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Abstract

Because of the importance of protein-
protein interaction (PPI) extraction from
text, many corpora have been proposed
with slightly differing definitions of pro-
teins and PPI. Since no single corpus is
large enough to saturate a machine learn-
ing system, it is necessary to learn from
multiple different corpora. In this paper,
we propose a solution to this challenge.
We designed a rich feature vector, and we
applied a support vector machine modi-
fied for corpus weighting (SVM-CW) to
complete the task of multiple corpora PPI
extraction. The rich feature vector, made
from multiple useful kernels, is used to
express the important information for PPI
extraction, and the system with our fea-
ture vector was shown to be both faster
and more accurate than the original kernel-
based system, even when using just a sin-
gle corpus. SVM-CW learns from one cor-
pus, while using other corpora for support.
SVM-CW is simple, but it is more effec-
tive than other methods that have been suc-
cessfully applied to other NLP tasks ear-
lier. With the feature vector and SVM-
CW, our system achieved the best perfor-
mance among all state-of-the-art PPI ex-
traction systems reported so far.

1 Introduction

The performance of an information extraction pro-
gram is highly dependent on various factors, in-
cluding text types (abstracts, complete articles, re-
ports, etc.), exact definitions of the information to
be extracted, shared sub-topics of the text collec-
tions from which information is to be extracted.

Even if two corpora are annotated in terms of the
same type of information by two groups, the per-
formance of a program trained by one corpus is
unlikely to be reproduced in the other corpus. On
the other hand, from a practical point of view, it is
worth while to effectively use multiple existing an-
notated corpora together, because it is very costly
to make new annotations.

One problem with several different corpora is
protein-protein interaction (PPI) extraction from
text. While PPIs play a critical role in un-
derstanding the working of cells in diverse bio-
logical contexts, the manual construction of PPI
databases such as BIND, DIP, HPRD, IntAct, and
MINT (Mathivanan et al., 2006) is known to be
very time-consuming and labor-intensive. The au-
tomatic extraction of PPI from published papers
has therefore been a major research topic in Natu-
ral Language Processing for Biology (BioNLP).

Among several PPI extraction task settings, the
most common is sentence-based, pair-wise PPI ex-
traction. At least four annotated corpora have been
provided for this setting: AIMed (Bunescu et al.,
2005), HPRD50 (Fundel et al., 2006), IEPA (Ding
et al., 2002), and LLL (Ńedellec, 2005). Each of
these corpora have been used as the standard cor-
pus for training and testing PPI programs. More-
over, several corpora are annotated for more types
of events than just for PPI. Such examples include
BioInfer (Pyysalo et al., 2007), and GENIA (Kim
et al., 2008a), and they can be reorganized into PPI
corpora. Even though all of these corpora were
made for PPI extraction, they were constructed
based on different definitions of proteins and PPI,
which reflect different biological research inter-
ests (Pyysalo et al., 2008).

Research on PPI extraction so far has revealed
that the performance on each of the corpora could
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benefit from additional examples (Airola et al.,
2008). Learning from multiple annotated cor-
pora could lead to better PPI extraction perfor-
mance. Various research paradigms such as induc-
tive transfer learning (ITL) and domain adaptation
(DA) have mainly focused on how to effectively
use corpora annotated by other groups, by reduc-
ing the incompatibilities (Pan and Yang, 2008).

In this paper, we propose the extraction of PPIs
from multiple different corpora. We design a rich
feature vector, and as an ITL method, we ap-
ply a support vector machine (SVM) modified for
corpus weighting (SVM-CW) (Schweikert et al.,
2008), in order to evaluate the use of multiple cor-
pora for the PPI extraction task. Our rich feature
vector is made from multiple useful kernels, each
of which is based on multiple parser inputs, pro-
posed by Miwa et al. (2008). The system with our
feature vector was better than or at least compa-
rable to the state-of-the-art PPI extraction systems
on every corpus. The system is a good starting
point to use the multiple corpora. Using one of the
corpora as the target corpus, SVM-CW weights
the remaining corpora (we call them the source
corpora) with “goodness” for training on the tar-
get corpus. While SVM-CW is simple, we show
that SVM-CW can improve the performance of the
system more effectively and more efficiently than
other methods proven to be successful in other
NLP tasks earlier. As a result, SVM-CW with our
feature vector is comprised of a PPI system with
five different models, of which each model is su-
perior to the best model in the original PPI extrac-
tion task, which used only the single corpus.

2 Related Works

While sentence-based, pair-wise PPI extraction
was initially tackled by using simple methods
based on co-occurrences, lately, more sophisti-
cated machine learning systems augmented by
NLP techniques have been applied (Bunescu et al.,
2005). The task has been tackled as a classifica-
tion problem. To pull out useful information from
NLP tools including taggers and parsers, several
kernels have been applied to calculate the similar-
ity between PPI pairs. Miwa et al. (2008) recently
proposed the use of multiple kernels using multi-
ple parsers. This outperformed other systems on
the AIMed, which is the most frequently used cor-
pus for the PPI extraction task, by a wide margin.

To improve the performance using external
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Figure 1: Overview of our PPI extraction system

training data, many ITL and DA methods have
been proposed. Most of ITL methods assume that
the feature space is same, and that the labels may
be different in only some examples, while most of
DA methods assume that the labels are the same,
and that the feature space is different. Among the
methods, we use adaptive SVM (aSVM) (Yang et
al., 2007), singular value decomposition (SVD)
based alternating structure optimization (SVD-
ASO) (Ando et al., 2005), and transfer AdaBoost
(TrAdaBoost) (Dai et al., 2007) to compare with
SVM-CW. We do not use semi-supervised learn-
ing (SSL) methods, because it would be consid-
erably costly to generate enough clean unlabeled
data needed for SSL (Erkan et al., 2007). aSVM
is seen as a promising DA method among sev-
eral modifications of SVM including SVM-CW.
aSVM tries to find a model that is close to the one
made from other classification problems. SVD-
ASO is one of the most successful SSL, DA, or
multi-task learning methods in NLP. The method
tries to find an additional useful feature space by
solving auxiliary problems that are close to the tar-
get problem. With well-designed auxiliary prob-
lems, the method has been applied to text clas-
sification, text chunking, and word sense disam-
biguation (Ando, 2006). The method was reported
to perform better than or comparable to the best
state-of-the-art systems in all of these tasks. TrAd-
aBoost was proposed as an ITL method. In train-
ing, the method reduces the effect of incompatible
examples by decreasing their weights, and thereby
tries to use useful examples from source corpora.
The method has been applied to text classifica-
tion, and the reported performance was better than
SVM and transductive SVM (Dai et al., 2007).

3 PPI Extraction System

The target task of our system is a sentence-based,
pair-wise PPI extraction. It is formulated as a clas-
sification problem that judges whether a given pair
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XPGp1 protein interacts with multiple subunits of
TFIIH prot and withCSBp2 protein.

Figure 2: A sentence including an interacting pro-
tein pair (p1, p2). (AIMed PMID 8652557, 9th
sentence, 3rd pair)

BOW v-walkse-walks Graph BOW v-walkse-walks GraphNormalization
Parsers KSDEPEnju a sentence including a pair

feature vectorBOW Graph BOW v-walkse-walks Graphv-walkse-walks

Figure 3: Extraction of a feature vector from the
target sentence

of proteins in a sentence is interacting or not. Fig-
ure 2 shows an example of a sentence in which the
given pair (p1 and p2) actually interacts.

Figure 1 shows the overview of the proposed
PPI extraction system. As a classifier using a sin-
gle corpus, we use the 2-norm soft-margin lin-
ear SVM (L2-SVM) classifier, with the dual co-
ordinate decent (DCD) method, by Hsieh et al.
(2008). In this section, we explain the two main
features: the feature vector, and the corpus weight-
ing method for multiple corpora.

3.1 Feature Vector

We propose a feature vector with three types of
features, corresponding to the three different ker-
nels, which were each combined with the two
parsers: the Enju 2.3.0, and KSDEP beta 1 (Miyao
et al., 2008); this feature vector is used because the
kernels with these parsers were shown to be effec-
tive for PPI extraction by Miwa et al. (2008), and
because it is important to start from a good per-
formance single corpus system. Both parsers were
retrained using the GENIA Treebank corpus pro-
vided by Kim et al. (2003). By using our linear
feature vector, we can perform calculations faster
by using fast linear classifiers like L2-SVM, and
we also obtain a more accurate extraction, than by
using the original kernel method.

Figure 3 summarizes the way in which the fea-
ture vector is constructed. The system extracts
Bag-of-Words (BOW), shortest path (SP), and
graph features from the output of two parsers. The

PROT M:1, andM:1, interactM:1, multiple M:1,
of M:1, proteinM:1, subunitM:1, with M:2, pro-
tein A:1

Figure 4: Bag-of-Words features of the pair in Fig-
ure 2 with their positions (B:Before, M:in the Mid-
dle of, A:After) and frequencies.
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Figure 5: Vertex walks, edge walks in the upper
shortest path between the proteins in the parse tree
by KSDEP. The walks and their subsets are used
as the shortest path features of the pair in Figure 2.

output is grouped according to the feature-type
and parser, and each group of features is separately
normalized by the L2-norm1. Finally, all values
are put into a single feature vector, and the whole
feature vector is then also normalized by the L2-
norm. The features are constructed by using pred-
icate argument structures (PAS) from Enju, and by
using the dependency trees from KSDEP.

3.1.1 Bag-of-Words (BOW) Features

The BOW feature includes the lemma form of a
word, its relative position to the target pair of pro-
teins (Before, Middle, After), and its frequency in
the target sentence. BOW features form the BOW
kernel in the original kernel method. BOW fea-
tures for the pair in Figure 2 are shown in Figure 4.

3.1.2 Shortest Path (SP) Features

SP features include vertex walks (v-walks), edge
walks (e-walks), and their subsets (Kim et al.,
2008b) on the target pair in a parse structure, and
represent the connection between the pair. The
features are the subsets of the tree kernels on the
shortest path (Sætre et al., 2007). Figure 5 illus-
trates the shortest path between the pair in Fig-
ure 2, and its v-walks and e-walks extracted from
the shortest path in the parse tree by KSDEP. A
v-walk includes two lemmas and their link, while

1The vector normalized by the L2-norm is also called a
unit vector.
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an e-walk includes a lemma and its two links. The
links indicates the predicate argument relations for
PAS, and the dependencies for dependency trees.

3.1.3 Graph Features

Graph features are made from the all-paths graph
kernel proposed by Airola et al. (2008). The ker-
nel represents the target pair using graph matrices
based on two subgraphs, and the graph features are
all the non-zero elements in the graph matrices.

The two subgraphs are a parse structure sub-
graph (PSS) and a linear order subgraph (LOS).
Figure 6 describes the subgraphs of the sentence
parsed by KSDEP in Figure 2. PSS represents the
parse structure of a sentence. PSS has word ver-
tices or link vertices. A word vertex contains its
lemma and its part-of-speech (POS), while a link
vertex contains its link. Additionally, both types
of vertices contain their positions relative to the
shortest path. The “IP”s in the vertices on the
shortest path represent the positions, and the ver-
tices are differentiated from the other vertices like
“P”, “CC”, and “and:CC” in Figure 6. LOS repre-
sents the word sequence in the sentence. LOS has
word vertices, each of which contains its lemma,
its relative position to the target pair, and its POS.

Each subgraph is represented by a graph matrix
G as follows:

G = LT
∞∑
n=1

AnL, (1)

whereL is aN×L label matrix,A is anN×N
edge matrix,N represents the number of vertices,
andL represents the number of labels. The la-
bel of a vertex includes all information described
above (e.g. “ENTITY1:NN:IP” in Figure 6). If
two vertices have exactly same information, the
labels will be same.G can be calculated effi-
ciently by using the Neumann Series (Airola et al.,
2008). The label matrix represents the correspon-
dence between labels and vertices.Lij is 1 if the
i-th vertex corresponds to thej-th label, and 0 oth-
erwise. The edge matrix represents the connection
between the pairs of vertices.Aij is a weightwij
(0.9 or 0.3 in Figure 6 (Airola et al., 2008)) if the
i-th vertex is connected to thej-th vertex, and 0
otherwise. By this calculation,Gij represent the
sum of the weights of all paths between thei-th
label and thej-th label.

A B H I L
positive 1,000 2,534 163 335 164
all 5,834 9,653 433 817 330

Table 1: The sizes of used PPI corpora. A:AIMed,
B:BioInfer, H:HPRD50, I:IEPA, and L:LLL.

5060708090100

0 20 40 60 80 100% examples

AImed (F)BioInfer (F)AImed (AUC)BioInfer (AUC)

Figure 7: Learning curves on two large corpora.
The x-axis is related to the percentage of the ex-
amples in a corpus. The curves are obtained by a
10-fold CV with a random split.

3.2 Corpus Weighting for Mixing Corpora

Table 1 shows the sizes of the PPI corpora that we
used. Their widely-ranged differences including
the sizes were manually analyzed by Pyysalo et
al. (2008). While AIMed, HPRD50, IEPA, and
LLL were all annotated as PPI corpora, BioInfer in
its original form contains much more fine-grained
information than does just the PPI. BioInfer was
transformed into a PPI corpus by a program, so
making it the largest of the five. Among them,
AIMed alone was created by annotating whole ab-
stracts, while the other corpora were made by an-
notating single sentences selected from abstracts.

Figure 7 shows the learning curves on two large
corpora: AIMed and BioInfer. The curves are
obtained by performing a 10-fold cross valida-
tion (CV) on each corpus, with random splits, us-
ing our system. The curves show that the perfor-
mances can benefit from the additional examples.
To get a better PPI extraction system for a chosen
target, we need to draw useful shared information
from external source corpora. We refer to exam-
ples in the source corpora as “source examples”,
and examples in a target corpus as “target exam-
ples”. Among the corpora, we assume that the la-
bels in some examples are incompatible, and that
their distributions are also different, but that the
feature space is shared.

In order to draw useful information from the
source corpora to get a better model for the target
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Figure 6: Parse structure subgraph and linear order subgraph to extract graph features of the pair in
Figure 2. The parse structure subgraph is from the parse tree by KSDEP.

corpus, we use SVM-CW, which has been used
as a DA method. Given a set of instance-label
pairs (xi, yi), i = 1, . . ., ls + lt, xi∈Rn, and
yi∈{−1,+1}, we solve the following problem:

minw
1
2
wTw + Cs

ls∑
i=1

`i + Ct

ls+lt∑
i=ls+1

`i, (2)

wherew is a weight vector,̀ is a loss function,
andls andlt are the numbers of source and target
examples respectively.Cs ≥ 0 andCt ≥ 0 are
penalty parameters. We use a squared hinge loss
`i = max(0, 1− yiwTxi)2. Here, the source cor-
pora are treated as one corpus. The problem, ex-
cluding the second term, is equal to L2-SVM. The
problem can be solved using the DCD method.

As an ITL method, SVM-CW weights each cor-
pus, and tries to benefit from the source corpora,
by adjusting the effect of their compatibility and
incompatibility. For the adjustment, these penalty
parameters should be set properly. Since we are
unaware of the widely ranged differences among
the corpora, we empirically estimated them by
performing 10-fold CV on the training data.

4 Evaluation

4.1 Evaluation Settings

We used five corpora for evaluation: AIMed,
BioInfer, HPRD50, IEPA, and LLL. For the com-
parison with other methods, we report the F-
score (%), and the area under the receiver op-
erating characteristic (ROC) curve (AUC) (%)

using (abstract-wise) a 10-fold CV and a one-
answer-per-occurrence criterion. These measures
are commonly used for the PPI extraction tasks.
The F-score is a harmonic mean of Precision and
Recall. The ROC curve is a plot of a true posi-
tive rate (TPR) vs a false positive rate (FPR) for
different thresholds. We tuned the regularization
parameters of all classifiers by performing a 10-
fold CV on the training data using a random split.
The other parameters were fixed, and we report the
highest of the macro-averaged F-scores as our fi-
nal F-score. For 10-fold CV, we split the corpora
as recommended by Airola et al. (2008).

4.2 PPI Extraction on a Single Corpus

In this section, we evaluate our system on a single
corpus, in order to evaluate our feature vector and
to justify the use of the following modules: nor-
malization methods and classification methods.

First, we compare our preprocessing method
with other preprocessing methods to confirm how
our preprocessing method improves the perfor-
mance. Our method produced 64.2% in F-score
using L2-SVM on AIMed. Scaling all features in-
dividually to have a maximal absolute value of 1,
produced only 44.2% in the F-score, while nor-
malizing the feature vector by L2-norm produced
61.5% in the F-score. Both methods were inferior
to our method, because the values of features in
the same group should be treated together, and be-
cause the values of features in the different groups
should not have a big discrepancy. Weighting each
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L2 L1 LR AP CW
F 64.2 64.0 64.2 62.7 63.0
AUC 89.1 88.8 89.0 88.5 87.8

Table 2: Classification performance on AIMed us-
ing five different linear classifiers. The F-score (F)
and Area Under the ROC curve (AUC) are shown.
L2 is L2-SVM, L1 is L1-SVM, LR is logistic re-
gression, AP is averaged perceptron, and CW is
confidence weighted linear classification.

group with different values can produce better re-
sults, as will be explored in our future work.

Next, using our feature vector, we applied
five different linear classifiers to extract PPI
from AIMed: L2-SVM, 1-norm soft-margin
SVM (L1-SVM), logistic regression (LR) (Fan
et al., 2008), averaged perceptron (AP) (Collins,
2002), and confidence weighted linear classifica-
tion (CW) (Dredze et al., 2008). Table 2 indicates
the performance of these classifiers on AIMed.
We employed better settings for the task than did
the original methods for AP and CW. We used a
Widrow-Hoff learning rule (Bishop, 1995) for AP,
and we performed one iteration for CW. L2-SVM
is as good as, if not better, than other classifiers (F-
score and AUC). In the least, L2-SVM is as fast as
these classifiers. AP and CW are worse than the
other three methods, because they require a large
number of examples, and are un-suitable for the
current task. This result indicates that all linear
classifiers, with the exception of AP and CW, per-
form almost equally, when using our feature vec-
tor.

Finally, we implemented the kernel method by
Miwa et al. (2008). For a 10-fold CV on AIMed,
the running time was 9,507 seconds, and the per-
formance was 61.5% F-score and 87.1% AUC.
Our system used 4,702 seconds, and the perfor-
mance was 64.2% F-score and 89.1% AUC. This
result displayed that our system, with L2-SVM,
and our new feature vector, is better, and faster,
than the kernel-based system.

4.3 Evaluation of Corpus Weighting

In this section, we first apply each model from a
source corpus to a target corpus, to show how dif-
ferent the corpora are. We then evaluate SVM-CW
by comparing it with three other methods (see Sec-
tion 2) with limited features, and apply it to every
corpus.

01020
304050
607080
90

AIMed BioInfer HPRD50 IEPA LLL

F

Target corpus

AIMedBioInferHPRD50IEPALLLco-occ

Model

Figure 8: F-score on a target corpus using a model
on a source corpus. For the comparison, we show
the 10-fold CV result on each target corpus and
co-occurrences. The regularization parameter was
fixed to 1.

First, we apply the model from a source corpus
to a target corpus. Figure 8 shows how the model
from a source corpus performs on the target cor-
pus. Interestingly, the model from IEPA performs
better on LLL than the model from LLL itself. All
the results showed that using different corpora (ex-
cept IEPA) is worse than just using the same cor-
pora. However, the cross-corpora scores are still
better than the co-occurrences base-line, which in-
dicates that the corpora share some information,
even though they are not fully compatible.

Next, we compare SVM-CW with three other
methods: aSVM, SVD-ASO, and TrAdaBoost.
For this comparison, we used our feature vec-
tor without including the graph features, because
SVD-ASO and TrAdaBoost require large compu-
tational resources. We applied SVD-ASO and
TrAdaBoost in the following way. As for SVD-
ASO, we made 400 auxiliary problems from the
labels of each corpus by splitting features ran-
domly, and extracted 50 additional features each
for 4 feature groups. In total, we made new 200
additional features from 2,000 auxiliary problems.
As recommended by Ando et al. (2005), we re-
moved negative weights, performed SVD to each
feature group, and iterated ASO once. Since Ad-
aBoost easily overfitted with our rich feature vec-
tor, we applied soft margins (Ratsch et al., 2001)
to TrAdaBoost. The update parameter for source
examples was calculated using the update param-
eter on the training data in AdaBoost and the orig-
inal parameter in TrAdaBoost. This ensures that
the parameter would be the same as the original
parameter, when the C value in the soft margin ap-
proaches infinity.
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aSVM SVD-ASO TrAdaBoost SVM-CW L2-SVM
F AUC F AUC F AUC F AUC F AUC

AIMed 63.6 88.4 62.9 88.3 63.4 88.4 64.0 88.6 63.2 88.4
BioInfer 66.5 85.2 65.7 85.1 66.1 85.2 66.7 85.4 66.2 85.1
HPRD50 71.2 84.3 68.7 80.8 72.6 85.3 72.7 86.4 67.2 80.7
IEPA 73.8 85.4 72.3 83.8 74.3 86.3 75.2 85.9 73.0 84.7
LLL 85.9 89.2 79.3 85.5 86.5 88.8 86.9 90.3 80.3 86.3

Table 3: Comparison of methods on multiple corpora. Our feature vector without graph features is used.
The source corpora with the best F-scores are reported for aSVM, TrAdaBoost, and SVM-CW.

F-score AUC
A B H I L all A B H I L all

A (64.2) 64.0 64.7 65.2 63.7 64.2 (89.1) 89.5 89.2 89.3 89.0 89.4
B 67.9 (67.6) 67.9 67.9 67.7 68.3 86.2 (86.1) 86.2 86.3 86.2 86.4
H 71.3 71.2 (69.7) 74.1 70.8 74.9 84.7 85.0 (82.8) 85.0 83.4 87.9
I 74.4 75.6 73.7 (74.4) 74.4 76.6 86.7 87.1 85.4 (85.6) 86.9 87.8
L 83.2 85.9 82.0 86.7 (80.5) 84.1 86.3 87.1 87.4 90.8 (86.0) 86.2

Table 4: F-score and AUC by SVM-CW. Rows correspond to a target corpus, and columns a source
corpus. A:AIMed, B:BioInfer, H:HPRD50, I:IEPA, and L:LLL corpora. “all” signifies that all source
corpora are used as one source corpus, ignoring the differences among the corpora. For the comparison,
we show the 10-fold CV result on each target corpus.

In Table 3, we demonstrate the results of the
comparison. SVM-CW improved the classifica-
tion performance at least as much as all the other
methods. The improvement is mainly attributed to
the aggressive use of source examples while learn-
ing the model. Some source examples can be used
as training data, as indicated in Figure 8. SVM-
CW does not set the restriction betweenCs and
Ct in Equation (2), so it can use source exam-
ples aggressively while learning the model. Since
aSVM transfers a model, and SVD-ASO transfers
an additional feature space, aSVM and SVD-ASO
do not use the source examples while learning the
model. In addition to the difference in the data us-
age, the settings of aSVM and SVD-ASO do not
match the current task. As for aSVM, the DA as-
sumption (that the labels are the same) does not
match the task. In SVD-ASO, the numbers of both
source examples and auxiliary problems are much
smaller than those reported by Ando et al. (2005).
TrAdaBoost uses the source examples while learn-
ing the model, but never increases the weight of
the examples, and it attempts to reduce their ef-
fects.

Finally, we apply SVM-CW to all corpora using
all features. Table 4 summarizes the F-score and
AUC by SVM-CW with all features. SVM-CW

is especially effective for small corpora, show-
ing that SVM-CW can adapt source corpora to a
small annotated target corpus. The improvement
on AIMed is small compared to the improvement
on BioInfer, even though these corpora are sim-
ilar in size. One of the reasons for this is that
whole abstracts are annotated in AIMed, therefore
making the examples biased. The difference be-
tween L2-SVM and SVM-CW + IEPA on AIMed
is small, but statistically, it is significant (McNe-
mar test (McNemar, 1947), P = 0.0081). In the
cases of HPRD50 + IEPA, LLL + IEPA, and two
folds in BioInfer + IEPA,Cs is larger thanCt in
Equation (2). This is worth noting, because the
source corpus is more weighted than the target cor-
pus, and the prediction performance on the tar-
get corpus is improved. Most methods put more
trust in the target corpus than in the source cor-
pus, and our results show that this setting is not al-
ways effective for mixing corpora. The results also
indicate that IEPA contains more useful informa-
tion for extracting PPI than other corpora, and that
using source examples aggressively is important
for these combinations. We compared the results
of L2-SVM and SVM-CW + IEPA on AIMed,
and found that 38 pairs were described as “inter-
action” or “binding” in the sentences among 61
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SVM-CW L2-SVM Airola et al.
F AUC F AUC F AUC

A 65.2 89.3 64.2 89.1 56.4 84.8
B 68.3 86.4 67.6 86.1 61.3 81.9
H 74.9 87.9 69.7 82.8 63.4 79.7
I 76.6 87.8 74.4 85.6 75.1 85.1
L 86.7 90.8 80.5 86.0 76.8 83.4

Table 6: Comparison with the results by Airola
et al. (2008). A:AIMed, B:BioInfer, H:HPRD50,
I:IEPA, and L:LLL corpora. The results with the
highest F-score from Table 4 are reported as the
results for SVM-CW.

newly found pairs. This analysis is evidence that
IEPA contains instances to help find such inter-
actions, and that SVM-CW helps to collect gold
pairs that lack enough supporting instances in a
single corpus, by adding instances from other cor-
pora. SVM-CW missed coreferential relations that
were also missed by L2-SVM. This can be at-
tributed to the fact that the coreferential informa-
tion is not stored in our current feature vector; so
we need an even more expressive feature space.
This is left as future work.

SVM-CW is effective on most corpus combi-
nations, and all the models from single corpora
can be improved by adding other source corpora.
This result is impressive, because the baselines by
L2-SVM on just single corpora are already better
than or at least comparable to other state-of-the-art
PPI extraction systems, and also because the vari-
ety of the differences among different corpora is
quite wide depending on various factors including
annotation policies of the corpora (Pyysalo et al.,
2008). The results suggest that SVM-CW is useful
as an ITL method.

4.4 Comparison with Other PPI Systems

We compare our system with other previously
published PPI extraction systems. Tables 5 and
6 summarize the comparison. Table 5 summa-
rizes the comparison of several PPI extraction sys-
tems evaluated on the AIMed corpus. As indi-
cated, the performance of the heavy kernel method
is lower than our fast rich feature-vector method.
Our system is, to the extent of our knowledge, the
best performing PPI extraction system evaluated
on the AIMed corpus, both in terms of AUC and
F-scores. Airola et al. (2008) first reported results
using all five corpora. We cannot directly com-

pare our result with the F-score results, because
they tuned the threshold, but our system still out-
performs the system by Airola et al. (2008) on ev-
ery corpus in AUC values. The results also indi-
cate that our system outperforms other systems on
all PPI corpora, and that both the rich feature vec-
tor and the corpus weighting are effective for the
PPI extraction task.

5 Conclusion

In this paper, we proposed a PPI extraction system
with a rich feature vector, using a corpus weight-
ing method (SVM-CW) for combining the mul-
tiple PPI corpora. The feature vector extracts as
much information as possible from the main train-
ing corpus, and SVM-CW incorporate other exter-
nal source corpora in order to improve the perfor-
mance of the classifier on the main target corpus.
To the extent of our knowledge, this is the first ap-
plication of ITL and DA methods to PPI extrac-
tion. As a result, the system, with SVM-CW and
the feature vector, outperformed all other PPI ex-
traction systems on all of the corpora. The PPI
corpora share some information, and it is shown
to be effective to add other source corpora when
working with a specific target corpus.

The main contributions of this paper are: 1)
conducting experiments in extracting PPI using
multiple corpora, 2) suggesting a rich feature
vector using several previously proposed features
and normalization methods, 3) the combination of
SVM with corpus weighting and the new feature
vector improved results on this task compared with
prior work.

There are many differences among the corpora
that we used, and some of the differences are still
unresolved. For further improvement, it would be
necessary to investigate what is shared and what
is different among the corpora. The SVM-CW
method, and the PPI extraction system, can be ap-
plied generally to other classification tasks, and
to other binary relation extraction tasks, without
the need for modification. There are several other
tasks in which many different corpora, which at
first glance seem compatible, exist. By apply-
ing SVM-CW to such corpora, we will analyze
which differences can be resolved by SVM-CW,
and what differences require a manual resolution.

For the PPI extraction system, we found many
false negatives that need to be resolved. For fur-
ther improvement, we need to analyze the cause
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positive all P R F AUC
SVM-CW 1,000 5,834 60.0 71.9 65.2 89.3
L2-SVM 1,000 5,834 62.7 66.6 64.2 89.1
(Miwa et al., 2008) 1,005 5,648 60.4 69.3 64.2 (61.5) 87.9 (87.1)
(Miyao et al., 2008) 1,059 5,648 54.9 65.5 59.5
(Airola et al., 2008) 1,000 5,834 52.9 61.8 56.4 84.8
(Sætre et al., 2007) 1,068 5,631 64.3 44.1 52.0
(Erkan et al., 2007) 951 4,020 59.6 60.7 60.0
(Bunescu and Mooney, 2005) 65.0 46.4 54.2

Table 5: Comparison with previous PPI extraction results on the AIMed corpus. The numbers of positive
and all examples, precision (P), recall (R), F-score (F), and AUC are shown. The result with the highest
F-score from Table 4 is reported as the result for SVM-CW. The scores in the parentheses of Miwa et al.
(2008) indicate the result using the same 10-fold splits as our result, as indicated in Section 4.2.

of these false negatives more deeply, and design a
more discriminative feature space. This is left as a
future direction of our work.
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