
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing, pages 91–100,
Singapore, 6-7 August 2009. c©2009 ACL and AFNLP

Efficient kernels for sentence pair classification

Fabio Massimo Zanzotto
DISP

University of Rome “Tor Vergata”
Via del Politecnico 1
00133 Roma, Italy

zanzotto@info.uniroma2.it

Lorenzo Dell’Arciprete
University of Rome “Tor Vergata”

Via del Politecnico 1
00133 Roma, Italy

lorenzo.dellarciprete@gmail.com

Abstract

In this paper, we propose a novel class
of graphs, the tripartite directed acyclic
graphs (tDAGs), to model first-order rule
feature spaces for sentence pair classifi-
cation. We introduce a novel algorithm
for computing the similarity in first-order
rewrite rule feature spaces. Our algorithm
is extremely efficient and, as it computes
the similarity of instances that can be rep-
resented in explicit feature spaces, it is a
valid kernel function.

1 Introduction

Natural language processing models are generally
positive combinations between linguistic models
and automatically learnt classifiers. As trees are
extremely important in many linguistic theories, a
large amount of works exploiting machine learn-
ing algorithms for NLP tasks has been developed
for this class of data structures (Collins and Duffy,
2002; Moschitti, 2004). These works propose ef-
ficient algorithms for determining the similarity
among two trees in tree fragment feature spaces.

Yet, some NLP tasks such as textual entail-
ment recognition (Dagan and Glickman, 2004;
Dagan et al., 2006) and some linguistic theories
such as HPSG (Pollard and Sag, 1994) require
more general graphs and, then, more general al-
gorithms for computing similarity among graphs.
Unfortunately, algorithms for computing similar-
ity among two general graphs in term of com-
mon subgraphs are still exponential (Ramon and
Gärtner, 2003). In these cases, approximated al-
gorithms have been proposed. For example, the
one proposed in (Gärtner, 2003) counts the num-
ber of subpaths in common. The same happens for
the one proposed in (Suzuki et al., 2003) that is
applicable to a particular class of graphs, i.e. the
hierarchical directed acyclic graphs. These algo-
rithms do not compute the number of subgraphs

in common between two graphs. Then, these al-
gorithms approximate the feature spaces we need
in these NLP tasks. For computing similarities in
these feature spaces, we have to investigate if we
can define a particular class of graphs for the class
of tasks we want to solve. Once we focused the
class of graph, we can explore efficient similarity
algorithms.

A very important class of graphs can be de-
fined for tasks involving sentence pairs. In these
cases, an important class of feature spaces is the
one that represents first-order rewrite rules. For
example, in textual entailment recognition (Da-
gan et al., 2006), we need to determine whether
a textT implies a hypothesisH, e.g., whether or
not “Farmers feed cows animal extracts” entails
“Cows eat animal extracts” (T1,H1). If we want
to learn textual entailment classifiers, we need
to exploit first-order rules hidden in training in-
stances. To positively exploit the training instance
“Pediatricians suggest women to feed newborns
breast milk” entails “Pediatricians suggest that
newborns eat breast milk” (T2,H2) for classify-
ing the above example, learning algorithms should
learn that the two instances hide the first-order rule
ρ = feedY Z → Y eat Z . The first-order
rule feature space, introduced by (Zanzotto and
Moschitti, 2006), gives high performances in term
of accuracy for textual entailment recognition with
respect to other features spaces.

In this paper, we propose a novel class of
graphs, the tripartite directed acyclic graphs
(tDAGs), that model first-order rule feature spaces
and, using this class of graphs, we introduce a
novel algorithm for computing the similarity in
first-order rewrite rule feature spaces. The possi-
bility of explicitly representing the first-order fea-
ture space as subgraphs of tDAGs makes the de-
rived similarity function a valid kernel. With re-
spect to the algorithm proposed in (Moschitti and
Zanzotto, 2007), our algorithm is more efficient

91

and it is a valid kernel function.
The paper is organized as follows. In Sec. 2,

we firstly describe tripartite directed acyclic
graphs (tDAGs) to model first-order feature (FOR)
spaces. In Sec. 3, we then present the related
work. In Sec. 4, we introduce the similarity func-
tion for these FOR spaces. This can be used as ker-
nel function in kernel-based machines (e.g., sup-
port vector machines (Cortes and Vapnik, 1995)).
We then introduce our efficient algorithm for com-
puting the similarity among tDAGs. In Sec. 5,
we analyze the computational efficiency of our
algorithm showing that it is extremely more ef-
ficient than the algorithm proposed in (Moschitti
and Zanzotto, 2007). Finally, in Sec. 6, we draw
conclusions and plan the future work.

2 Representing first-order rules and
sentence pairs as tripartite directed
acyclic graphs

As first step, we want to define thetripartite di-
rected acyclic graphs(tDAGs). This is an ex-
tremely important class of graphs for the first-
order rule feature spaces we want to model. We
want here to intuitively show that, if we model
first-order rules and sentence pairs astDAGs, de-
termining whether or not a sentence pair can be
unified with a first-order rewrite rule is a graph
matching problem. This intuitive idea helps in
determining our efficient algorithm for exploiting
first-order rules in learning examples.

To illustrate the above idea we will use an ex-
ample based on the above ruleρ= feedY Z →

Y eat Z and the above sentence pair(T1,H1).
The ruleρ encodes the entailment relation of the
verb to feedand the verbto eat. If represented
over a syntactic interpretation, the rule has the fol-
lowing aspect:

ρ1 =
VP

VB

feed

NP Y NP Z →

S

NP Y VP

VB

eat

NP Z

As in the case of feature structures (Carpenter,
1992), we can observe this rule as a graph. As
we are not interested in the variable names but we
need to know the relation between the right hand
side and the left hand side of the rule, we can
substitute each variable with an unlabelled node.
We then connect tree nodes having variables with

VP

VB

feed

NP NP ·

·

S

NP VP

VB

eat

NP

Figure 1:A simple rewrite rule seen as a graph

S

NP

DT

The

NN

farmer

VP

VB

feed

NP

NNS

cows

NP

NN

animal

NNS

extracts

·

·

·

S

NP

NNS

Cows

VP

VB

eat

NP

NN

animal

NNS

extracts

Figure 2:A sample pair seen as a graph

the corresponding unlabelled node. The result is a
graph as the one in Fig. 1. The variablesY and Z
are represented by the unlabelled nodes between
the trees.

In the same way we can represent the sentence
pair (T1,H1) using graph with explicit links be-
tween related words and nodes (see Fig. 2). We
can link words using anchoring methods as in
(Raina et al., 2005). These links can then be prop-
agated in the syntactic tree using semantic heads
of the constituents (Pollard and Sag, 1994). The
ruleρ1 matches over the pair(T1,H1) if the graph
ρ1 is among the subgraphs of the graph in Fig. 2.

Both rules and sentence pairs are graphs of the
same type. These graphs are basically two trees
connected through an intermediate set of nodes
representing variables in the rules and relations be-
tween nodes in the sentence pairs. We will here-
after call these graphstripartite directed acyclic
graphs(tDAGs). The formal definition follows.

Definition tDAG: A tripartite directed acyclic
graph is a graphG = (N,E) where

• the set of nodesN is partitioned in three sets
Nt, Ng, andA

• the set of edges is partitioned in four setsEt,
Eg, EAt , andEAg

such thatt = (Nt, Et) andg = (Ng, Eg) are two
trees andEAt = {(x, y)|x ∈ Nt andy ∈ A} and
EAg = {(x, y)|x ∈ Ng andy ∈ A} are the edges
connecting the two trees.

A tDAG is a partially labeled graph. The label-
ing functionL only applies to the subsets of nodes
related to the two trees, i.e.,L : Nt ∪ Ng → L.
Nodes in the setA are not labeled.

92

The explicit representation of the tDAG in Fig. 2
has been useful to show that the unification of a
rule and a sentence pair is a graph matching prob-
lem. Yet, it is complex to follow. We will then de-
scribe a tDAG with an alternative and more con-
venient representation. A tDAGG = (N,E)
can be seen as pairG = (τ, γ) of extended trees
τ and γ where τ = (Nt ∪ A,Et ∪ EAt) and
γ = (Ng ∪ A,Eg ∪ EAg). These are extended
trees as each tree contains the relations with the
other tree.

As for the feature structures, we will graphically
represent a(x, y) ∈ EAt and a(z, y) ∈ EAg as
boxes y respectively on the nodex and on the
nodez. These nodes will then appear asL(x) y

andL(z) y , e.g., NP1. The namey is not a label
but a placeholder representing an unlabelled node.
This representation is used for rules and for sen-
tence pairs. The sentence pair in Fig. 2 is then
represented as reported in Fig. 3.

3 Related work

Automatically learning classifiers for sentence
pairs is extremely important for applications like
textual entailment recognition, question answer-
ing, and machine translation.

In textual entailment recognition, it is not hard
to see graphs similar to tripartite directed acyclic
graphs as ways of extracting features from exam-
ples to feed automatic classifiers. Yet, these graphs
are generally not tripartite in the sense described
in the previous section and they are not used to ex-
tract features representing first-order rewrite rules.
In (Raina et al., 2005; Haghighi et al., 2005; Hickl
et al., 2006), two connected graphs representing
the two sentencess1 ands2 are used to compute
distance features, i.e., features representing the
distance betweens1 ands2. The underlying idea
is that lexical, syntactic, and semantic similarities
between sentences in a pair are relevant features
to classify sentence pairs in classes such asentail
andnot-entail.

In (de Marneffe et al., 2006), first-order rewrite
rule feature spaces have been explored. Yet, these
spaces are extremely small. Only some features
representing first-order rules have been explored.
Pairs of graphs are used here to determine if a fea-
ture is active or not, i.e., the rule fires or not. A
larger feature space of rewrite rules has been im-
plicitly explored in (Wang and Neumann, 2007)
but this work considers only ground rewrite rules.

In (Zanzotto and Moschitti, 2006), tripartite di-
rected acyclic graphs are implicitly introduced and
exploited to build first-order rule feature spaces.
Yet, both in (Zanzotto and Moschitti, 2006) and
in (Moschitti and Zanzotto, 2007), the model pro-
posed has two major limitations: it can represent
rules with less than 7 variables and the proposed
kernel is not a completely valid kernel as it uses
the max function.

In machine translation, some methods such as
(Eisner, 2003) learn graph based rewrite rules for
generative purposes. Yet, the method presented in
(Eisner, 2003) can model first-order rewrite rules
only with a very small amount of variables, i.e.,
two or three variables.

4 An efficient algorithm for computing
the first-order rule space kernel

In this section, we present our idea for an effi-
cient algorithm for exploiting first-order rule fea-
ture spaces. In Sec. 4.1, we firstly define the simi-
larity function, i.e., the kernelK(G1, G2), that we
need to determine for correctly using first-order
rules feature spaces. This kernel is strongly based
on the isomorphism between graphs. A relevant
idea of this paper is the observation that we can
define an efficient way to detect the isomorphism
between the tDAGs (Sec. 4.2). This algorithm ex-
ploits the efficient algorithms of tree isomorphism
as the one implicitly used in (Collins and Duffy,
2002). After describing the isomorphism between
tDAGs, We can present the idea of our efficient al-
gorithm for computingK(G1, G2) (Sec. 4.3). We
introduce the algorithms to make it a viable solu-
tion (Sec. 4.4). Finally, in Sec. 4.5, we report the
kernel computation we compare against presented
by (Zanzotto and Moschitti, 2006; Moschitti and
Zanzotto, 2007).

4.1 Kernel functions over first-order rule
feature spaces

The first-order rule feature space we want to model
is huge. If we use kernel-based machine learning
models such as SVM (Cortes and Vapnik, 1995),
we can implicitly define the space by defining its
similarity functions, i.e., its kernel functions. We
firstly introduce the first-order rule feature space
and we then define the prototypical kernel function
over this space.

The first-order rule feature space (FOR) is in
general the space of all the possible first-order

93

P1 = 〈

S

NP

NNS

Farmers

VP

VB

feed

NP 1

NNS 1

cows

NP 3

NN 2

animal

NNS 3

extracts

,

S

NP 1

NNS 1

Cows

VP

VB

eat

NP 3

NN 2

animal

NNS 3

extracts

〉

P2 = 〈

S 2

NP 1

NNS 1

Pediatricians

VP 2

VB 2

suggest

S

NP

NNS

women

VP

TO

to

VP

VB

feed

NP 3

NNS 3

newborns

NP 4

NN 5

breast

NN 4

milk

,

S 2

NP 1

NNS 1

Pediatricians

VP 2

VB 2

suggest

SBAR

IN

that

S

NP 3

NNS 3

newborns

VP

VB

eat

NP 4

NN 5

breast

NN 4

milk

〉

Figure 3: Two tripartite DAGs

rules defined as tDAGs. Within this space it is pos-
sible to define the functionS(G) that determines
all the possible active features of the tDAGG in
FOR. The functionS(G) determines all the pos-
sible and meaningful subgraphs ofG. We want
that these subgraphs represent first-order rules that
can be matched with the pairG. Then, meaningful
subgraphs ofG = (τ, γ) are graphs as(t, g) where
t andg are subtrees ofτ andγ. For example, the
subgraphs ofP1 andP2 in Fig. 3 are hereafter par-
tially represented:

S(P1) = { 〈
S

NP VP
,

S

NP 1 VP

〉 , 〈
NP 1

NNS 1

,

NP 1

NNS 1

〉 ,

〈

S

NP VP

VB

feed

NP 1 NP 3
,

S

NP 1 VP

VB

eat

NP 3

〉 ,

〈

VP

VB

feed

NP 1 NP 3 ,

S

NP 1 VP

VB

eat

NP 3

〉 , ... }

and

S(P2) = { 〈
S 2

NP 1 VP 2

,

S 2

NP 1 VP 2

〉 , 〈
NP 1

NNS 1

,

NP 1

NNS 1

〉 ,

〈

VP

VB

feed

NP 3 NP 4 ,

S

NP 3 VP

VB

eat

NP 4

〉 , ... }

In the FOR space, the kernel functionK should
then compute the number of subgraphs in com-
mon. The trivial way to describe the former kernel

function is using the intersection operator, i.e., the
kernelK(G1, G2) is the following:

K(G1, G2) = |S(G1) ∩ S(G2)| (1)

This is very simple to write and it is in principle
correct. A graphg in the intersectionS(G1) ∩
S(G2) is a graph that belongs to bothS(G1) and
S(G2). Yet, this hides a very important fact: de-
termining whether two graphs,g1 andg2, are the
samegraphg1 = g2 is not trivial. For example,
it is not sufficient to superficially compare graphs
to determine thatρ1 belongs both toS1 andS2.
We need to use the correct property forg1 = g2,
i.e., theisomorphismbetween two graphs. We can
call the operatorIso(g1, g2). When two graphs
verify the propertyIso(g1, g2), both g1 and g2

can be taken as the graphg representing the two
graphs. DetectingIso(g1, g2) has an exponential
complexity (Köbler et al., 1993).

This complexity of the intersection operator be-
tween sets of graphs deserves a different way to
represent the operation. We will use the same sym-
bol but we will use the prefix notation. The opera-
tor is hereafter re-defined:

∩ (S(G1),S(G2)) =
= {g1|g1 ∈ S(G1),∃g2 ∈ S(G2), Iso(g1, g2)}

4.2 Isomorphism between tDAGs

As isomorphism between graphs is an essential ac-
tivity for learning from structured data, we here
review its definition and we adapt it to tDAGs.

94

We then observe that isomorphism between two
tDAGs can be divided in two sub-problems:

• finding the isomorphism between two pairs
of extended trees

• checking whether the partial isomorphism
found between the two pairs ofextended trees
are compatible.

In general, two tDAGs,G1 = (N1, E1) and
G2 = (N2, E2) are isomorphic (or match) if
|N1| = |N2|, |E1| = |E2|, and a bijective func-
tion f : N1 → N2 exists such that these properties
hold:

• for each noden ∈ N1, L(f(n)) = L(n)
• for each edge(n1, n2) ∈ E1 an edge

(f(n1), f(n2)) is in E2

The bijective functionf is a member of the combi-
natorial setF of all the possible bijective functions
between the two setsN1 andN2.

The trivial algorithm for detecting if two graphs
are isomorphic is exponential (Köbler et al.,
1993). It explores all the setF . It is still unde-
termined if the general graph isomorphism prob-
lem is NP-complete. Yet, we can use the fact that
tDAGs are two extended trees for building a bet-
ter algorithm. There is an efficient algorithm for
computing isomorphism between trees (as the one
implicitly used in (Collins and Duffy, 2002)).

Given two tDAGsG1 = (τ1, γ1) and G2 =
(τ2, γ2) the isomorphism problem can be divided
in detecting two properties:

1. Partial isomorphism. Two tDAGsG1 andG2

arepartially isomorphic, if τ1 andτ2 are iso-
morphic and ifγ1 andγ2 are isomorphic. The
partial isomorphism produces two bijective
functionsfτ andfγ .

2. Constraint compatibility. Two bijective func-
tionsfτ andfγ are compatible on the sets of
nodesA1 andA2, if for eachn ∈ A1, it hap-
pens thatfτ (n) = fγ(n).

We can rephrase the second property, i.e., the
constraint compatibility, as follows. We de-
fine two constraintsc(τ1, τ2) and c(γ1, γ2) rep-
resenting the functionsfτ and fγ on the sets
A1 and A2. The two constraints are defined as
c(τ1, τ2) = {(n, fτ (n))|n ∈ A1} andc(γ1, γ2) =
{(n, fγ(n))|n ∈ A1}. Two partially isomorphic
tDAGs are isomorphic if the constraints match,
i.e.,c(τ1, τ2) = c(γ1, γ2).

Pa = (τa, γa) = 〈

A 1

B 1

B 1 B 2

C 1

C 1 C 2

,

I 1

M 1

M 2 M 1

N 1

N 2 N 1

〉

Pb = (τb, γb) = 〈

A 1

B 1

B 1 B 2

C 1

C 1 C 3

,

I 1

M 1

M 3 M 1

N 1

N 2 N 1

〉

Figure 5: Simple non-linguistic tDAGs

For example, the third pair ofS(P1) and the
second pair ofS(P2) are isomorphic as: (1) these
are partially isomorphic, i.e., the right hand sides
τ and the left hand sidesγ are isomorphic; (2)
both pairs of extended trees generate the constraint
c1 = {(1 , 3), (3 , 4)}. In the same way, the
fourth pair ofS(P1) and the third pair ofS(P2)
generatec2 = {(1 , 1)}
4.3 General idea for an efficient kernel

function

As above discussed, two tDAGs are isomorphic if
the two properties, thepartial isomorphismand
theconstraint compatibility, hold. To compute the
kernel functionK(G1, G2) defined in Sec. 4.1, we
can exploit these properties in the reverse order.
Given a constraintc, we can select all the graphs
that meet the constraintc (constraint compatibil-
ity). Having the two set of all the tDAGs meeting
the constraint, we can detect thepartial isomor-
phism. We split each pair of tDAGs in the four
extended trees and we determine if these extended
trees are compatible.

We introduce this innovative method to com-
pute the kernelK(G1, G2) in the FOR space in
two steps. Firstly, we give an intuitive explanation
and, secondly, we formally define the kernel.

4.3.1 Intuitive explanation

To give an intuition of the kernel computation,
without loss of generality and for sake of simplic-
ity, we use two non-linguistic tDAGs,Pa andPb

(see Fig. 5), and the subgraph functionS̃(θ). This
latter is an approximated version ofS(θ) that gen-
erates tDAGs with subtrees rooted in the root of
the initial trees ofθ.

To exploit the constraint compatibility
property, we defineC as the set of all the
relevant alternative constraints, i.e., the con-
straints c that are likely to be generated
when detecting the partial isomorphism.
For Pa and Pb, this set isC = {c1, c2} =

95

∩(S̃(Pa), S̃(Pb))|c1 = { 〈
A 1

B 1 C 1

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1

B 1 B 2

C 1 ,

I 1

M 1 N 1

〉 , 〈

A 1

B 1

B 1 B 2

C 1 ,

I 1

M 1 N 1

N 2 N 1

〉 ,

〈
A 1

B 1 C 1

,

I 1

M 1 N 1

N 2 N 1

〉 } = {
A 1

B 1 C 1

,

A 1

B 1

B 1 B 2

C 1 } × {
I 1

M 1 N 1

,

I 1

M 1 N 1

N 2 N 1

} =

= ∩(S̃(τa), S̃(τb))|c1 ×∩(S̃(γa), S̃(γb))|c1

∩(S̃(Pa), S̃(Pb))|c2 = { 〈
A 1

B 1 C 1

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1 C 1

C 1 C 2

,

I 1

M 1 N 1

〉 , 〈

A 1

B 1 C 1

C 1 C 2

,

I 1

M 1

M 2 M 1

N 1 〉 ,

〈
A 1

B 1 C 1

,

I 1

M 1

M 2 M 1

N 1 〉 } = {
A 1

B 1 C 1

,

A 1

B 1 C 1

C 1 C 2

} × {
I 1

M 1 N 1

,

I 1

M 1

M 2 M 1

N 1 }=

= ∩(S̃(τa), S̃(τb))|c2 ×∩(S̃(γa), S̃(γb))|c2

Figure 4: Intuitive idea for the kernel computation

{{(1 , 1), (2 , 2)}, {(1 , 1), (2 , 3)}}. We can
then determine the kernelK(Pa, Pb) as:

K(Pa,Pb)= |∩(S̃(Pa),S̃(Pb))|=
= |∩(S̃(Pa),S̃(Pb))|c1

⋃ ∩(S̃(Pa),S̃(Pb))|c2 |

where∩(S̃(Pa), S̃(Pb))|c are the common sub-
graphs that meet the constraintc. A tDAG g′ =
(τ ′, γ′) in S̃(Pa) is in ∩(S̃(Pa), S̃(Pb))|c if g′′ =
(τ ′′, γ′′) in S̃(Pb) exists,g′ is partially isomorphic
to g′′, andc′ = c(τ ′, τ ′′) = c(γ′, γ′′) is coveredby
andcompatiblewith the constraintc, i.e., c′ ⊆ c.
For example in Fig. 4, the first tDAG of the set
∩(S̃(Pa), S̃(Pb))|c1 belongs to the set as its con-
straintc′ = {(1 , 1)} is a subset ofc1.

Observing the kernel computation in this way
is important. Elements in∩(S̃(Pa), S̃(Pb))|c
already satisfy the property ofconstraint com-
patibility. We only need to determine if the
partially isomorphicproperties hold for elements
in ∩(S̃(Pa), S̃(Pb))|c. Then, we can write the
following equivalence:

∩(S̃(Pa),S̃(Pb))|c=
=∩(S̃(τa),S̃(τb))|c×∩(S̃(γa),S̃(γb))|c

(2)

Figure 4 reports this equivalence for the two
sets derived using the constraintsc1 and c2.
Note that this equivalence is not valid if a con-
straint is not applied, i.e.,∩(S̃(Pa), S̃(Pb))
6= ∩(S̃(τa), S̃(τb)) × ∩(S̃(γa), S̃(γb)).
The pair Pa itself does not belong to

∩(S̃(Pa), S̃(Pb)) but it does belong to
∩(S̃(τa), S̃(τb))× ∩(S̃(γa), S̃(γb)).

The equivalence (2) allows to compute the car-
dinality of ∩(S̃(Pa), S̃(Pb))|c using the cardinal-
ities of ∩(S̃(τa), S̃(τb))|c and∩(S̃(γa), S̃(γb))|c.
These latter sets contain only extended trees where
the equivalences between unlabelled nodes are
given by c. We can then compute the cardinali-
ties of these two sets using methods developed for
trees (e.g., the kernel functionKS(θ1, θ2) intro-
duced in (Collins and Duffy, 2002)).

4.3.2 Formal definition

Given the idea of the previous section, it is easy
to demonstrate that the kernelK(G1, G2) can be
written as follows:

K(G1,G2)=|⋃c∈C ∩(S(τ1),S(τ2))|c×∩(S(γ1),S(γ2))|c|
where C is set of alternative constraints and
∩(S(θ1),S(θ2))|c are all the common extended
trees compatible with the constraintc.

We can compute the above kernel using the
inclusion-exclusion property, i.e.,

|A1 ∪ · · · ∪An| =
∑

J∈2{1,...,n}
(−1)|J |−1|AJ | (3)

where 2{1,...,n} is the set of all the subsets of
{1, . . . , n} andAJ =

⋂
i∈J Ai.

To describe the application of the inclusion-
exclusion model in our case, let firstly define:

KS(θ1, θ2, c) = |∩(S(θ1),S(θ2))|c| (4)

96

whereθ1 can be bothτ1 andγ1 andθ2 can be both
τ2 andγ2. Trivially, we can demonstrate that:

K(G1, G2) =
=

∑
J∈2{1,...,|C|}(−1)|J|−1KS(τ1,τ2,c(J))KS(γ1,γ2,c(J))

(5)

wherec(J) =
⋂

i∈J ci.
Given the nature of the constraint setC, we

can compute efficiently the previous equation as
it often happens that two differentJ1 and J2 in
2{1,...,|C|} generate the samec, i.e.

c =
⋂
i∈J1

ci =
⋂
i∈J2

ci (6)

Then, we can defineC∗ as the set of all intersec-
tions of constraints inC, i.e. C∗ = {c(J)|J ∈
2{1,...,|C|}}. We can rewrite the equation as:

K(G1, G2) =

=
∑
c∈C∗

KS(τ1, τ2, c)KS(γ1, γ2, c)N(c) (7)

where

N(c) =
∑

J∈2{1,...,|C|}
c=c(J)

(−1)|J |−1 (8)

The complexity of the above kernel strongly de-
pends on the cardinality ofC and the related cardi-
nality of C∗. The worst-case computational com-
plexity is still exponential with respect to the size
of A1 andA2. Yet, the average case complexity
(Wang, 1997) is promising.

The set C is generally very small with re-
spect to the worst case. IfF(A1,A2) are all the
possible correspondences between the nodes
A1 and A2, it happens that|C| << |F(A1,A2)|
where|F(A1,A2)| is the worst case. For example,
in the case ofP1 and P2, the cardinality of
C =

{{(1 , 1)}, {(1 , 3), (3 , 4), (2 , 5)}}
is extremely smaller than the one of
F(A1,A2) = {{(1,1),(2,2),(3,3)},
{(1,2),(2,1),(3,3)}, {(1,2),(2,3),(3,1)},
..., {(1,3),(2,4),(3,5)}}. In Sec. 4.5 we argue
that the algorithm presented in (Moschitti and
Zanzotto, 2007) has the worst-case complexity.

Moreover, the setC∗ is extremely smaller than
2{1,...,|C|} due to the above property (6).

We will analyze the average-case complex-
ity with respect to the worst-case complexity in
Sec. 5.

4.4 Enabling the efficient kernel function

The above idea for computing the kernel function
is extremely interesting. Yet, we need to make it
viable by describing the way we can determine ef-
ficiently the three main parts of the equation (7):
1) the set of alternative constraintsC (Sec. 4.4.1);
2) the setC∗ of all the possible intersections of
constraints inC (Sec. 4.4.2); and, finally, 3) the
numbersN(c) (Sec. 4.4.3).

4.4.1 Determining the set of alternative
constraints

The first step of equation (7) is to determine the
alternative constraintsC. We can here strongly
use the possibility of dividing tDAGs in two trees.
We build C as Cτ ∪ Cγ where: 1)Cτ are the
constraints obtained from pairs of isomorphic ex-
tended treest1 ∈ S(τ1) andt2 ∈ S(τ2); 2) Cγ are
the constraints obtained from pairs of isomorphic
extended treest1 ∈ S(γ1) andt2 ∈ S(γ2).

The idea for an efficient algorithm is that we
can compute theC without explicitly looking
at all the subgraphs involved. We instead use
and combine the constraints derived comparing
the productions of the extended trees. We can
compute thenCτ with the productions ofτ1 and
τ2 and Cγ with the productions ofγ1 and γ2.
For example (see Fig. 3), focusing on theτ , the
rule NP 3 → NN 2NNS 3 of G1 and
NP 4 → NN 5NNS 4 of G2 generates the

constraintc = {(3 , 4), (2 , 5)}.
Using the above intuition it is possible to define

an algorithm that builds an alternative constraint
setC with the following two properties:

1. for each common subtree according to a set
of constraintsc, ∃c′ ∈ C such thatc ⊆ c′;

2. @c′, c′′ ∈ C such thatc′ ⊂ c′′ andc′ 6= ∅.
4.4.2 Determining the setC∗

The setC∗ is defined as the set of all possible in-
tersections of alternative constraints inC. Figure
6 presents the algorithm determiningC∗. Due to
the property (6) discussed in Sec. 4.3, we can em-
pirically demonstrate that the average complexity
of the algorithm is not bigger thanO(|C|2). Yet,
again, the worst case complexity is exponential.

4.4.3 Determining the values ofN(c)
The multiplier N(c) (Eq. 8) represents the num-
ber of times the constraintc is considered in the
sum of equation 5, keeping into account the sign of

97

Algorithm Build the setC∗ from the setC
C+ ← C ; C1 ← C ; C2 ← ∅
WHILE |C1| > 1

FORALL c′ ∈ C1

FORALL c′′ ∈ C1 such thatc′ 6= c′′

c← c′ ∩ c′′

IF c /∈ C+ addc to C2

C+ ← C+ ∪ C2 ; C1 ← C2; C2 ← ∅
C∗ ← C ∪ C+ ∪ {∅}

Figure 6:Algorithm for computingC∗

the corresponding addend. It is possible to demon-
strate that:

N(c) = 1−
∑

c′∈C∗
c′⊃c

Nc′ (9)

This recursive formulation of the equation allows
us to easily determine the value ofN(c) for every
c belonging toC∗. It is possible to prove this prop-
erty using set properties and the binomial theorem.
The proof is omitted for lack of space.

4.5 Reviewing the strictly related work

To understand if ours is an efficient algorithm, we
compare it with the algorithm presented by (Mos-
chitti and Zanzotto, 2007). We will hereafter call
this algorithmKmax. The Kmax algorithm and
kernel is an approximation of what is a kernel
needed for a FOR space as it is not difficult to
demonstrate thatKmax(G1, G2) ≤ K(G1, G2).
The Kmax approximation is based on maximiza-
tion over the set of possible correspondences of
the placeholders. Following our formulation, this
kernel appears as:

Kmax(G1, G2) =
= max

c∈F(A1,A2)

KS(τ1, τ2, c)KS(γ1, γ2, c) (10)

where F(A1,A2) are all the possible correspon-
dences between the nodesA1 andA2 of the two
tDAGs as the one presented in Sec. 4.3. This for-
mulation of the kernel has the worst case complex-
ity of our formulation, i.e., Eq. 7.

For computing the basic kernel for the extended
trees, i.e. KS(θ1, θ2, c) we use the model algo-
rithm presented by (Zanzotto and Moschitti, 2006)
and refined by (Moschitti and Zanzotto, 2007)
based on the algorithm for tree fragment feature

0

10

20

30

40

50

0 10 20 30 40 50

ms

n×m placeholders

K(G1, G2)
Kmax(G1, G2)

Figure 7: Mean execution time in milliseconds
(ms) of the two algorithms wrt.n × m wheren
andm are the number of placeholders of the two
tDAGs

spaces (Collins and Duffy, 2002). As we are using
the same basic kernel, we can empirically compare
the two methods.

5 Experimental evaluation

In this section we want to empirically estimate the
benefits on the computational cost of our novel al-
gorithm with respect to the algorithm proposed by
(Moschitti and Zanzotto, 2007). Our algorithm is
in principle exponential with respect to the set of
alternative constraintsC. Yet, due to what pre-
sented in Sec. 4.4 and as the setC∗ is usually
very small, the average complexity is extremely
low. Following the theory on the average-cost
computational complexity (Wang, 1997), we es-
timated the behavior of the algorithms on a large
distribution of cases. We then compared the com-
puting times of the two algorithms. Finally, as
K and Kmax compute slightly different kernels,
we compare the accuracy of the two methods.
We implemented both algorithmsK(G1, G2) and
Kmax(G1, G2) in support vector machine classi-
fier (Joachims, 1999) and we experimented with
both implementations on the same machine. We
hereafter analyze the results in term of execution
time (Sec. 5.1) and in term of accuracy (Sec. 5.2).

5.1 Average computing time analysis

For this first set of experiments, the source of ex-
amples is the one of the recognizing textual en-
tailment challenge, i.e., RTE2 (Bar-Haim et al.,

98

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14

s

#ofplaceholders

K(G1, G2)
Kmax(G1, G2)

Figure 8: Total execution time in seconds (s) of
the training phase on RTE2 wrt. different numbers
of allowed placeholders

2006). The dataset of the challenge has 1,600 sen-
tence pairs.

The computational cost of bothK(G1, G2) and
Kmax(G1, G2) depends on the number of place-
holdersn = |A1| of G1 and onm = |A2| the
number of placeholders ofG2. Then, in the first
experiment we want to determine the relation be-
tween the computational time and the factorn×m.
Results are reported in Fig. 7 where the computa-
tion times are plotted with respect ton×m. Each
point in the curve represents the average execu-
tion time for the pairs of instances havingn ×m
placeholders. As expected, the computation of the
functionK is more efficient than the computation
Kmax. The difference between the two execution
times increases withn×m.

We then performed a second experiment that
wants to determine the relation of the total exe-
cution with the maximum number of placeholders
in the examples. This is useful to estimate the be-
havior of the algorithm with respect to its applica-
tion in learning models. Using the RTE2 data, we
artificially build different versions with increasing
number of placeholders. We then have RTE2 with
1 placeholder at most in each pair, RTE2 with 2
placeholders, etc. The number of pairs in each set
is the same. What changes is the maximal num-
ber of placeholders. Results are reported in Fig. 8
where the execution time of the training phase in
seconds (s) is plotted for each different set. We
see that the computation ofKmax is exponential
with respect to the number of placeholders and

Kernel Accuracy Used training Support
examples Vectors

Kmax 59.32 4223 4206
K 60.04 4567 4544

Table 1:Comparative performances ofKmax andK

it becomes intractable after 7 placeholders. The
computation ofK is instead more flat. This can
be explained as the computation ofK is related
to the real alternative constraints that appears in
the dataset. The computation of the kernelK then
outperforms the computation of the kernelKmax.

5.2 Accuracy analysis

As Kmax that has been demonstrated very effec-
tive in term of accuracy for RTE andK compute
a slightly different similarity function, we want to
show that the performance of our more computa-
tionally efficientK is comparable, and even better,
to the performances ofKmax. We then performed
an experiment taking as training all the data de-
rived from RTE1, RTE2, and RTE3, (i.e., 4567
training examples) and taking as testing RTE-4
(i.e., 1000 testing examples). The results are re-
ported in Tab. 1. As the table shows, the accuracy
of K is higher than the accuracy ofKmax. There
are two main reasons. The first is thatKmax is
an approximation ofK. The second is that we
can now consider sentence pairs with more than
7 placeholders. Then, we can use the complete
training set as the third column of the table shows.

6 Conclusions and future work

We presented an interpretation of first order rule
feature spaces astripartite directed acyclic graphs
(tDAGs). This view on the problem gave us the
possibility of defining a novel and efficient algo-
rithm for computing the kernel function for first
order rule feature spaces. Moreover, the resulting
algorithm is a valid kernel as it can be written as
dot product in the explicit space of the tDAG frag-
ments. We demonstrated that our algorithm out-
performs in term of average complexity the previ-
ous algorithm and it yields to better accuracies for
the final task. We are investigating if this is a valid
algorithm for two general directed acyclic graphs.

99

References

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa
Ferro, Danilo Giampiccolo, and Idan Magnini,
Bernardo Szpektor. 2006. The second pascal recog-
nising textual entailment challenge. InProceedings
of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment. Venice, Italy.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press, Cam-
bridge, England.

Michael Collins and Nigel Duffy. 2002. New rank-
ing algorithms for parsing and tagging: Kernels over
discrete structures, and the voted perceptron. InPro-
ceedings of ACL02.

C. Cortes and V. Vapnik. 1995. Support vector net-
works. Machine Learning, 20:1–25.

Ido Dagan and Oren Glickman. 2004. Probabilistic
textual entailment: Generic applied modeling of lan-
guage variability. InProceedings of the Workshop
on Learning Methods for Text Understanding and
Mining, Grenoble, France.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Quionero-Candela et al., editor,LNAI
3944: MLCW 2005, pages 177–190, Milan, Italy.
Springer-Verlag.

Marie-Catherine de Marneffe, Bill MacCartney, Trond
Grenager, Daniel Cer, Anna Rafferty, and Christo-
pher D. Manning. 2006. Learning to distinguish
valid textual entailments. InProceedings of the Sec-
ond PASCAL Challenges Workshop on Recognising
Textual Entailment, Venice, Italy.

Jason Eisner. 2003. Learning non-isomorphic tree
mappings for machine translation. InProceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL), Companion Vol-
ume, pages 205–208, Sapporo, July.

Thomas Gärtner. 2003. A survey of kernels for struc-
tured data.SIGKDD Explorations.

Aria D. Haghighi, Andrew Y. Ng, and Christopher D.
Manning. 2005. Robust textual inference via graph
matching. InHLT ’05: Proceedings of the con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
pages 387–394, Morristown, NJ, USA. Association
for Computational Linguistics.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk
Roberts, Bryan Rink, and Ying Shi. 2006. Rec-
ognizing textual entailment with LCCs GROUND-
HOG system. In Bernardo Magnini and Ido Dagan,
editors,Proceedings of the Second PASCAL Recog-
nizing Textual Entailment Challenge, Venice, Italy.
Springer-Verlag.

Thorsten Joachims. 1999. Making large-scale svm
learning practical. In B. Schlkopf, C. Burges, and
A. Smola, editors,Advances in Kernel Methods-
Support Vector Learning. MIT Press.

Johannes Köbler, Uwe Schöning, and Jacobo Torán.
1993. The graph isomorphism problem: its struc-
tural complexity. Birkhauser Verlag, Basel, Switzer-
land, Switzerland.

Alessandro Moschitti and Fabio Massimo Zanzotto.
2007. Fast and effective kernels for relational learn-
ing from texts. InProceedings of the International
Conference of Machine Learning (ICML). Corvallis,
Oregon.

Alessandro Moschitti. 2004. A study on convolution
kernels for shallow semantic parsing. Inproceed-
ings of the ACL, Barcelona, Spain.

C. Pollard and I.A. Sag. 1994.Head-driven Phrase
Structured Grammar. Chicago CSLI, Stanford.

Rajat Raina, Aria Haghighi, Christopher Cox, Jenny
Finkel, Jeff Michels, Kristina Toutanova, Bill Mac-
Cartney, Marie-Catherine de Marneffe, Manning
Christopher, and Andrew Y. Ng. 2005. Robust tex-
tual inference using diverse knowledge sources. In
Proceedings of the 1st Pascal Challenge Workshop,
Southampton, UK.

Jan Ramon and Thomas Gärtner. 2003. Expressivity
versus efficiency of graph kernels. InFirst Interna-
tional Workshop on Mining Graphs, Trees and Se-
quences.

Jun Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku
Maeda. 2003. Hierarchical directed acyclic graph
kernel: Methods for structured natural language
data. InIn Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 32–39.

Rui Wang and Günter Neumann. 2007. Recog-
nizing textual entailment using a subsequence ker-
nel method. InProceedings of the Twenty-Second
AAAI Conference on Artificial Intelligence (AAAI-
07), July 22-26, Vancouver, Canada.

Jie Wang. 1997. Average-case computational com-
plexity theory. pages 295–328.

Fabio Massimo Zanzotto and Alessandro Moschitti.
2006. Automatic learning of textual entailments
with cross-pair similarities. InProceedings of the
21st Coling and 44th ACL, pages 401–408. Sydney,
Australia, July.

100

