these dis-
course dependency patterns between a pair of ad-
jacent relations are useful in identifying the rela-
tions. For example, if we have three items in a list,
according to the PDTB binary predicate-argument
definitions, there will be a List relation between
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the first item and the second item, and another List
relation between the previous List relation and the
third item, where the previous List relation is fully
embedded in Arg1 of the current List relation. As
we are using the gold standard argument segmen-
tation from the PDTB, we can extract and leverage
these dependency patterns. For each relation curr,
we use the previous relation prev and the next re-
lation next as evidence to fire six binary features,
as defined in Table 2.

Note that while curr is an implicit relation to
be classified, both prev and next can be implicit or
explicit relations. Pitler et al. (2008) showed that
the type of a relation sometimes correlates to the
type of its adjacent relation. When the adjacent
relation is explicit, its type may be suggested by
its discourse connective. Thus we include another
two groups of contextual features representing the
connectives of prev and next when they are explicit
relations.

Fully embedded argument:
prev embedded in curr.Arg1
next embedded in curr.Arg2
curr embedded in prev.Arg2
curr embedded in next.Arg1

Shared argument:
prev.Arg2 = curr.Arg1
curr.Arg2 = next.Arg1

Table 2: Six contextual features derived from two
discourse dependency patterns. curr is the relation
we want to classify.

Constituent Parse Features. Research work
from other NLP areas, such as semantic role la-
beling, has shown that features derived from syn-
tactic trees are useful in semantic understanding.
Such features include syntactic paths (Jiang and
Ng, 2006) and tree fragments (Moschitti, 2004).
From our observation of the PDTB relations, syn-
tactic structure within one argument may constrain
the relation type and the syntactic structure of
the other argument. For example, the constituent
parse structure in Figure 2(a) usually signals an
Asynchronous relation when it appears in Arg2,
as shown in Example 3, while the structure in Fig-
ure 2(b) usually acts as a clue for a Cause relation
when it appears in Arg1, as shown in Example 4.
In both examples, the lexicalized parts of the parse
structure are bolded.

(3) Arg1: But the RTC also requires “working”
capital to maintain the bad assets of thrifts
that are sold

Arg2: [subsequently] That debt would be
paid off as the assets are sold

(Asynchronous - wsj 2200)

(4) Arg1: It would have been too late to think
about on Friday.
Arg2: [so] We had to think about it ahead of
time.

(Cause - wsj 2201)

(a)
SBAR

IN

as

S

. . .

(b)
VP

MD VP

VB

have

VP

VBN

been

ADJP PP

Figure 2: (a) constituent parse in Arg2 of Example
3, (b) constituent parse in Arg1 of Example 4.

S-TPC-1

NP-SBJ

PRP

We

VP

VBD

had

NP

NP

DT

no

NN

operating

NNS

problems

ADVP

IN

at

DT

all

Figure 3: A gold standard subtree for Arg1 of an
implicit discourse relation from wsj 2224.

For Arg1 and Arg2 of each relation, we extract
the corresponding gold standard syntactic parse
trees from the corpus. As an argument can be a
single sentence, a clause, or multiple sentences,
this results in a whole parse tree, parts of a parse
tree, or multiple parse trees. From these parses,
we extract all possible production rules. Although
the structures shown in Figure 2 are tree frag-
ments, tree fragments are not extracted as produc-
tion rules act as generalization of tree fragments.
As an example, Figure 3 shows the parse tree for
Arg1 of an implicit discourse relation from the text
wsj 2224. As Arg1 is a clause, the extracted tree
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is a subtree. We then collect all production rules
from this subtree, with function tags (e.g., SBJ)
removed from internal nodes. POS tag to word
production rules are collected as well. The result-
ing production rules include ones such as: S →
NP VP, NP→ PRP, PRP→ “We”, etc. Each pro-
duction rule is represented as three binary features
to check whether this rule appears in Arg1, Arg2,
and both arguments.

Dependency Parse Features. We also experi-
mented with features extracted from dependency
trees of the arguments. We used the Stanford de-
pendency parser (de Marneffe et al., 2006), which
takes in a constituent parse tree and produces a de-
pendency tree. Again, for an argument, we may
collect a whole dependency tree, parts of a tree,
or multiple trees, depending on the span of the ar-
gument. The reason for using dependency trees
is that they encode additional information at the
word level that is not explicitly present in the con-
stituent trees. From each tree, we collect all words
with the dependency types from their dependents.
Figure 4 shows the dependency subtree for the
same example in Figure 3, from which we col-
lect three dependency rules: “had”← nsubj dobj,
“problems”← det nn advmod, “at”← dep.

Note that unlike the constituent parse features
which are guaranteed to be accurate (as they are
extracted from the gold parses of the corpus), the
dependency parses occasionally contain errors. As
with the constituent parse features, each depen-
dency rule is represented as three binary features
to check whether it appears in Arg1, Arg2, and
both arguments.

We

had

nsubj

problems

dobj

no operating

det nn

at

advmod

all

dep

Figure 4: A dependency subtree for Arg1 of an
implicit discourse relation from wsj 2224.

Lexical Features. Marcu and Echihabi (2002)
demonstrated that word pairs extracted from the
respective text spans are a good signal of the
discourse relation between arguments. Thus we
also consider word pairs as a feature class. We

stemmed and collected all word pairs from Arg1
and Arg2, i.e., all (wi, wj) where wi is a word
from Arg1 and wj a word from Arg2. Unlike their
study, we limit the collection of word pair statis-
tics to occurrences only in the PDTB corpus.

4.1 Feature Selection
For the collection of production rules, dependency
rules, and word pairs, we used a frequency cutoff
of 5 to remove infrequent features. From the im-
plicit relation dataset of the training sections (i.e.,
Sec. 2 – 21), we extracted 11,113 production rules,
5,031 dependency rules, and 105,783 word pairs
in total. We applied mutual information (MI) to
these three classes of features separately, resulting
in three ranked lists. A feature f has 11 MI values
with all 11 types (for example, MI(f, Cause) and
MI(f,Restatement)), and we used the MI with
the highest value for a feature to select features. In
our experiments, the top features from the lists are
used in the training and test phases.

5 Experiments

We experimented with a maximum entropy clas-
sifier from the OpenNLP MaxEnt package using
various combinations of features to assess their ef-
ficacy. We used PDTB Sections 2 – 21 as our train-
ing set and Section 23 as the test set, and only used
the implicit discourse relations.

In the PDTB, about 2.2% of the implicit rela-
tions are annotated with two types, as shown in
Example 7 in Section 6. During training, a relation
that is annotated with two types is considered as
two training instances, each with one of the types.
During testing, such a relation is considered one
test instance, and if the classifier assigns either of
the two types, we consider it as correct. Thus, the
test accuracy is calculated as the number of cor-
rectly classified test instances divided by the total
number of test instances.

In our work, we use the majority class as
the baseline, where all instances are classified as
Cause. This yields an accuracy of 26.1% on the
test set. A random baseline yields an even lower
accuracy of 9.1% on the test set.

5.1 Results and Analysis
To check the efficacy of the different feature
classes, we trained individual classifiers on all fea-
tures within a single feature class (Rows 1 to 4
in Table 3) as well as a single classifier trained
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with all features from all feature classes (Row 5).
Among the four individual feature classes, produc-
tion rules and word pairs yield significantly better
performance over the baseline with p < 0.01 and
p < 0.05 respectively, while context features per-
form slightly better than the baseline.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 11,113 – – No 36.7%
R2 – 5,031 – No 26.0%
R3 – – 105,783 No 30.3%
R4 – – – Yes 28.5%
R5 11,113 5,031 105,783 Yes 35.0%

Table 3: Classification accuracy with all features
from each feature class. Rows 1 to 4: individual
feature class; Row 5: all feature classes.

Interestingly, we noted that the performance
with all dependency rules is slightly lower than
the baseline (Row 2), and applying all feature
classes does not yield the highest accuracy (Row
5), which we suspected were due to noise. To con-
firm this, we employed MI to select the top 100
production rules and dependency rules, and the top
500 word pairs (as word pairs are more sparse).
We then repeated the same set of experiments, as
shown in Table 4 (Row 4 of this table is repeated
from Table 3 for consistency). With only the top
features, production rules, dependency rules, and
word pairs all gave significant improvement over
the baseline with p < 0.01. When we used all
feature classes, as in the last row, we obtained the
highest accuracy of 40.2%.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 – 100 – No 32.4%
R3 – – 500 No 32.9%
R4 – – – Yes 28.5%
R5 100 100 500 Yes 40.2%

Table 4: Classification accuracy with top
rules/word pairs for each feature class. Rows 1
to 4: individual feature class; Row 5: all feature
classes.

Table 4 also validates the pattern of predictive-
ness of the feature classes: production rules con-
tribute the most to the performance individually,
followed by word pairs, dependency rules, and fi-
nally, context features. A natural question to ask is
whether any of these feature classes can be omit-
ted to achieve the same level of performance as
the combined classifier. To answer this question,
we conducted a final set of experiments, in which
we gradually added in feature classes in the or-

der of their predictiveness (i.e., production rules
� word pairs � dependency rules � context fea-
tures), with results shown in Table 5. These results
confirm that each additional feature class indeed
contributes a marginal performance improvement,
(although it is not significant) and that all feature
classes are needed for optimal performance.

# Production # Dependency # Word Context Acc.
rules rules pairs

R1 100 – – No 38.4%
R2 100 – 500 No 38.9%
R3 100 100 500 No 39.0%
R4 100 100 500 Yes 40.2%

Table 5: Accuracy with feature classes gradually
added in the order of their predictiveness.

Note that Row 3 of Table 3 corresponds to
Marcu and Echihabi (2002)’s system which ap-
plies only word pair features. The difference is
that they used a Naı̈ve Bayes classifier while we
used a maximum entropy classifier. As we did
not implement their Naı̈ve Bayes classifier, we
compare their method’s performance using the re-
sult from Table 3 Row 3 with ours from Table 5
Row 4, which shows that our system significantly
(p < 0.01) outperforms theirs.

Level 2 Type Precision Recall F1 Count in
test set

Asynchronous 0.50 0.08 0.13 13
Synchrony – – – 5
Cause 0.39 0.76 0.51 200
Pragmatic Cause – – – 5
Contrast 0.61 0.09 0.15 127
Concession – – – 5
Conjunction 0.30 0.51 0.38 118
Instantiation 0.67 0.39 0.49 72
Restatement 0.48 0.27 0.35 190
Alternative – – – 15
List 0.80 0.13 0.23 30
All (Micro Avg.) 0.40 0.40 0.40 780

Table 6: Recall, precision, F1, and counts for 11
Level 2 relation types. “–” indicates 0.00.

Table 6 shows the recall, precision, and F1 mea-
sure for the 11 individual Level 2 relation types
in the final experiment set up (Row 4 from Ta-
ble 5). A point worth noting is that the classi-
fier labels no instances of the Synchrony, Prag-
matic Cause, Concession, and Alternative relation
types. The reason is that the percentages for these
four types are so small that the classifier is highly
skewed towards the other types. From the distribu-
tion shown in Table 1, there are just 4.76% training
data for these four types, but 95.24% for the re-
maining seven types. In fact, only 30 test instances
are labeled with these four types, as shown in the
last column of Table 6. As Cause is the most pre-
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dominant type in the training data, the classifier
tends to label uncertain relations as Cause, thus
giving Cause high recall but low precision. We see
that the F measures correlate well with the train-
ing data frequency, thus we hypothesize that ac-
curacy may improve if more training data for low
frequency relations can be provided.

Our work differs from that of (Pitler et al., 2009)
in that our system performs classification at the
more fine-grained Level 2 types, instead of the
coarse-grained Level 1 classes. Their system ap-
plies a Naı̈ve Bayes classifier whereas our system
uses a maximum entropy classifier, and the sets of
features used are also different. In addition, the
data set of (Pitler et al., 2009) includes EntRel
and AltLex, which are relations in which an im-
plicit connective cannot be inserted between ad-
jacent sentences, whereas ours excludes EntRel
and AltLex.

6 Discussion: Why are implicit discourse
relations difficult to recognize?

In the above experiments, we have shown that by
using the four feature classes, we are able to in-
crease the classification accuracy from 26.1% of
the majority baseline to 40.2%. Although we feel
a 14.1 absolute percentage improvement is a solid
result, an accuracy of 40% does not allow down-
stream NLP applications to trust the output of such
a classification system.

To understand the difficulties of the task more
deeply, we analyzed individual training and val-
idation data pairs, from which we were able to
generalize four challenges to automated implicit
discourse relation recognition. We hope that this
discussion may motivate future work on implicit
discourse relation recognition.

Ambiguity. There is ambiguity among the rela-
tions. For example, we notice that a lot of Contrast
relations are mistakenly classified as Conjunction.
When we analyzed these relations, we observed
that Contrast and Conjunction in the PDTB anno-
tation are very similar to each other in terms of
words, syntax, and semantics, as Examples 5 and
6 show. In both examples, the same antonymous
verb pair is used (fell and rose), different subjects
are mentioned in Arg1 and Arg2 (net and revenue
in the first example, and net and sales in the sec-
ond), and these subjects are all compared to like
items from the previous year. Moreover, the im-
plicit discourse connective given by the annotators

is while in both cases, which is an ambiguous con-
nective as shown in (Miltsakaki et al., 2005).

(5) Arg1: In the third quarter, AMR said, net
fell to $137 million, or $2.16 a share, from
$150.3 million, or $2.50 a share.
Arg2: [while] Revenue rose 17% to $2.73
billion from $2.33 billion a year earlier.

(Contrast - wsj 1812)

(6) Arg1: Dow’s third-quarter net fell to $589
million, or $3.29 a share, from $632 million,
or $3.36 a share, a year ago.
Arg2: [while] Sales in the latest quarter rose
2% to $4.25 billion from $4.15 billion a year
earlier.

(Conjunction - wsj 1926)

Relation ambiguity may be ameliorated if an in-
stance is analyzed in context. However, according
to the PDTB annotation guidelines, if the annota-
tors could not disambiguate between two relation
types, or if they felt both equally reflect their un-
derstanding of the relation between the arguments,
they could annotate two types to the relation. In
the whole PDTB corpus, about 5.4% of the ex-
plicit relations and 2.2% of the implicit relations
are annotated with two relation types. Example 7
is such a case where the implicit connective mean-
while may be interpreted as expressing a Conjunc-
tion or Contrast relation.

(7) Arg1: Sales surged 40% to 250.17 billion
yen from 178.61 billion.
Arg2: [meanwhile] Net income rose 11% to
29.62 billion yen from 26.68 billion.

(Conjunction; Contrast - wsj 2242)

Inference. Sometimes inference and a knowl-
edge base are required to resolve the relation type.
In Example 8, to understand that Arg2 is a re-
statement of Arg1, we need a semantic mechanism
to show that either the semantics of Arg1 infers
that of Arg2 or the other way around. In the be-
low example, I had calls all night long infers I
was woken up every hour semantically, as shown
in: receive call(I) ∧ duration(all night) ⇒
woken up(I) ∧ duration(every hour).

(8) Arg1: “I had calls all night long from the
States,” he said.
Arg2: “[in fact] I was woken up every hour
– 1:30, 2:30, 3:30, 4:30.”

(Restatement - wsj 2205)
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In fact, most relation types can be represented
using formal semantics (PDTB-Group, 2007), as
shown in Table 7, where |Arg1| and |Arg2| repre-
sent the semantics extracted from Arg1 and Arg2,
respectively. This kind of formal semantic reason-
ing requires a robust knowledge base, which is still
beyond our current technology.

Relation type Semantic representation
Cause |Arg1| ≺ |Arg2| ∨ |Arg2| ≺ |Arg1|
Concession A ≺ C ∧ B ⇒ ¬C

where A ∈ |Arg1|, B ∈ |Arg2|
Instantiation exemplify(|Arg2|, λx.x ∈ E)

where E = extract(|Arg1|)
Restatement |Arg1| ⇒ |Arg2| ∨ |Arg1| ⇐ |Arg2|
Alternative |Arg1| ∧ |Arg2| ∨ |Arg1| ⊕ |Arg2|

Table 7: Some examples of relation types with
their semantic representations, as taken from
(PDTB-Group, 2007).

Context. PDTB annotators adopted the Mini-
mality Principle in argument selection, according
to which they only included in the argument the
minimal span of text that is sufficient for the in-
terpretation of the relation. While the context is
not necessary to interpret the relation, it is usually
necessary to understand the meaning of the argu-
ments. Without an analysis of the context, Arg1
and Arg2 may seem unconnected, as the follow-
ing example shows, where the meaning of Arg1 is
mostly derived from its previous context (i.e., West
German ... technical reactions).

(9) Prev. Context: West German Economics
Minister Helmut Haussmann said, “In my
view, the stock market will stabilize
relatively quickly. There may be one or other
psychological or technical reactions,
Arg1: but they aren’t based on
fundamentals.
Arg2: [in short] The economy of West
Germany and the EC European Community
is highly stable.”

(Conjunction - wsj 2210)

Sometimes the range of the context may eas-
ily extend to the whole text, which would require
a system to possess a robust context modeling
mechanism. In Example 10, in order to realize
the causal relation between Arg2 and Arg1, we
possibly need to read the whole article and under-
stand what was happening: the machinist union
was having a strike and the strike prevented most
of its union members from working.

(10) Arg1: And at the company’s Wichita, Kan.,
plant, about 2,400 of the 11,700 machinists
still are working, Boeing said.
Arg2: [because] Under Kansas
right-to-work laws, contracts cannot require
workers to be union members.

(Cause - wsj 2208)

World Knowledge. Sometimes even context
modeling is not enough. We may also need world
knowledge to understand the arguments and hence
to interpret the relation. In the following example,
from the previous sentence of Arg1, it is reported
that “the Senate voted to send a delegation of con-
gressional staffers to Poland to assist its legisla-
ture”, and this delegation is viewed as a “gift” in
Arg1. It is suggested in Arg2 that the Poles might
view the delegation as a “Trojan Horse”. Here we
need world knowledge to understand that “Trojan
Horse” is usually applied as a metaphor for a per-
son or thing that appears innocent but has harm-
ful intent, and hence understand that Arg2 poses a
contrasting view of the delegation as Arg1 does.

(11) Arg1: Senator Pete Domenici calls this
effort “the first gift of democracy”.
Arg2: [but] The Poles might do better to
view it as a Trojan Horse.

(Contrast - wsj 2237)

These four classes of difficulties – ambiguity
between relations, inference, contextual modeling,
and world knowledge – show that implicit dis-
course relation classification needs deeper seman-
tic representations, more robust system design,
and access to more external knowledge. These ob-
stacles may not be restricted to recognizing im-
plicit relations, but are also applicable to other re-
lated discourse-centric tasks.

7 Conclusion

We implemented an implicit discourse relation
classifier and showed initial results on the recently
released Penn Discourse Treebank. The features
we used include the modeling of the context of re-
lations, features extracted from constituent parse
trees and dependency parse trees, and word pair
features. Our classifier achieves an accuracy of
40.2%, a 14.1% absolute improvement over the
baseline. We also conducted a data analysis and
discussed four challenges that need to be ad-
dressed in future to overcome the difficulties of
implicit relation classification in the PDTB.

350



References
Marie-Catherine de Marneffe, Bill MacCartney, and

Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
In Proceedings of the Fifth International Confer-
ence on Language Resources and Evaluation (LREC
2006), pages 449–454.

Jerry R. Hobbs. 1990. Literature and cognition. In
CSLI Lecture Notes Number 21. CSLI Publications.

Zheng Ping Jiang and Hwee Tou Ng. 2006. Semantic
role labeling of NomBank: A maximum entropy ap-
proach. In Proceedings of the 2006 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2006), pages 138–145, Sydney, Australia.

Alistair Knott and Ted Sanders. 1998. The classifica-
tion of coherence relations and their linguistic mark-
ers: An exploration of two languages. Journal of
Pragmatics, 30(2):135–175.

Alex Lascarides and Nicholas Asher. 1993. Temporal
interpretation, discourse relations and commonsense
entailment. Linguistics and Philosophy, 16(5):437–
493.

Alan Lee, Rashmi Prasad, Aravind Joshi, Nikhil Di-
nesh, and Bonnie Webber. 2006. Complexity of
dependencies in discourse: Are dependencies in dis-
course more complex than in syntax? In Proceed-
ings of the 5th International Workshop on Treebanks
and Linguistic Theories, Prague, Czech Republic,
December.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical Structure Theory: Toward a functional
theory of text organization. Text, 8(3):243–281.

Daniel Marcu and Abdessamad Echihabi. 2002. An
unsupervised approach to recognizing discourse re-
lations. In Proceedings of the 40th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2002), pages 368–375, Morristown, NJ, USA.

Daniel Marcu. 1998. A surface-based approach to
identifying discourse markers and elementary tex-
tual units in unrestricted texts. In Proceedings of the
COLING-ACL 1998 Workshop on Discourse Rela-
tions and Discourse Markers, pages 1–7, Montreal,
Canada, August.

Eleni Miltsakaki, Nikhil Dinesh, Rashmi Prasad, Ar-
avind Joshi, and Bonnie Webber. 2005. Experi-
ments on sense annotations and sense disambigua-
tion of discourse connectives. In Proceedings of the
Fourth Workshop on Treebanks and Linguistic The-
ories (TLT2005), Barcelona, Spain, December.

Alessandro Moschitti. 2004. A study on convolu-
tion kernels for shallow semantic parsing. In Pro-
ceedings of the 42nd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2004),
Barcelona, Spain.

PDTB-Group, 2007. The Penn Discourse Treebank 2.0
Annotation Manual. The PDTB Research Group,
December.

Emily Pitler, Mridhula Raghupathy, Hena Mehta, Ani
Nenkova, Alan Lee, and Aravind Joshi. 2008. Eas-
ily identifiable discourse relations. In Proceedings
of the 22nd International Conference on Compu-
tational Linguistics (COLING 2008), Manchester,
UK, August.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.
Automatic sense prediction for implicit discourse
relations in text. To appear in Proceedings of the
Joint Conference of the 47th Annual Meeting of the
Association for Computational Linguistics and the
4th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing (ACL-IJCNLP 2009).

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bon-
nie Webber. 2008. The Penn Discourse Treebank
2.0. In Proceedings of the 6th International Confer-
ence on Language Resources and Evaluation (LREC
2008).

Manami Saito, Kazuhide Yamamoto, and Satoshi
Sekine. 2006. Using phrasal patterns to iden-
tify discourse relations. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT-NAACL 2006), pages 133–
136, New York, USA, June.

Bonnie Webber. 2004. D-LTAG: Extending lex-
icalized TAG to discourse. Cognitive Science,
28(5):751–779, September.

Ben Wellner, James Pustejovsky, Catherine Havasi,
Anna Rumshisky, and Roser Sauri. 2006. Clas-
sification of discourse coherence relations: An ex-
ploratory study using multiple knowledge sources.
In Proceedings of the 7th SIGdial Workshop on Dis-
course and Dialogue, Sydney, Australia, July.

Florian Wolf and Edward Gibson. 2005. Representing
discourse coherence: a corpus-based analysis. In
Proceedings of the 20th International Conference on
Computational Linguistics (COLING 2004), pages
134–140, Morristown, NJ, USA.

351


