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Abstract

Because of the importance of protein-
protein interaction (PPI) extraction from
text, many corpora have been proposed
with slightly differing definitions of pro-
teins and PPI. Since no single corpus is
large enough to saturate a machine learn-
ing system, it is necessary to learn from
multiple different corpora. In this paper,
we propose a solution to this challenge.
We designed a rich feature vector, and we
applied a support vector machine modi-
fied for corpus weighting (SVM-CW) to
complete the task of multiple corpora PPI
extraction. The rich feature vector, made
from multiple useful kernels, is used to
express the important information for PPI
extraction, and the system with our fea-
ture vector was shown to be both faster
and more accurate than the original kernel-
based system, even when using just a sin-
gle corpus. SVM-CW learns from one cor-
pus, while using other corpora for support.
SVM-CW is simple, but it is more effec-
tive than other methods that have been suc-
cessfully applied to other NLP tasks ear-
lier. With the feature vector and SVM-
CW, our system achieved the best perfor-
mance among all state-of-the-art PPI ex-
traction systems reported so far.

Introduction

}@is.s.u-tokyo.ac.jp

Even if two corpora are annotated in terms of the
same type of information by two groups, the per-
formance of a program trained by one corpus is
unlikely to be reproduced in the other corpus. On
the other hand, from a practical point of view, it is
worth while to effectively use multiple existing an-
notated corpora together, because it is very costly
to make new annotations.

One problem with several different corpora is
protein-protein interaction (PPI) extraction from
text. While PPIs play a critical role in un-
derstanding the working of cells in diverse bio-
logical contexts, the manual construction of PPI
databases such as BIND, DIP, HPRD, IntAct, and
MINT (Mathivanan et al., 2006) is known to be
very time-consuming and labor-intensive. The au-
tomatic extraction of PPI from published papers
has therefore been a major research topic in Natu-
ral Language Processing for Biology (BioNLP).

Among several PPI extraction task settings, the
most common is sentence-based, pair-wise PPI ex-
traction. At least four annotated corpora have been
provided for this setting: AlMed (Bunescu et al.,
2005), HPRD50 (Fundel et al., 2006), IEPA (Ding
et al., 2002), and LLL (Kdellec, 2005). Each of
these corpora have been used as the standard cor-
pus for training and testing PPl programs. More-
over, several corpora are annotated for more types
of events than just for PPI. Such examples include
Biolnfer (Pyysalo et al., 2007), and GENIA (Kim
etal., 2008a), and they can be reorganized into PPI
corpora. Even though all of these corpora were

The performance of an information extraction pro-made for PPI extraction, they were constructed
gram is highly dependent on various factors, in-based on different definitions of proteins and PPI,
cluding text types (abstracts, complete articles, rewhich reflect different biological research inter-
ports, etc.), exact definitions of the information toests (Pyysalo et al., 2008).

be extracted, shared sub-topics of the text collec- Research on PPI extraction so far has revealed
tions from which information is to be extracted. that the performance on each of the corpora could
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benefit from additional examples (Airola et al.,
2008). Learning from multiple annotated cor-
pora could lead to better PPI extraction perfor-

mance. Various research paradigms such as induc-

tive transfer learning (ITL) and domain adaptation “

(DA) have mainly focused on how to effectively
use corpora annotated by other groups, by redu¢—"*
ing the incompatibilities (Pan and Yang, 2008).

In this paper, we propose the extraction of PPIsFigure 1. Overview of our PPI extraction system
from multiple different corpora. We design a rich

feature vector, and as an ITL method,. we ap'training data, many ITL and DA methods have
ply a suppgrt v_ector machine (SVM) mod|f|ed for been proposed. Most of ITL methods assume that
corpus'we|ght|ng (SVM-CW) (Schwe|ker'F etal, the feature space is same, and that the labels may
2008), in order to evaluate the use of multiple COlpe different in only some examples, while most of
pora for the PPI extraction task. Our rich featureDA methods assume that the labels are the same
vector Is made from muItipIe useful ke_‘rnels, eaLChand that the feature space is different. Among the
of which is pased on multiple parser |nput§, PrO-ethods, we use adaptive SVM (aSVM) (Yang et
]E’OSEd by Miwa et al. (2008)h' The systlem with oural., 2007), singular value decomposition (SVD)
eature vector was beter than or at gast COMPF555ed alternating structure optimization (SVD-
rable to the state-of-the-art PPl extraction systemgso) (Ando et al., 2005), and transfer AdaBoost
on every corpus. The system Is a.good Start'nQTrAdaBoost) (Dai et al., 2007) to compare with
point to use the multiple corpora. Using one qf theSVM-CW. We do not use semi-supervised learn-
cr:)rpora "’_‘S_the target corpus, "S\IQM'CV%/ We'ghtﬁng (SSL) methods, because it would be consid-
the remaining corpora (we call them the Sourceerably costly to generate enough clean unlabeled

corpora) with “gpodness” for_trai_ning on the tar- data needed for SSL (Erkan et al., 2007). aSVM
get corpus. While SVM-CW is simple, we show is seen as a promising DA method among sev-

that SVM-CW can improve the performa_mce of theeral modifications of SVM including SVM-CW.
system more effectively and more efficiently thanaSVM tries to find a model that is close to the one

other methods proven to be successful in Othefnade from other classification problems. SVD-
NLP tasks earlier. As a result, SVM-CW with our ASO is one of the most successful SSL. DA. or
feature vector is comprised of a PPI system Wm}nulti—task learning methods in NLP. The method

five different models, of which each model is SUtries to find an additional useful feature space by

perior to the _best model in the o_rlglnal PPI eXtr"’lc'solving auxiliary problems that are close to the tar-
tion task, which used only the single corpus.

get problem. With well-designed auxiliary prob-

lems, the method has been applied to text clas-
sification, text chunking, and word sense disam-
While sentence-based, pair-wise PPl extractiofiguation (Ando, 2006). The method was reported
was initially tackled by using simple methods to perform better than or comparable to the best
based on co-occurrences, lately, more SOphistﬁtate-of-the-art systems in all of these tasks. TrAd-
cated machine learning systems augmented bi\,Boost was proposed as an ITL method. In train-

NLP techniques have been applied (Bunescu et aln9: the method reduces the effect of incompatible
2005). The task has been tackled as a classific€x@mPples by decreasing their weights, and thereby

tion problem. To pull out useful information from {1i€s o use useful examples from source corpora.
NLP tools including taggers and parsers, severaThe method has been applied to text classifica-
kernels have been applied to calculate the simila/ion: @nd the reported performance was better than
ity between PPI pairs. Miwa et al. (2008) recentlyS VM and transductive SVM (Dai et al., 2007).
proposed the use of multiple kernels using multi-
ple parsers. This outperformed other systems on
the AIMed, which is the most frequently used cor-The target task of our system is a sentence-based,
pus for the PPI extraction task, by a wide margin. pair-wise PPI extraction. It is formulated as a clas-
To improve the performance using externalsification problem that judges whether a given pair
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XPGpl protein interacts with multiple subunits of PROTM:1, andM:1, interactM:1, multipleM:1,

TENH and withCS rotein. of M:1, proteinM:1, subunitM:1, with.M:2, pro-
prot Pp2P teinA:1

Figure 2: A sentence including an interacting pro-rigure 4: Bag-of-Words features of the pair in Fig-
tein pair (p1, p2). (AlMed PMID 8652557, 9th yre 2 with their positions (B:Before, M:in the Mid-
sentence, 3rd pair) dle of, A:After) and frequencies.

feature vector coop COORD PMIOD

ENTITY1 protein interacts with multiple :-- and with ENTITY2 protein .

v-walks [
BOW e-walks Graph
d L | NMOD  SBJ NMoD
" n V-walks
( Normalization ] NMOD 561 ] rNMOD
v-walks
ENTITY1 ]| protein protein || interact protein || ENTITY2
e-walks |] -
|E-walks |I NMOD I= 1{ rCOOD | | PMOD H rNMOD |]

Figure 3. Extraction of a feature vector from the Figure 5: Vertex walks, edge walks in the upper
target sentence shortest path between the proteins in the parse tree
by KSDEP. The walks and their subsets are used

of proteins in a sentence is interacting or not. Fig—aS the shortest path features of the pair in Figure 2.

ure 2 shows an example of a sentence in which the

given pair (p1 and p2) actually interacts. output is grouped according to the feature-type
Figure 1 shows the overview of the proposedand parser, and each group of features is separately

PPI extraction system. As a classifier using a sinnormalized by the L2-norfa Finally, all values

gle corpus, we use the 2-norm soft-margin lin-are put into a single feature vector, and the whole

ear SVM (L2-SVM) classifier, with the dual co- feature vector is then also normalized by the L2-

ordinate decent (DCD) method, by Hsieh et al.norm. The features are constructed by using pred-

(2008). In this section, we explain the two mainicate argument structures (PAS) from Enju, and by

features: the feature vector, and the corpus weightising the dependency trees from KSDEP.

ing method for multiple corpora.

Parsers

Enju

a sentence including a pair

3.1.1 Bag-of-Words (BOW) Features

3.1 Feature Vector The BOW feature includes the lemma form of a

We propose a feature vector with three types ofvord, its relative position to the target pair of pro-
features, corresponding to the three different kerteins (Before, Middle, After), and its frequency in
nels, which were each combined with the twothe target sentence. BOW features form the BOW
parsers: the Enju 2.3.0, and KSDEP beta 1 (Miyadernel in the original kernel method. BOW fea-
etal., 2008); this feature vector is used because tHeres for the pair in Figure 2 are shown in Figure 4.
kernels with these parsers were shown to be effec:
tive for PPI extracti?)n by Miwa et al. (2008), and%'l'2 Shortest Path (SP) Features
because it is important to start from a good perSP features include vertex walks (v-walks), edge
formance single corpus system. Both parsers werwalks (e-walks), and their subsets (Kim et al.,
retrained using the GENIA Treebank corpus pro-2008b) on the target pair in a parse structure, and
vided by Kim et al. (2003). By using our linear represent the connection between the pair. The
feature vector, we can perform calculations fastefeatures are the subsets of the tree kernels on the
by using fast linear classifiers like L2-SVM, and shortest path (Seetre et al., 2007). Figure 5 illus-
we also obtain a more accurate extraction, than bifates the shortest path between the pair in Fig-
using the original kernel method. ure 2, and its v-walks and e-walks extracted from
Figure 3 summarizes the way in which the fea-the shortest path in the parse tree by KSDEP. A
ture vector is constructed. The system extracty-Walk includes two lemmas and their link, while
Bag-of-Words (BOW), shortest path (SP), and™ ine vector normalized by the L2-norm is also called a
graph features from the output of two parsers. Thanit vector.
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an e-walk includes a lemma and its two links. The A B H | L
links indicates the predicate argument relations for positive | 1,000 2,534 163 335 164
PAS, and the dependencies for dependency trees. all 5,834 9,653 433 817 330

313 GraphE Table 1: The sizes of used PPI corpora. A:AlMed,
1.3 Graph Features B:Biolnfer, H:HPRD50, I:IEPA, and L:LLL.

Graph features are made from the all-paths graph

kernel proposed by Airola et al. (2008). The ker- 100

nel represents the target pair using graph matricesso — % & 2 = 2

based on two subgraphs, and the graph features areo PP S S . M

all the non-zero elements in the graph matrices.  ,, .~ :Q.'ZT?FLY?XS’C)
The two subgraphs are a parse structure sub-e t o = B

graph (PSS) and a linear order subgraph (LOS). ., ° *

Figure 6 describes the subgraphs of the sentence o 0 w0 e 0 10
parsed by KSDEP in Figure 2. PSS represents the % examples

arse structure of a sentence. PSS has word ver- )
P elglgure 7: Learning curves on two large corpora.

tices or link vertices. A word vertex contains its The x-axis is related to the percentage of the e
lemma and its part-of-speech (POS), while a link P 9 x

vertex contains its link. Additionally, both types amples in a corpus. The curves are obtained by a
of vertices contain their positions relative to thelo-fOId CV with a random split.

shortest path. The “IP”s in the vertices on the
shortest path represent the positions, and the ver , Corpus Weighting for Mixing Corpora
tices are differentiated from the other vertices like

“p” “CC”, and “and:CC” in Figure 6. LOS repre- Table 1 shows the sizes of the PPI corpora that we
sents the word sequence in the sentence. LOS hi§ed. Their widely-ranged differences including
word vertices, each of which contains its lemma(he sizes were manually analyzed by Pyysalo et
its relative position to the target pair, and its POS.al- (2008). While AlMed, HPRD50, IEPA, and

Each subgraph is represented by a graph matrikLL were all annotated as PPI corpora, Biolnfer in
G as follows: its original form contains much more fine-grained

information than does just the PPI. Biolnfer was
o transformed into a PPI corpus by a program, so
G=L"> A"L, (1) making it the largest of the five. Among them,
n=1 AlMed alone was created by annotating whole ab-
stracts, while the other corpora were made by an-
where L is a N x L label matrix, A is an Nx N  notating single sentences selected from abstracts.
edge matrix,N represents the number of vertices, Figure 7 shows the learning curves on two large
and L represents the number of labels. The lacorpora: AlMed and Biolnfer. The curves are
bel of a vertex includes all information describedobtained by performing a 10-fold cross valida-
above (e.g. “ENTITY1:NN:IP” in Figure 6). If tion (CV) on each corpus, with random splits, us-
two vertices have exactly same information, theng our system. The curves show that the perfor-
labels will be same. G can be calculated effi- mances can benefit from the additional examples.
ciently by using the Neumann Series (Airola et al.,To get a better PPI extraction system for a chosen
2008). The label matrix represents the corresportarget, we need to draw useful shared information
dence between labels and verticds; is 1 if the  from external source corpora. We refer to exam-
i-th vertex corresponds to theth label, and 0 oth- ples in the source corpora as “source examples”,
erwise. The edge matrix represents the connectioand examples in a target corpus as “target exam-
between the pairs of verticesl;; is a weightw;; ~ ples”. Among the corpora, we assume that the la-
(0.9 or 0.3 in Figure 6 (Airola et al., 2008)) if the bels in some examples are incompatible, and that
i-th vertex is connected to theth vertex, and 0 their distributions are also different, but that the
otherwise. By this calculatior7;; represent the feature space is shared.
sum of the weights of all paths between thth In order to draw useful information from the
label and thei-th label. source corpora to get a better model for the target
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—> 0.9, e » 0.3
IP: In shortest Path, B:Before, M:in the Middle of, A:After

NMOD CcooD PMOD PMOD NMOD
an s punin o mnn - >
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ENTITY1 protein interact with multiple subunit of PROT and with ENTITY2 protein
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1 4 1 A 1 41 41 A1 41 41 Al Al 4l 4 1

Figure 6: Parse structure subgraph and linear order subgraph to extract graph features of the pair in
Figure 2. The parse structure subgraph is from the parse tree by KSDEP.

corpus, we use SVM-CW, which has been usedising (abstract-wise) a 10-fold CV and a one-
as a DA method. Given a set of instance-labebhnswer-per-occurrence criterion. These measures
pairs €;, v;), ¢ = 1,...,ls + It, x;€R"™, and are commonly used for the PPI extraction tasks.
y;€{—1,+1}, we solve the following problem: The F-score is a harmonic mean of Precision and
Recall. The ROC curve is a plot of a true posi-
tive rate (TPR) vs a false positive rate (FPR) for
different thresholds. We tuned the regularization
parameters of all classifiers by performing a 10-
wherew is a weight vector/ is a loss function, fold CV on the training data using a random split.
andls andlt are the numbers of source and targeflThe other parameters were fixed, and we report the
examples respectivelyCs > 0 andC; > 0 are highest of the macro-averaged F-scores as our fi-
penalty parameters. We use a squared hinge losgl F-score. For 10-fold CV, we split the corpora
¢; = maz(0,1 — y;w! z;)%. Here, the source cor- as recommended by Airola et al. (2008).

pora are treated as one corpus. The problem, ex-

cluding the second term, is equal to L2-SVM. The4.2 PPI Extraction on a Single Corpus

roblem can be solved using the DCD method. . . .
P As an ITL method SVM—(?W weiahts each cor- In this section, we evaluate our system on a single
: L 9 corpus, in order to evaluate our feature vector and
pus, and tries to benefit from the source corpora, justify the use of the following modules: nor-
by adjusting the effect of their compatibility and o o ’
: L . malization methods and classification methods.
incompatibility. For the adjustment, these penalty First, we compare our preprocessing method

parameters should be set properly. Since we are, . .
unaware of the widely ranged differences amond‘”th other preprocessing methods to confirm how

the corpora, we empirically estimated them byPU’ Preprocessing method improves the perfor-
performing 10-fold CV on the training data. mance. Our method produced 64.2% in F-score

using L2-SVM on AlMed. Scaling all features in-
4 Evaluation dividually to have a maximal absolute value of 1,
produced only 44.2% in the F-score, while nor-
malizing the feature vector by L2-norm produced
We used five corpora for evaluation: AlMed, 61.5% in the F-score. Both methods were inferior
Biolnfer, HPRD50, IEPA, and LLL. For the com- to our method, because the values of features in
parison with other methods, we report the F-the same group should be treated together, and be-
score (%), and the area under the receiver opcause the values of features in the different groups
erating characteristic (ROC) curve (AUC) (%) should not have a big discrepancy. Weighting each

1 s Is+It
ming in'w +C, Z& + C; | Z 4G, (2)
1=1 i=ls+1

4.1 Evaluation Settings

125



L2 L1 LR AP CW %0
F 64.2 64.0 64.2 62.7 63.0 80
AUC | 89.1 888 890 885 878 60 -

50 ~
Table 2: Classification performance on AlMed us- 50
ing five different linear classifiers. The F-score (F) 20 -
and Area Under the ROC curve (AUC) are shown. g - | |
L2 is L2-SVM, L1 is L1-SVM, LR is logistic re- AMed Biolnfer HPRDSO  IEPA  LLL
gression, AP is averaged perceptron, and CW is Target corpus

confidence weighted linear classification.

Model
OAIMed
O Biolnfer
O HPRD50
o [EPA
WLLL

M co-ocC

Figure 8: F-score on a target corpus using a model
o on a source corpus. For the comparison, we show

sults, as will be explored in our future work.  ¢o.occurrences. The regularization parameter was
Next, using our feature vector, we appliedfixed to 1.

five different linear classifiers to extract PPI
from AlMed: L2-SVM, 1-norm soft-margin

SVM (L1-SVM), logistic regression (LR) (Fan  First, we apply the model from a source corpus
et al., 2008), averaged perceptron (AP) (Collinsto a target corpus. Figure 8 shows how the model
2002), and confidence weighted linear classificafrom a source corpus performs on the target cor-
tion (CW) (Dredze et al., 2008). Table 2 indicatespus. Interestingly, the model from IEPA performs
the performance of these classifiers on AlMedpetter on LLL than the model from LLL itself. All
We employed better settings for the task than didhe results showed that using different corpora (ex-
the original methods for AP and CW. We used acept IEPA) is worse than just using the same cor-
Widrow-Hoff learning rule (Bishop, 1995) for AP, pora. However, the cross-corpora scores are still
and we performed one iteration for CW. L2-SVM petter than the co-occurrences base-line, which in-

is as good as, if not better, than other c!assifiers (Fdicates that the corpora share some information,
score and AUC). In the least, L2-SVM is as fast aseven though they are not fully compatible.

these classifiers. AP and CW are worse than the Next we compare SVM-CW with three other

other three methods, because they require a larggethods: aSVM. SVD-ASO, and TrAdaBoost.
number of examples, and are un-suitable for thgo this comparison, we used our feature vec-
current task. This result indicates that all linearyq, \without including the graph features, because
classifiers, with the exception of AP and CW, Per-s\D-ASO and TrAdaBoost require large compu-
form almost equally, when using our feature veCaiional resources. We applied SVD-ASO and
tor. TrAdaBoost in the following way. As for SVD-
Finally, we implemented the kernel method by SO, we made 400 auxiliary problems from the

Miwa et al. (2008). For a 10-fold CV on AlMed, |gpels of each corpus by splitting features ran-
the running time was 9,507 seconds, and the petiomly, and extracted 50 additional features each
formance was 61.5% F-score and 87.1% AUCtor 4 feature groups. In total, we made new 200

Our system used 4,702 seconds, and the perfogqgitional features from 2,000 auxiliary problems.
mance was 64.2% F-score and 89.1% AUC. This\g recommended by Ando et al. (2005), we re-
result displayed that our system, with L2-SVM, moved negative weights, performed SVD to each
and our new feature vector, is better, and fastefegtyre group, and iterated ASO once. Since Ad-
than the kernel-based system. aBoost easily overfitted with our rich feature vec-
tor, we applied soft margins (Ratsch et al., 2001)
to TrAdaBoost. The update parameter for source
In this section, we first apply each model from aexamples was calculated using the update param-
source corpus to a target corpus, to show how difeter on the training data in AdaBoost and the orig-
ferent the corpora are. We then evaluate SVM-CWhnal parameter in TrAdaBoost. This ensures that
by comparing it with three other methods (see Secthe parameter would be the same as the original
tion 2) with limited features, and apply it to every parameter, when the C value in the soft margin ap-
corpus. proaches infinity.

4.3 Evaluation of Corpus Weighting
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aSvM SVD-ASO | TrAdaBoost| SVM-CW L2-SVM
F AUC| F AUC| F AUC| F AUC| F AUC
AlMed 63.6 884|629 883|634 884|640 886|632 884
Biolnfer | 66.5 85.2| 65.7 85.1| 66.1 85.2| 66.7 85.4|66.2 85.1
HPRD50| 71.2 84.3| 68.7 80.8| 726 853|727 86.4|67.2 80.7
IEPA 738 854|723 838|743 863|752 859 |73.0 847
LLL 859 89.2|79.3 855|865 888|869 903|803 86.3

Table 3: Comparison of methods on multiple corpora. Our feature vector without graph features is used.
The source corpora with the best F-scores are reported for aSVM, TrAdaBoost, and SVM-CW.

F-score AUC
A B H | L all A B H I L all
(64.2) 64.0 64.7 65.2 63.7 64.2|(89.1) 895 89.2 89.3 89.0 894
679 (67.6) 67.9 67.9 67.7 68.3| 86.2 (86.1) 86.2 86.3 86.2 86.4
71.3 71.2 (69.7) 741 70.8 749 | 84.7 85.0 (82.8) 85.0 83.4 87.9
74.4 75.6 73.7 (74.4) 744 76.6| 86.7 87.1 85.4 (85.6) 86.9 87.8
83.2 85.9 82.0 86.7 (80.5) 84.1| 86.3 87.1 87.4 90.8 (86.0) 86.2

—|—|I|® >

Table 4: F-score and AUC by SVM-CW. Rows correspond to a target corpus, and columns a source
corpus. A:AlMed, B:Biolnfer, H:HPRD50, I:IEPA, and L:LLL corpora. “all” signifies that all source
corpora are used as one source corpus, ignoring the differences among the corpora. For the comparison,
we show the 10-fold CV result on each target corpus.

In Table 3, we demonstrate the results of theés especially effective for small corpora, show-
comparison. SVM-CW improved the classifica-ing that SVM-CW can adapt source corpora to a
tion performance at least as much as all the othesmall annotated target corpus. The improvement
methods. The improvement is mainly attributed toon AlMed is small compared to the improvement
the aggressive use of source examples while learron Biolnfer, even though these corpora are sim-
ing the model. Some source examples can be useéldr in size. One of the reasons for this is that
as training data, as indicated in Figure 8. SVM-whole abstracts are annotated in AlMed, therefore
CW does not set the restriction betwe€pn and making the examples biased. The difference be-
Cy in Equation (2), so it can use source examiween L2-SVM and SVM-CW + IEPA on AlMed
ples aggressively while learning the model. Sincas small, but statistically, it is significant (McNe-
aSVM transfers a model, and SVD-ASO transferanar test (McNemar, 1947), P = 0.0081). In the
an additional feature space, aSVM and SVD-ASCcases of HPRD50 + IEPA, LLL + IEPA, and two
do not use the source examples while learning thélds in Biolnfer + IEPA,C is larger thanC; in
model. In addition to the difference in the data us-Equation (2). This is worth noting, because the
age, the settings of aSVM and SVD-ASO do notsource corpus is more weighted than the target cor-
match the current task. As for aSVM, the DA as-pus, and the prediction performance on the tar-
sumption (that the labels are the same) does naet corpus is improved. Most methods put more
match the task. In SVD-ASO, the numbers of bothtrust in the target corpus than in the source cor-
source examples and auxiliary problems are mucpus, and our results show that this setting is not al-
smaller than those reported by Ando et al. (2005)ways effective for mixing corpora. The results also
TrAdaBoost uses the source examples while learrindicate that IEPA contains more useful informa-
ing the model, but never increases the weight ofion for extracting PPI than other corpora, and that
the examples, and it attempts to reduce their efusing source examples aggressively is important
fects. for these combinations. We compared the results

Finally, we apply SVM-CW to all corpora using ©f L2-SVM and SVM-CW + IEPA on AlMed,

all features. Table 4 summarizes the F-score an@nd found that 38 pairs were described as “inter-
AUC by SVM-CW with all features. SVM-CW action” or “binding” in the sentences among 61
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SVM-CW | L2-SVM | Airola etal. pare our result with the F-score results, because
F AUC F AUC F AUC they tuned the threshold, but our system still out-

65.2 89.3] 64.2 89.1| 56.4 84.8 performs the system by Airola et al. (2008) on ev-

68.3 86.4| 67.6 86.1 61.3 81.9 ery corpus in AUC values. The results also indi-

749 87.9| 69.7 828|634 79.7 cate that our system outperforms other systems on

76.6 87.8/ 74.4 85.6| 75.1 85.1 all PPI corpora, and that both the rich feature vec-

86.7 90.8/ 80.5 86.0| 76.8 83.4 tor and the corpus weighting are effective for the

PPI extraction task.

—|—|I|® >

Table 6: Comparison with the results by Airola _
et al. (2008). A:AlMed, B:Biolnfer, H:HPRD50, 5 Conclusion

I:IEPA, and L:LLL corpora. The results with the

highest F-score from Table 4 are reported as thjsn this paper, we proposed a PPl extraction system
results for SYM-CW with a rich feature vector, using a corpus weight-

ing method (SVM-CW) for combining the mul-

_ ' o _ tiple PPI corpora. The feature vector extracts as
newly found pairs. This analysis is evidence thaimych information as possible from the main train-
IEPA contains instances to help find such inter'ing corpus, and SVM-CW incorporate other exter-
actions, and that SVM-CW helps to collect gold nal source corpora in order to improve the perfor-
pairs that lack enough supporting instances in @nance of the classifier on the main target corpus.
single corpus, by adding instances from other cor{g the extent of our knowledge, this is the first ap-
pora. SVM-CW missed coreferential relations thatplication of ITL and DA methods to PPI extrac-
were also missed by L2-SVM. This can be at-tion. As a result, the system, with SVM-CW and
tributed to the fact that the coreferential informa-the feature vector, Outperformed all other PPI ex-
tion is not stored in our current feature vector; sotraction systems on all of the corpora. The PPI
we need an even more expressive feature spacgerpora share some information, and it is shown
This is left as future work. to be effective to add other source corpora when

SVM-CW is effective on most corpus combi- working with a specific target corpus.

natlons,' and all the moqlels from single corpora The main contributions of this paper are: 1)
can be improved by adding other source corporagonducting experiments in extracting PPI using
This result is impressive, because the baselines l}y]u|t|p|e corpora, 2) Suggesting a rich feature
L2-SVM on just single corpora are already betteryector using several previously proposed features
than or at least comparable to other state-of-the-agind normalization methods, 3) the combination of
PPI extraction systems, and also because the vams\/\ with corpus weighting and the new feature
ety of the differences among different corpora isyector improved results on this task compared with
quite wide depending on various factors includingprior work.

annotation policies of the corpora (Pyysalo et al., There are many differences among the corpora
2008). The results suggest that SVM-CW is usefulnat we used, and some of the differences are still
as an ITL method. unresolved. For further improvement, it would be
necessary to investigate what is shared and what
is different among the corpora. The SVM-CW
We compare our system with other previouslymethod, and the PPI extraction system, can be ap-
published PPI extraction systems. Tables 5 angllied generally to other classification tasks, and
6 summarize the comparison. Table 5 summato other binary relation extraction tasks, without
rizes the comparison of several PPI extraction systhe need for modification. There are several other
tems evaluated on the AlMed corpus. As indi-tasks in which many different corpora, which at
cated, the performance of the heavy kernel methotirst glance seem compatible, exist. By apply-
is lower than our fast rich feature-vector method.ing SVM-CW to such corpora, we will analyze
Our system is, to the extent of our knowledge, thewvhich differences can be resolved by SVM-CW,
best performing PPI extraction system evaluate@nd what differences require a manual resolution.
on the AlMed corpus, both in terms of AUC and For the PPI extraction system, we found many
F-scores. Airola et al. (2008) first reported resultdalse negatives that need to be resolved. For fur-
using all five corpora. We cannot directly com-ther improvement, we need to analyze the cause

4.4 Comparison with Other PPI Systems
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positive  all P R F AUC
SVM-CW 1,000 5,834/ 60.0 71.9 65.2 89.3
L2-SVM 1,000 5,834 62.7 66.6 64.2 89.1
(Miwa et al., 2008) 1,005 5,648 60.4 69.3 64.2(61.5) 87.9(87.1)
(Miyao et al., 2008) 1,059 5,648 54.9 65.5 59.5
(Airola et al., 2008) 1,000 5,834/ 529 61.8 56.4 84.8
(Seetre et al., 2007) 1,068 5,631 64.3 44.1 52.0
(Erkan et al., 2007) 951 4,020| 59.6 60.7 60.0
(Bunescu and Mooney, 200%) 65.0 46.4 54.2

Table 5: Comparison with previous PPI extraction results on the AIMed corpus. The numbers of positive
and all examples, precision (P), recall (R), F-score (F), and AUC are shown. The result with the highest
F-score from Table 4 is reported as the result for SVM-CW. The scores in the parentheses of Miwa et al.
(2008) indicate the result using the same 10-fold splits as our result, as indicated in Section 4.2.

of these false negatives more deeply, and designiichael Collins. 2002. Discriminative training meth-

more discriminative feature space. This is left as a 0ds for hidden markov models: theory and experi-
future direction of our work ments with perceptron algorithms. BMNLP 2002
' pages 1-8.
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