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Abstract

This work investigates design choices in
modeling a discourse scheme for im-
proving opinion polarity classification.
For this, two diverse global inference
paradigms are used: a supervised collec-
tive classification framework and an un-
supervised optimization framework. Both
approaches perform substantially better
than baseline approaches, establishing the
efficacy of the methods and the underlying
discourse scheme. We also present quan-
titative and qualitative analyses showing
how the improvements are achieved.

1 Introduction

The importance of discourse in opinion analy-
sis is being increasingly recognized (Polanyi and
Zaenen, 2006). Motivated by the need to en-
able discourse-based opinion analysis, previous
research (Asher et al., 2008; Somasundaran et al.,
2008) developed discourse schemes and created
manually annotated corpora. However, it was not
known whether and how well these linguistic ideas
and schemes can be translated into effective com-
putational implementations.

In this paper, we first investigate ways in which
an opinion discourse scheme can be computation-
ally modeled, and then how it can be utilized to
improve polarity classification. Specifically, the
discourse scheme we use is from Somasundaran
et al. (2008), which was developed to support a
global, interdependent polarity interpretation. To
achieve discourse-based global inference, we ex-
plore two different frameworks. The first is a
supervised framework that learns interdependent
opinion interpretations from training data. The
second is an unsupervised optimization frame-
work which uses constraints to express the ideas
of coherent opinion interpretation embodied in the

scheme. For the supervised framework, we use It-
erative Collective Classification (ICA), which fa-
cilitates machine learning using relational infor-
mation. The unsupervised optimization is imple-
mented as an Integer Linear Programming (ILP)
problem. Via our implementations, we aim to
empirically test if discourse-based approaches to
opinion analysis are useful.

Our results show that both of our implemen-
tations achieve significantly better accuracies in
polarity classification than classifiers using local
information alone. This confirms the hypothesis
that the discourse-based scheme is useful, and also
shows that both of our design choices are effective.
We also find that there is a difference in the way
ICA and ILP achieve improvements, and a simple
hybrid approach, which incorporates the strengths
of both, is able to achieve significant overall im-
provements over both. Our analyses show that
even when our discourse-based methods bootstrap
from noisy classifications, they can achieve good
improvements.

The rest of this paper is organized as follows:
we discuss related work in Section 2 and the
discourse scheme in Section 3. We present our
discourse-based implementations in Section 4, ex-
periments in Section 5, discussions in Section 6
and conclusions in Section 7.

2 Related Work

Previous work on polarity disambiguation has
used contextual clues and reversal words (Wil-
son et al., 2005; Kennedy and Inkpen, 2006;
Kanayama and Nasukawa, 2006; Devitt and Ah-
mad, 2007; Sadamitsu et al., 2008). However,
these do not capture discourse-level relations.

Researchers, such as (Polanyi and Zaenen,
2006), have discussed how the discourse struc-
ture can influence opinion interpretation; and pre-
vious work, such as (Asher et al., 2008; Soma-
sundaran et al., 2008), have developed annota-
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tion schemes for interpreting opinions with dis-
course relations. However, they do not empiri-
cally demonstrate how automatic methods can use
their ideas to improve polarity classification. In
this work, we demonstrate concrete ways in which
a discourse-based scheme can be modeled using
global inference paradigms.

Joint models have been previously explored for
other NLP problems (Haghighi et al., 2005; Mos-
chitti et al., 2006; Moschitti, 2009). Our global in-
ference model focuses on opinion polarity recog-
nition task.

The biggest difference between this work and
previous work in opinion analysis that use global
inference methods is in the type of linguistic
relations used to achieve the global inference.
Some of the work is not related to discourse
at all (e.g., lexical similarities (Takamura et al.,
2007), morphosyntactic similarities (Popescu and
Etzioni, 2005) and word-based measures like TF-
IDF (Goldberg and Zhu, 2006)). Others use
sentence cohesion (Pang and Lee, 2004), agree-
ment/disagreement between speakers (Thomas et
al., 2006; Bansal et al., 2008), or structural adja-
cency. In contrast, our work focuses on discourse-
based relations for global inference. Another dif-
ference from the above work is that our work is
over multi-party conversations.

Previous work on emotion and subjectivity
detection in multi-party conversations has ex-
plored using prosodic information (Neiberg et al.,
2006), combining linguistic and acoustic infor-
mation (Raaijmakers et al., 2008) and combining
lexical and dialog information (Somasundaran et
al., 2007). Our work is focused on harnessing
discourse-based knowledge and on interdependent
inference.

There are several collective classification
frameworks, including (Neville and Jensen, 2000;
Lu and Getoor, 2003; Taskar et al., 2004; Richard-
son and Domingos, 2006; Bilgic et al., 2007). In
this paper, we use an approach by (Lu and Getoor,
2003) which iteratively predicts class values using
local and relational features. ILP has been used
on other NLP tasks, e.g., (Denis and Baldridge,
2007; Choi et al., 2006; Roth and Yih, 2004). In
this work, we employ ILP for modeling discourse
constraints for polarity classification.

3 Discourse Scheme and Data

The scheme in Somasundaran et al. (2008) has
been developed and annotated over the AMI meet-
ing corpus (Carletta et al., 2005).1 This scheme
annotates opinions, their polarities (positive, neg-
ative, neutral) and their targets (a target is what
the opinion is about). The targets of opinions are
related via two types of relations: the same rela-
tion, which relates targets referring to the same
entity or proposition, and the alternative relation,
which relates targets referring to mutually exclu-
sive options in the context of the discourse. Ad-
ditionally, the scheme relates opinions via two
types of frame relations: the reinforcing and non-
reinforcing relations. The frame relations repre-
sent discourse scenarios: reinforcing relations ex-
ist between opinions when they contribute to the
same overall stance, while non-reinforcing rela-
tions exist between opinions that show ambiva-
lence.

The opinion annotations are text-span based,
while in this work, we use Dialog Act (DA) based
segmentation of meetings.2 As the DAs are our
units of classification, we map opinion annotations
to the DA units as follows. If a DA unit contains
an opinion annotation, the label is transferred up-
wards to the containing DA. When a DA contains
multiple opinion annotations, each with a differ-
ent polarity, one of them is randomly chosen as
the label for the DA. The discourse relations exist-
ing between opinions are also transferred upwards,
between the DAs containing each of these anno-
tations. We recreate an example from Somasun-
daran et al. (2008) using DA segmentation in Ex-
ample 1. Here, the speaker has a positive opinion
towards the rubbery material for the TV remote.

(1) DA-1: ... this kind of rubbery material,
DA-2: it’s a bit more bouncy,
DA-3: like you said they get chucked around a lot.
DA-4: A bit more durable and that can also be er-
gonomic and
DA-5: it kind of feels a bit different from all the
other remote controls.

In the example, the individual opinion expressions
(shown in bold) are essentially regarding the same
thing – the rubbery material. Thus, the explicit
targets (shown in italics), it’s, that, and it, and the
implicit target of a bit more durable are all linked

1The AMI corpus contains a set of scenario-based meet-
ings where participants have to design a new TV remote pro-
totype.

2DA segmentation is provided with the AMI corpus.
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Figure 1: Discourse Relations between DA seg-
ments for Example 1.

with same target relations. Also, notice that the
opinions reinforce a particular stance, i.e., a pro-
rubbery-material stance. Thus, the scheme links
the opinions via reinforcing relations. Figure 1 il-
lustrates the corresponding discourse relations be-
tween the containing DA units.

4 Implementing the Discourse Model

The hypothesis in using discourse information for
polarity classification is that the global discourse
view will improve upon a classification with only
a local view. Thus, we implement a local clas-
sifier to bootstrap the classification process, and
then implement classifiers that use discourse in-
formation from the scheme annotations, over it.
We explore two approaches for implementing our
discourse-based classifier. The first is ICA, where
discourse relations and the neighborhood informa-
tion brought in by these relations are incorporated
as features into the learner. The second approach
is ILP optimization, which tries to maximize the
class distributions predicted by the local classifier,
subject to constraints imposed by discourse rela-
tions. Both classifiers thus accommodate prefer-
ences of the local classifier and for coherence with
discourse neighbors.

4.1 Local Classifier

A supervised local classifier, Local, is used to pro-
vide the classifications to bootstrap the discourse-
based classifiers.3 It is important to make Local as
reliable as possible; otherwise, the discourse rela-
tions will propagate misclassifications. Thus, we
build Local using a variety of knowledge sources
that have been shown to be useful for opinion anal-
ysis in previous work. Specifically, we construct
features using polarity lexicons (used by (Wilson
et al., 2005)), DA tags (used by (Somasundaran

3Local is supervised, as previous work has shown that
supervised methods are effective in opinion analysis. Even
though this makes the final end-to-end system with the ILP
implementation semi-supervised, note that the discourse-
based ILP part is itself unsupervised.

et al., 2007)) and unigrams (used by many re-
searchers, e.g., (Pang and Lee, 2004)).

Note that, as our discourse-based classifiers at-
tempt to improve upon the local classifications,
Local is also a baseline for our experiments.

4.2 Iterative Collective Classification
We use a variant of ICA (Lu and Getoor, 2003;
Neville and Jensen, 2000), which is a collective
classification algorithm shown to perform consis-
tently well over a wide variety of relational data.

Algorithm 1 ICA Algorithm
for each instance i do {bootstrapping}

Compute polarity for i using local attributes
end for
repeat {iterative}

Generate ordering I over all instances
for each i in I do

Compute polarity for i using local and re-
lational attributes

end for
until Stopping criterion is met

ICA uses two classifiers: a local classifier and a
relational classifier. The local classifier is trained
to predict the DA labels using only the local fea-
tures. We use Local, described in Section 4.1, for
this purpose. The relational classifier is trained us-
ing the local features, and an additional set of fea-
tures commonly referred to as relational features.
The value of a relational feature, for a given DA,
depends on the polarity of the discourse neighbors
of that DA. Thus, the relational features incorpo-
rate discourse and neighbor information; that is,
they incorporate the information about the frame
and target relations in conjunction with the polar-
ity of the discourse neighbors. Intuitively, our mo-
tivation for this approach can be explained using
Example 1. Here, in interpreting the ambiguous
opinion a bit different as being positive, we use
the knowledge that it participates in a reinforc-
ing discourse, and that all its neighbors (e.g., er-
gonomic, durable) are positive opinions regard-
ing the same thing. On the other hand, if it had
been a non-reinforcing discourse, then the polar-
ity of a bit different, when viewed with respect to
the other opinions, could have been interpreted as
negative.

Table 1 lists the relational features we defined
for our experiments where each row represents a
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Percent of neighbors with polarity type a related via frame relation f ′

Percent of neighbors with polarity type a related via target relation t′

Percent of neighbors with polarity type a related via frame relation f and target relation t
Percent of neighbors with polarity type a and same speaker related via frame relation f ′

Percent of neighbors with polarity type a and same speaker related via target relation t′

Percent of neighbors with polarity type a related via a frame relation or target relation
Percent of neighbors with polarity type a related via a reinforcing frame relation or same target relation
Percent of neighbors with polarity type a related via a non-reinforcing frame relation or alt target relation
Most common polarity type of neighbors related via a same target relation
Most common polarity type of neighbors related via a reinforcing frame relation and same target relation

Table 1: Relational features: a ∈ {non-neutral (i.e., positive or negative), positive, negative}, t ∈ {same, alt},
f ∈ {reinforcing, non-reinforcing}, t′ ∈ {same or alt, same, alt}, f ′ ∈ {reinforcing or non-reinforcing, reinforcing, non-
reinforcing}

set of features. Features are generated for all com-
binations of a, t, t′, f and f ′ for each row. For
example, one of the features in the first row is Per-
cent of neighbors with polarity type positive, that
are related via a reinforcing frame relation. Thus,
each feature for the relational classifier identifies
neighbors for a given instance via a specific rela-
tion (f , t, f ′ or t′, obtained from the scheme an-
notations) and factors in their polarity values (a,
obtained from the classifier predictions from the
previous round). This adds a total of 59 relational
features to the already existing local features.

ICA has two main phases: the bootstrapping
and iterative phases. In the bootstrapping phase,
the polarity of each instance is initialized to the
most likely value given only the local classifier
and its features. In the iterative phase, we cre-
ate a random ordering of all the instances and,
in turn, apply the relational classifier to each in-
stance where the relational features, for a given
instance, are computed using the most recent po-
larity assignments of its neighbors. We repeat this
until some stopping criterion is met. For our ex-
periments, we use a fixed number of 30 iterations,
which has been found to be sufficient in most data
sets for ICA to converge to a solution.

The pseudocode for the algorithm is shown in
Algorithm 1.

4.3 Integer Linear Programming

First, we explain the intuition behind viewing dis-
course relations as enforcing constraints on polar-
ity interpretation. Then, we explain how the con-
straints are encoded in the optimization problem.

4.3.1 Discourse Constraints on Polarity
The discourse relations between opinions can pro-
vide coherence constraints on the way their polar-
ity is interpreted. Consider a discourse scenario
in which a speaker expresses multiple opinions

regarding the same thing, and is reinforcing his
stance in the process (as in Example 1). The set
of individual polarity assignments that is most co-
herent with this global scenario is the one where
all the opinions have the same (equal) polarity. On
the other hand, a pair of individual polarity assign-
ments most consistent with a discourse scenario
where a speaker reinforces his stance via opinions
towards alternative options, is one with opinions
having mutually opposite polarity. For instance,
in the utterance “Shapes should be curved, noth-
ing square-like”, the speaker reinforces his pro-
curved stance via his opinions about the alternative
shapes: curved and square-like. And, we see that
the first opinion is positive and the second is neg-
ative. Table 2 lists the discourse relations (target
and frame relation combinations) found in the cor-
pus, and the likely polarity interpretation for the
related instances.

Target relation + Frame relation Polarity
same+reinforcing equal (e)
same+non-reinforcing opposite (o)
alternative+reinforcing opposite (o)
alternative+non-reinforcing equal (e)

Table 2: Discourse relations and their polarity con-
straints on the related instances.

4.3.2 Optimization Problem
For each DA instance i in a dataset, the local
classifier provides a class distribution [pi, qi, ri],
where pi, qi and ri correspond to the probabilities
that i belongs to positive, negative and neutral cat-
egories, respectively. The optimization problem is
formulated as an ILP minimization of the objec-
tive function in Equation 1.

−1×
∑

i

(pixi+qiyi+rizi)+
∑
i,j

εij +
∑
i,j

δij (1)
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where the xi, yi and zi are binary class vari-
ables corresponding to positive, negative and neu-
tral classes, respectively. When a class variable
is 1, the corresponding class is chosen. Variables
εij and δij are binary slack variables that corre-
spond to the discourse constraints between two
distinct DA instances i and j. When a given slack
variable is 1, the corresponding discourse con-
straint is violated. Note that the objective func-
tion tries to achieve two goals. The first part
(
∑

i pixi + qiyi + rizi) is a maximization that tries
to choose a classification for the instances that
maximizes the probabilities provided by the local
classifier. The second part (

∑
i,j εij +

∑
i,j δij) is a

minimization that tries to minimize the number of
slack variables used, that is, minimize the number
of discourse constraints violated.

Constraints in Equations 2 and 3 listed below
impose binary constraints on the variables. The
constraint in Equation 4 ensures that, for each in-
stance i, only one class variable is set to 1.

xi ∈ {0, 1}, yi ∈ {0, 1}, zi ∈ {0, 1} , ∀i (2)

εij ∈ {0, 1}, δij ∈ {0, 1} , ∀i 6= j (3)

xi + yi + zi = 1 , ∀i (4)

We pair distinct DA instances i and j as ij,
and if there exists a discourse relation between
them, they can be subject to the corresponding po-
larity constraints listed in Table 2. For this, we
define two binary discourse-constraint constants:
the equal-polarity constant, eij and the opposite-
polarity constant, oij . If a given DA pair ij is
related by either a same+reinforcing relation or
an alternative+non-reinforcing relation (rows 1, 4
of Table 2), then eij = 1; otherwise it is zero.
Similarly, if it is related by either a same+non-
reinforcing relation or an alternative+reinforcing
relation (rows 2, 3 of Table 2), then oij = 1. Both
eij and oij are zero if the instance pair is unrelated
in the discourse.

For each DA instance pair ij, equal-polarity
constraints are applied to the polarity variables of i
(xi, yi) and j (xj , yj) via the following equations:

|xi − xj | ≤ 1− eij + εij , ∀i 6= j (5)

|yi − yj | ≤ 1− eij + εij , ∀i 6= j (6)

−(xi + yi) ≤ −li , ∀i (7)

When eij = 1, the Equation 5 constrains xi and
xj to be of the same value (both zero or both one).
Similarly, Equation 6 constrains yi and yj to be

of the same value. Via these equations, we ensure
that the instances i and j do not have the oppo-
site polarity when eij = 1. However, notice that,
if we use just Equations 5 and 6, the optimization
can converge to the same, non-polar (neutral) cat-
egory. To guide the convergence to the same polar
(positive or negative) category, we use Equation 7.
Here li = 1 if the instance i participates in one or
more discourse relations. When eij = 0, xi and xj

(and yi and yj), can take on assignments indepen-
dently of one another. Notice that both constraints
5 and 6 are relaxed when εij = 1; thus, xi and xj

(or yi and yj) can take on values independently of
one another, even if eij = 1.

Next, the opposite-polarity constraints are ap-
plied via the following equations:

|xi + xj − 1| ≤ 1− oij + δij , ∀i 6= j (8)

|yi + yj − 1| ≤ 1− oij + δij , ∀i 6= j (9)

In the above equations, when oij = 1, xi and xj

(and yi and yj) take on opposite values; for exam-
ple, if xi = 1 then xj = 0 and vice versa. When
oij = 0, the variable assignments are independent
of one another. This set of constraints is relaxed
when δij = 1.

In general, in our ILP formulation, notice that
if an instance does not have a discourse relation to
any other instance in the data, its classification is
unaffected by the optimization. Also, as the un-
derlying discourse scheme poses constraints only
on the interpretation of the polarity of the related
instances, discourse constraints are applied only to
the polarity variables x and y, and not to the neu-
tral class variable, z. Finally, even though slack
variables are used, we discourage the ILP system
from indiscriminately setting the slack variables to
1 by making them a part of the objective function
that is minimized.

5 Experiments

In this work, we are particularly interested in
improvements due to discourse-based methods.
Thus, we report performance under three con-
ditions: over only those instances that are re-
lated via discourse relations (Connected), over in-
stances not related via discourse relations (Single-
tons), and over all instances (All).

The annotated data consists of 7 scenario-based,
multi-party meetings from the AMI meeting cor-
pus. We filter out very small DAs (DAs with fewer
than 3 tokens, punctuation included). This gives
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us a total of 4606 DA instances, of which 1935
(42%) have opinion annotations. For our exper-
iments, the DAs with no opinion annotations as
well as those with neutral opinions are considered
as neutral. Table 3 shows the class distributions in
the data for the three conditions.

Pos Neg Neutral Total
Connected 643 343 81 1067
Singleton 553 233 2753 3539
All 1196 576 2834 4606

Table 3: Class distribution over connected, single
and all instances.

5.1 Classifiers
Our first baseline, Base, is a simple distribution-
based classifier that classifies the test data based
on the overall distribution of the classes in the
training data. However, in Table 3, the class distri-
bution is different for the Connected and Single-
ton conditions. We incorporate this in a smarter
baseline, Base-2, which constructs separate dis-
tributions for connected instances and singletons.
Thus, given a test instance, depending on whether
it is connected, Base-2 uses the corresponding dis-
tribution to make its prediction.

The third baseline is the supervised classifier,
Local, described in Section 4.1. It is imple-
mented using the SVM classifiers from the Weka
toolkit (Witten and Frank, 2002).4 Our super-
vised discourse-based classifier, ICA from Sec-
tion 4.2, also uses a similar SVM implemen-
tation for its relational classifier. We imple-
ment our ILP approach from Section 4.3 us-
ing the optimization toolbox from Mathworks
(http://www.mathworks.com) and GNU Linear
Programming Kit.

We observed that the ILP system performs bet-
ter than the ICA system on instances that are con-
nected, while ICA performs better on singletons.
Thus, we also implemented a simple hybrid clas-
sifier (HYB), which selects the ICA prediction for
classification of singletons and the ILP prediction
for classification of connected instances.

5.2 Results
We performed 7-fold cross validation experi-
ments, where six meetings are used for training

4We use the SMO implementation, which, when used
with the logistic regression, has an output that can be viewed
as a posterior probability distribution.

and the seventh is used for testing the supervised
classifiers (Base, Base-2, Local and ICA). In the
case of ILP, the optimization is applied to the out-
put of Local for each test fold. Table 4 reports the
accuracies of the classifiers, averaged over 7 folds.

First, we observe that Base performs poorly
over connected instances, but performs consider-
ably better over singletons. This is expected as the
overall majority class is neutral and the singletons
are more likely to be neutral. Base-2, which incor-
porates the differentiated distributions, performs
substantially better than Base. Local achieves an
overall performance improvement over Base and
Base-2 by 23 percentage points and 9 percent-
age points, respectively. In general, Local outper-
forms Base for all three conditions (p < 0.001),
and Base-2 for the Singleton and All conditions
(p < 0.001). This overall improvement in Local’s
accuracy corroborates the utility of the lexical, un-
igram and DA based features for polarity detection
in this corpus.

Turning to the discourse-based classifiers, ICA,
ILP and HYB, all of these perform better than
Base and Base-2 for all conditions. ICA improves
over Local by 9 percentage points for Connected,
3 points for Singleton and 4 points for All. ILP’s
improvement over Local for Connected and All is
even more substantial: 28 percentage points and
6 points, respectively. Notice that ILP has the
same performance as Local for Singletons, as the
discourse constraints are not applied over uncon-
nected instances. Finally, HYB significantly out-
performs Local under all conditions. The signif-
icance levels of the improvements over Local are
highlighted in Table 4. These improvements also
signify that the underlying discourse scheme is
effective, and adaptable to different implementa-
tions.

Interestingly, ICA and ILP improve over Local
in different ways. While ILP sharply improves the
performance over the connected instances, ICA
shows relatively modest improvements over both
connected and singletons. ICA’s improvement
over singletons is interesting because it indicates
that, even though the features in Table 1 are fo-
cused on discourse relations, ICA utilizes them to
learn the classification of singletons too.

Comparing our discourse-based approaches,
ILP does significantly better than ICA over con-
nected instances (p < 0.001), while ICA does
significantly better than ILP over singletons (p <
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Base Base-2 Local ICA ILP HYB
Connected 24.4 47.56 46.66 55.64 75.07 75.07
Singleton 51.72 63.23 75.73 78.72 75.73 78.72
All 45.34 59.46 68.72 73.31 75.35 77.72

Table 4: Accuracies of the classifiers measured over Connected, Singleton and All instances. Perfor-
mance significantly better than Local are indicated in bold for p < 0.001 and underline for p < 0.01.

0.01). However, there is no significant difference
between ICA and ILP for the All condition. The
HYB classifier outperforms ILP for the Singleton
condition (p < 0.01) and ICA for the Connected
condition (p < 0.001). Interestingly, over all in-
stances (the All condition), HYB also performs
significantly better than both ICA (p < 0.001) and
ILP (p < 0.01).

5.3 Analysis

Amongst our two approaches, ILP performs bet-
ter, and hence we further analyze its behavior to
understand how the improvements are achieved.
Table 5 reports the performance of ILP and Local
for the precision, recall and f-measure metrics (av-
eraged over 7 test folds), measured separately for
each of the opinion categories. The most promi-
nent improvement by ILP is observed for the re-
call of the polar categories under the Connected
condition: 40 percentage points for the positive
class, and 29 percentage points for the negative
class. The gain in recall is not accompanied by
a significant loss in precision. This results in an
improvement in f-measure for the polar categories
(24 points for positive and 16 points for negative).
Also note that, by virtue of the constraint in Equa-
tion 7, ILP does not classify any connected in-
stance as neutral; thus the precision is NaN, recall
is 0 and the f-meaure is NaN. This is indicated as
* in the Table.

The improvement of ILP for the All condition,
for the polar classes, follows a similar trend for re-
call (18 to 21 point improvement) and f-measure
(9 to 13 point improvement). In addition to this,
the ILP has an overall improvement in precision
over Local. This may seem counterintuitive, as
in Table 5, ILP’s precision for connected nodes is
similar to, or lower than, that of Local. This is
explained by the fact that, while going from con-
nected to overall conditions, Local’s polar predic-
tions increase by threefold (565 to 1482), but its
correct polar predictions increase by only twofold
(430 to 801). Thus, the ratio of change in the total

Gold Local
Pos Neg Neut Total

Pos 551 113 532 1196
Neg 121 250 205 576
Neut 312 135 2387 2834
Total 984 498 3124 4606
Gold ILP

Pos Neg Neut Total
Pos 817 157 222 1196
Neg 147 358 71 576
Neut 358 147 2329 2834
Total 1322 662 2622 4606

Table 6: Contingency table over all instances.

polar predictions to the correct polar predictions is
3 : 2. On the other hand, while polar predictions
by ILP increase by only twofold (1067 to 1984),
its correct polar predictions increase by 1.5 times
(804 to 1175). Here, the ratio of change in the total
polar predictions to the correct polar predictions is
4 : 3, a smaller ratio.

The contingency table (Table 6) shows how Lo-
cal and ILP compare against the gold standard
annotations. Notice here, that even though ILP
makes more polar guesses as compared to Local, a
greater proportion of the ILP guesses are correct.
The number of non-diagonal elements are much
smaller for ILP, resulting in the accuracy improve-
ments seen in Table 4.

6 Examples and Discussion

The results in Table 4 show that Local, which pro-
vides the classifications for bootstrapping ICA and
ILP, predicts an incorrect class for more than 50%
of the connected instances. Methods starting with
noisy starting points are in danger of propagating
the errors and hence worsening the performance.
Interestingly, in spite of starting with so many bad
classifications, ILP is able to achieve a large per-
formance improvement. We discovered that, given
a set of connected instances, even when Local has
only one correct guess, ILP is able to use this to
rectify the related instances. We illustrate this situ-
ation in Figure 2, which reproduces the connected
DAs for Example 1. It shows the classifications
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Positive Negative Neutral
Local ILP Local ILP Local ILP

Connected-Prec 78.1 78.2 71.9 69.8 12.1
Connected-Recall 45.3 86.3 44.1 73.4 62.8 *
Connected-F1 56.8 81.5 54.0 70.7 18.5
All-Prec 56.2 61.3 52.3 54.6 76.3 88.3
All-Recall 46.6 67.7 44.3 62.5 83.9 81.5
All-F1 50.4 64.0 46.0 57.1 79.6 84.6

Table 5: Precision, Recall, Fmeasure for each Polarity category. Performance significantly better than
Local are indicated in bold (p < 0.001), underline (p < 0.01) and italics (p < 0.05). The * denotes that
ILP does not retrieve any connected node as neutral.

Figure 2: Discourse Relations and Classifications
for Example 1.

for each DA from the gold standard (G), the Local
classifier (L) and the ILP classifier (ILP). Observe
that Local predicts the correct positive class (+) for
only DA-4 (the DA containing bit more durable
and ergonomic). Notice that these are clear cases
of positive evaluation. It incorrectly predicts the
polarity of DA-2 (containing bit more bouncy)
as neutral (*), and DA-5 (containing a bit dif-
ferent from all the other remote controls) as
negative (-). DA-2 and DA-5 exemplify the fact
that polarity classification is a complex and diffi-
cult problem: being bouncy is a positive evalua-
tion in this particular discourse context, and may
not be so elsewhere. Thus, naturally, lexicons and
unigram-based learning would fail to capture this
positive evaluation. Similarly, “being different”
could be deemed negative in other discourse con-
texts. However, ILP is able to arrive at the correct
predictions for all the instances. As the DA-4 is
connected to both DA-2 and DA-5 via a discourse
relation that enforces an equal-polarity constraint
(same+reinforcing relation of row 1, Table 2), both
of the misclassifications are rectified. Presumably,
the incorrect predictions made by Local are low
confidence estimates, while the predictions of the
correct cases have high confidence, which makes
it possible for ILP to make the corrections.

We also observed the propagation of the correct
classification for other types of discourse relations,

for more complex types of connectivity, and also
for conditions where an instance is not directly
connected to the correctly predicted instance. The
meeting snippet below (Example 2) and its cor-
responding DA relations (Figure 3) illustrate this.
This example is a reinforcing discourse where the
speaker is arguing for the number keypad, which is
an alternative to the scrolling option. Thus, he ar-
gues against the scrolling, and argues for entering
the number (which is a capability of the number
keypad).

(2) D-1: I reckon you’re gonna have to have a num-
ber keypad anyway for the amount of channels these
days,
D-2: You wouldn’t want to just have to scroll
through all the channels to get to the one you want
D-3: You wanna enter just the number of it , if you
know it
D-4: I reckon we’re gonna have to have a number
keypad anyway

In Figure 3, we see that, DA-2 is connected via an
alternative+reinforcing discourse relation to each
of its neighbors DA-1 and DA-3, which encour-
ages the optimization to choose a class for it that
is opposite to DA-1 and DA-3. Notice also, that
even though Local predicts only DA-4 correctly,
this correct classification finally influences the cor-
rect choice for all the instances, including the re-
motely connected DA-2.

7 Conclusions and Future Work

This work focuses on the first step to ascertain
whether discourse relations are useful for improv-
ing opinion polarity classification, whether they
can be modeled and what modeling choices can
be used. To this end, we explored two distinct
paradigms: the supervised ICA and the unsuper-
vised ILP. We showed that both of our approaches
are effective in exploiting discourse relations to
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Figure 3: Discourse Relations and Classifications for Example 2.

significantly improve polarity classification. We
found that there is a difference in how ICA and
ILP achieve improvements, and that combining
the two in a hybrid approach can lead to further
overall improvement. Quantitatively, we showed
that our approach is able to achieve a large in-
crease in recall of the polar categories without
harming the precision, which results in the perfor-
mance improvements. Qualitatively, we illustrated
how, even if the bootstrapping process is noisy,
the optimization and discourse constraints effec-
tively rectify the misclassifications. The improve-
ments of our diverse global inference approaches
indicate that discourse information can be adapted
in different ways to augment and improve existing
opinion analysis techniques.

The automation of the discourse-relation recog-
nition is the next step in this research. The be-
havior of ICA and ILP can change, depending on
the automation of discourse level recognition. The
implementation and comparison of the two meth-
ods under full automation is the focus of our future
work.
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