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Abstract in common between two graphs. Then, these al-
gorithms approximate the feature spaces we need
in these NLP tasks. For computing similarities in

these feature spaces, we have to investigate if we
can define a particular class of graphs for the class
of tasks we want to solve. Once we focused the

for computing the similarity in first-order class of graph, we can explore efficient similarity

rewrite rule feature spaces. Our algorithm ~ &/gorithms.

is extremely efficient and, as it computes A very important class of graphs can be de-
the similarity of instances that can be rep-  fined for tasks involving sentence pairs. In these
resented in explicit feature spaces, it is a  Cases, an important class of feature spaces is the

valid kernel function. one that represents first-order rewrite rules. For
example, in textual entailment recognition (Da-
gan et al., 2006), we need to determine whether
Natural language processing models are generall§ textT" implies a hypothesig¢i, e.g., whether or
positive combinations between linguistic modelsnot “Farmers feed cows animal extrattsntails
and automatically learnt classifiers. As trees aré Cows eat animal extractg7, Hy). If we want
extremely important in many linguistic theories, ato learn textual entailment classifiers, we need
large amount of works exploiting machine learn-to exploit first-order rules hidden in training in-
ing algorithms for NLP tasks has been developedtances. To positively exploit the training instance
for this class of data structures (Collins and Duffy,“Pediatricians suggest women to feed newborns
2002; Moschitti, 2004). These works propose efbreast milk entails “Pediatricians suggest that
ficient algorithms for determining the similarity newborns eat breast milk(7», H») for classify-
among two trees in tree fragment feature spaces.ing the above example, learning algorithms should
Yet, some NLP tasks such as textual entaildearn that the two instances hide the first-order rule
ment recognition (Dagan and Glickman, 2004;p = feedYIZ] — [Yleat[Z] . The first-order
Dagan et al., 2006) and some linguistic theoriegule feature space, introduced by (Zanzotto and
such as HPSG (Pollard and Sag, 1994) requirdoschitti, 2006), gives high performances in term
more general graphs and, then, more general apfaccuracy for textual entailment recognition with
gorithms for computing similarity among graphs. respect to other features spaces.
Unfortunately, algorithms for computing similar-  In this paper, we propose a novel class of
ity among two general graphs in term of com-graphs, the tripartite directed acyclic graphs
mon subgraphs are still exponential (Ramon andtDAGS), that model first-order rule feature spaces
Gartner, 2003). In these cases, approximated aknd, using this class of graphs, we introduce a
gorithms have been proposed. For example, theovel algorithm for computing the similarity in
one proposed in (Gartner, 2003) counts the numfirst-order rewrite rule feature spaces. The possi-
ber of subpaths in common. The same happens fdaility of explicitly representing the first-order fea-
the one proposed in (Suzuki et al., 2003) that igure space as subgraphs of tDAGs makes the de-
applicable to a particular class of graphs, i.e. theived similarity function a valid kernel. With re-
hierarchical directed acyclic graphs. These algospect to the algorithm proposed in (Moschitti and
rithms do not compute the number of subgraphganzotto, 2007), our algorithm is more efficient

In this paper, we propose a novel class
of graphs, the tripartite directed acyclic
graphs (tDAGs), to model first-order rule
feature spaces for sentence pair classifi-
cation. We introduce a novel algorithm

1 Introduction
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and it is a valid kernel function. VP s

The paper is organized as follows. In Sec. 2, e _Qﬁp
we firstly describe tripartite directed acyclic | \ A\
. feed . VB NP

graphs (tDAGs) to model first-order feature (FOR) \u

eat

spaces. In Sec. 3, we then present the related
work. In Sec. 4, we introduce the similarity func-

: . Figure 1:A simple rewrite rule seen as a graph
tion for these FOR spaces. This can be used as ker- g P grap

nel function in kernel-based machines (e.g., sup- /S\
port vector machines (Cortes and Vapnik, 1995)). NP VP
We then introduce our efficient algorithm forcom- 73 s v

puting the similarity among tDAGs. In Sec. 5, T g
we analyze the computational efficiency of our

algorithm showing that it is extremely more ef-
ficient than the algorithm proposed in (Moschitti
and Zanzotto, 2007). Finally, in Sec. 6, we draw
conclusions and plan the future work.

cowsanimal extracts animal extracts

Figure 2:A sample pair seen as a graph

the corresponding unlabelled node. The result is a

2 Representing first-order rules and graph as the one in Fig. 1. The variatésand(Z]
sentence pairs as tripartite directed are represented by the unlabelled nodes between
acyclic graphs the trees.

In the same way we can represent the sentence

As first step, we want to define thapartite di- pair (11, H,) using graph with explicit links be-
rected acyclic graphtDAGs). This is an ex-  tween related words and nodes (see Fig. 2). We
tremely important class of graphs for the first-can |ink words using anchoring methods as in
order rule feature spaces we want to model. WRRaina et al., 2005). These links can then be prop-
want here to intuitively show that, if we model agated in the syntactic tree using semantic heads
first-order rules and sentence pairs 854G's, de-  of the constituents (Pollard and Sag, 1994). The
termining whether or not a sentence pair can bspu|ep1 matches over the paifl}, H,) if the graph
unified with a first-order rewrite rule is a graph ,, is among the subgraphs of the graph in Fig. 2.
matching problem. This intuitive idea helps in  Both rules and sentence pairs are graphs of the
determining our efficient algorithm for exploiting sgme type. These graphs are basically two trees
first-order rules in learning examples. connected through an intermediate set of nodes

To illustrate the above idea we will use an ex-representing variables in the rules and relations be-
ample based on the above ryge feed —  tween nodes in the sentence pairs. We will here-
[YleatlZ] and the above sentence péilf;, H1).  after call these graphsipartite directed acyclic
The rulep encodes the entailment relation of thegraphs(tDAGs). The formal definition follows.
verbto feedand the verdo eat If represented pefinition tDAG: A tripartite directed acyclic
over a syntactic interpretation, the rule has the fo"graphis a graphG = (N, E) where

lowing aspect:
e the set of nodeV is partitioned in three sets

s Ni, Ny, and A
VP /\
N VP . . .
o1 = V R . e the set of edges is partitioned in four séis
| vB NHZ] Egl EAti andEAg
feed |
eat such that = (N, E;) andg = (N, E,) are two

As in the case of feature structures (Carpentef’®es ands, = {(z,y)lz € N;andy € A} and
1992), we can observe this rule as a graph. A4, = {(z,y)[z € Ny andy € A} are the edges
we are not interested in the variable names but wgOnnecting the two trees.

need to know the relation between the right hand A tDAG is a partially labeled graph. The label-
side and the left hand side of the rule, we caring functionL only applies to the subsets of nodes
substitute each variable with an unlabelled noderelated to the two trees, i.el, : N; U N, — L.
We then connect tree nodes having variables wittNodes in the sefl are not labeled.
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The explicit representation of the tDAG in Fig. 2  In (Zanzotto and Moschitti, 2006), tripartite di-
has been useful to show that the unification of aected acyclic graphs are implicitly introduced and
rule and a sentence pair is a graph matching prokexploited to build first-order rule feature spaces.
lem. Yet, it is complex to follow. We will then de- Yet, both in (Zanzotto and Moschitti, 2006) and
scribe a tDAG with an alternative and more con-in (Moschitti and Zanzotto, 2007), the model pro-
venient representation. A tDAG = (N,E) posed has two major limitations: it can represent
can be seen as pait = (7,) of extended trees rules with less than 7 variables and the proposed
7 andy wherer = (N, U A,E, U E4,) and kernel is not a completely valid kernel as it uses
v = (NgUAE;UE,,). These are extended the max function.
trees as each tree contains the relations with the In machine translation, some methods such as
other tree. (Eisner, 2003) learn graph based rewrite rules for

As for the feature structures, we will graphically generative purposes. Yet, the method presented in
represent dx,y) € Ea, and a(z,y) € E4, as  (Eisner, 2003) can model first-order rewrite rules
boxes[Y] respectively on the node and on the only with a very small amount of variables, i.e.,
nodez. These nodes will then appear Aéx)Y] two or three variables.
andL(2)Y], e.g., NIl The namey is not a label
but a placeholder representing an unlabelled nodét  An efficient algorithm for computing
This representation is used for rules and for sen-  the first-order rule space kernel

tence pairs. The sentence pair in Fig. 2 is ther; thi i N idea f -
represented as reported in Fig. 3. n this section, we present our idea for an effi-

cient algorithm for exploiting first-order rule fea-
3 Related work ture spaces. In Sec. 4.1, we firstly define the simi-
larity function, i.e., the kernek' (G, G5), that we
Automatically learning classifiers for sentenceneed to determine for correctly using first-order
pairs is extremely important for applications like rules feature spaces. This kernel is strongly based
textual entailment recognition, question answeron the isomorphism between graphs. A relevant
ing, and machine translation. idea of this paper is the observation that we can
In textual entailment recognition, it is not hard define an efficient way to detect the isomorphism

to see graphs similar to tripartite directed acyclicbetween the tDAGs (Sec. 4.2). This algorithm ex-
graphs as ways of extracting features from examp|0its the efficient algorithms of tree isomorphism
ples to feed automatic classifiers. Yet, these graphas the one implicitly used in (Collins and Duffy,
are generally not tripartite in the sense describe@002). After describing the isomorphism between
in the previous section and they are not used to eXDAGs, We can present the idea of our efficient al-
tract features representing first-order rewrite rulesgorithm for computingk' (G, Go) (Sec. 4.3). We
In (Raina et al., 2005; Haghighi et al., 2005; Hickl introduce the algorithms to make it a viable solu-
et al., 2006), two connected graphs representin§on (Sec. 4.4). Finally, in Sec. 4.5, we report the
the two sentences; and s, are used to compute kernel computation we compare against presented
distance features, i.e., features representing they (Zanzotto and Moschitti, 2006; Moschitti and
distance betwees; ands,. The underlying idea Zanzotto, 2007).
is that lexical, syntactic, and semantic similarities
between sentences in a pair are relevant featurds!
to classify sentence pairs in classes sucbkrdail
andnot-entalil The first-order rule feature space we want to model
In (de Marneffe et al., 2006), first-order rewrite is huge. If we use kernel-based machine learning
rule feature spaces have been explored. Yet, thesgodels such as SVM (Cortes and Vapnik, 1995),
spaces are extremely small. Only some featurewe can implicitly define the space by defining its
representing first-order rules have been exploredsimilarity functions, i.e., its kernel functions. We
Pairs of graphs are used here to determine if a fedirstly introduce the first-order rule feature space
ture is active or not, i.e., the rule fires or not. A and we then define the prototypical kernel function
larger feature space of rewrite rules has been imever this space.
plicitly explored in (Wang and Neumann, 2007) The first-order rule feature spac€@R) is in
but this work considers only ground rewrite rules. general the space of all the possible first-order

Kernel functions over first-order rule
feature spaces
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Figure 3: Two tripartite DAGs

rules defined as tDAGs. Within this space it is posfunction is using the intersection operator, i.e., the

sible to define the functio(G) that determines
all the possible active features of the tDAGINn
FOR. The functionS(G) determines all the pos-
sible and meaningful subgraphs 6f We want

that these subgraphs represent first-order rules tha

can be matched with the pait. Then, meaningful

subgraphs ofr = (7, ) are graphs a&, g) where

t andg are subtrees of and~. For example, the
subgraphs oP; and P; in Fig. 3 are hereafter par-
tially represented:

s s NEHY NCH|
S(P={( A, N\ ). ¢ | , | )
NP VP NA ve NNl el
s s
T~ /\
NP VP NALl P
, )
v VB/N\
fe‘ed eLn
s
VP PN
T~ NAL  vp
( v nelZ] nA3T N )}
| vB NP3
feed |
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kernel K (G, G2) is the following:

K(G1,Gz2) =[8(G1) N S(Ga) 1)

Tpis is very simple to write and it is in principle
correct. A graphg in the intersectionS(G1) N
S(G2) is a graph that belongs to bo8(G,) and
S(G2). Yet, this hides a very important fact: de-
termining whether two graphg; andgs, are the
samegraphg; = g is not trivial. For example,
it is not sufficient to superficially compare graphs
to determine thap; belongs both taS; and Ss.
We need to use the correct property far= go,
i.e., theisomorphisnbetween two graphs. We can
call the operatorZso(gi, g2). When two graphs
verify the propertylso(g1,g2), both g; and go
can be taken as the grapghrepresenting the two
graphs. Detectindso(g1,¢92) has an exponential
complexity (Kobler et al., 1993).

This complexity of the intersection operator be-
tween sets of graphs deserves a different way to
represent the operation. We will use the same sym-
bol but we will use the prefix notation. The opera-
tor is hereafter re-defined:

N(S(G1),S8(G2)) =
= {g1lg1 € S(G1),3g2 € S(G2),Is0(g1,92)}

4.2 Isomorphism between tDAGs

In the FOR space, the kernel functidéhshould  As isomorphism between graphs is an essential ac-
then compute the number of subgraphs in comtivity for learning from structured data, we here
mon. The trivial way to describe the former kernelreview its definition and we adapt it to tDAGSs.
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We then observe that isomorphism between two Al il

tDAGs can be divided in two sub-problems: Po=(rava)=( 8@ dd ., w@d NI )
NN NN
e finding the isomorphism between two pairs e[l B 2l MN N
Al |
of extended trees o~ o~
Py = (m,w) = 8l di L] Nzl )

e checking whether the partial isomorphism
found between the two pairs ektended trees
are compatible.

PN PN PN PN
el s2] di] 3]  mB] Ml n2] NI

Figure 5: Simple non-linguistic tDAGs
In general, two tDAGsG1 = (Ny, Ep) and
Gz = (N2, L) are isomorphic (or match) if For example, the third pair o§(P;) and the

[N = [Naf, [E1| = |E»|, and a bijective func- go00nqg pair o5 (P,) are isomorphic as: (1) these
tion f : N1 — N exists such that these properties e partially isomorphic, i.e., the right hand sides

hold: r and the left hand sides are isomorphic; (2)
o for each node: € Ny, L(f(n)) = L(n) both pairs of extended trees generate the constraint
o for each edge(ni,ns) € E; an edge o = {(@.3),(3.14)}. Inthe same way, the
(f(n1), f(ng)) isin Ey fourth pair of S(P;) and the third pair ofS(P)

generate:, = {((1],[1])}

The bijective functionf is a member of the combi-
natorial setF of all the possible bijective functions 4.3 General idea for an efficient kernel
between the two set§; and N,. function

The trivial algorithm for detecting if two graphs as apove discussed, two tDAGs are isomorphic if
are isomorphic is exponential (Kobler et al., he two properties, theartial isomorphismand
1993). It explores all the sek. Itis still unde-  heconstraint compatibilityhold. To compute the
term_lned if the general graph isomorphism probygrnel functionk (G, G») defined in Sec. 4.1, we
lem is NP-complete. Yet, we can use the fact thatan exploit these properties in the reverse order.
tDAGs are two extended trees for building a bet-gjyen a constraint, we can select all the graphs
ter algorithm. There is an efficient algorithm for that meet the constraint (constraint compatibil-
computing isomorphism between trees (as the ONRy). Having the two set of all the tDAGs meeting

impljcitly used in (Collins and Duffy, 2002)). the constraint, we can detect tpartial isomor-
Given two tDAGSGy = (71,71) and G2 = phism We split each pair of tDAGs in the four
(72,72) the isomorphism problem can be divided gyiended trees and we determine if these extended
in detecting two properties: trees are compatible.
1. Partial isomorphism Two tDAGs(G; andGs We introduce this innovative method to com-

arepartially isomorphic if 7; andr; are iso-  pute the kernelK (G1, G2) in the FOR space in
morphic and ify; and~, are isomorphic. The two steps. Firstly, we give an intuitive explanation
partial isomorphism produces two bijective and, secondly, we formally define the kernel.
functions f- and f,.

2. Constraint compatibility Two bijective func-
tions f- and f, are compatible on the sets of

4.3.1 Intuitive explanation

To give an intuition of the kernel computation,
nodesA; and As, if for eachn € A,, it hap- yvithout loss of generglity .an.d for sake of simplic-
- ity, we use two non-linguistic tDAGsP, and P,
pens thatf,(n) = f(n). _ = .
(see Fig. 5), and the subgraph functi®(?). This
We can rephrase the second property, i.e., thiatter is an approximated version8t6) that gen-
constraint compatibility, as follows. We de- erates tDAGs with subtrees rooted in the root of
fine two constraints:(71,72) and c¢(y1,72) rep-  theinitial trees of.
resenting the functiongf; and f, on the sets To exploit the constraint compatibility
Ay and As. The two constraints are defined asproperty, we defineC' as the set of all the
c(t,m2) = {(n, fr(n))|n € A1} ande(y1,v2) =  relevant alternative constraintsi.e., the con-
{(n, fy(n))|n € A;}. Two partially isomorphic straints ¢ that are likely to be generated
tDAGs are isomorphic if the constraints match,when detecting the partial isomorphism
ie.,c(m,m2) = c(71,72)- For P, and P, this set isC = {cj,c0} =
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Figure 4: Intuitive idea for the kernel computation

{({(0@), @ 2)}, {@ @), 2.B8)}}. Wecan N(S(P.),S(P)) but it does belong to

then determine the kern&l (P,, P,) as: N(S(72),S(1)) X N(S(Va), S(M))-
The equivalence (2) allows to compute the car-
K(Pa,P)= |N(S(Pa),S(Py))|= dinality ofﬂ(S( ) S(Pb))\C using the cardinal-
= NG SE)le UNE(P). Sy | ities of N(S(7a), S(7))|e and (S (7a), S ()]

_ These latter sets contain only extended trees where
where N(S(P,),S(Py))|. are the common sub- the equivalences between unlabelled nodes are
graphs that meet the constraint A tDAG ¢’ =  given byc. We can then compute the cardinali-
(',7) in S(P,) is in N(S(Py), S(By))] if g" = ties of these two sets using methods developed for
(T "77") in S(P,) exists,g is partially isomorphic  trees (e.g., the kerel functioR 5 (61, 05) intro-
tog”, andc’ = c(7', 7") = c(v',~") iscoveredby  duced in (Collins and Duffy, 2002)).
and compatiblewith the constraint;, i.e.,¢’ C c. L
For example in Fig. 4, the first tDAG of the set 4.3.2 Formal definition
m(s(P ), 5(pb))‘61 belongs to the set as its con- Given the idea of the previous section, it is easy
straintc’ = {([d],[2)} is a subset of; . to demonstrate that the kerngl(G1, G2) can be

Observing the kernel computation in this way Written as follows:
is important.  Elements imM(S(Fy),S(P))|c
already satisfy the property afonstraint com-  K(G1.G2)=|Uccc N(S(11):S(m2))lexN(S (1), (1)) |
patibility. We only need to determine if the where C' is set of alternative constraints and
partially isomorphicproperties hold for elements N(S(0;),S(A2))|. are all the common extended
in N(S(P,),S(P,))|.. Then, we can write the trees compatible with the constraint

following equivalence: We can compute the above kernel using the
inclusion-exclusion property, i.e.,
N(S(Pa),S(Py))]e=
2 - _)lJI-1
(S S @S D AU U A {Z }( DAL @)
Jeoil,., n

Figure 4 reports this equivalence for the two
sets derived using the constraints and cs.
Note that this equivalence is not valid if a con-
straint is_not applied, i.e.,N(S(F.),S(H))
£ 0812, 8m) % N(S(a),S(w)).
The pair P, itself does not belong to Kgs(01,602,¢) =|N(S(01),S5(02))lc] (4)

where 2{1} is the set of all the subsets of
{1,... ,TL} andA; = ﬂiGJAi'

To describe the application of the inclusion-
exclusion model in our case, let firstly define:
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wheref, can be both; andv; andf, can be both 4.4 Enabling the efficient kernel function

72 andr,. Trivially, we can demonstrate that: The above idea for computing the kernel function
is extremely interesting. Yet, we need to make it
K(G1,G2) = viable by describing the way we can determine ef-
=32 s eattlopy GOV K s (11,72,6(0) Ks (172,¢()) ficiently the three main parts of the equation (7):
(5) 1) the set of alternative constrain@s(Sec. 4.4.1);
2) the setC™* of all the possible intersections of

Whg.rec(‘] )h: e Ci- o e constraints inC' (Sec. 4.4.2); and, finally, 3) the
iven the nature of the constraint { we numbersN(c) (Sec. 4_4.3).

can compute efficiently the previous equation as
it often happens that two differenf; and ., in  4.4.1 Determining the set of alternative

2{L.--|C1} generate the samei.e. constraints
The first step of equation (7) is to determine the
€= ﬂ G = ﬂ Ci (6)  alternative constraint§’. We can here strongly
1€Jq 1€J2

use the possibility of dividing tDAGs in two trees.
Then, we can defin€* as the set of all intersec- We build C as C- U C, where: 1)C; are the
tions of constraints irC, i.e. C* = {c¢(J)|J € constraints obtained from pairs of isomorphic ex-

2{1--IC1}1 We can rewrite the equation as: tended trees; € S(71) andit; € S(2); 2) C, are

the constraints obtained from pairs of isomorphic
K(G1,G9) = extended trees, € S(1) andts € S(2).
The idea for an efficient algorithm is that we
= K K N 7 . . .

CGZC* s(71,72, ) Ks (1,72, )N (e) - (7) can compute theC' without explicitly looking
at all the subgraphs involved. We instead use
where and combine the constraints derived comparing
the productions of the extended trees. We can

_ -1
N(e) = lz: . (1) (8) compute thernC'. with the productions of; and
J Ei{zcu‘) . 7o and C,, with the productions ofy; and ~».

For example (see Fig. 3), focusing on thethe
The complexity of the above kernel strongly de-ryie  nvpPE — NN2WNNSB  of G, and
pends on the cardinality @f and the related cardi- NPA — NNBNNSE of G, generates the

Blexty s st exponentil with respect o e size COnSvANE = (E.8), (B B))
plexity P P Using the above intuition it is possible to define

of 4; andA,. Yet, the average case complexity an algorithm that builds an alternative constraint

(Wang, 1997) is promising. . ) o
The setC is generally very small with re- SetC’ with the following two properties:

spect to the worst case. JF4, 4,) are all the 1. for each common subtree according to a set
possible correspondences between the nodes of constraints;, 3¢’ € C such that C ¢/;

Ay and Ay, it happens thatC| << |Fa, a,)
where|F (4, 4,)| is the worst case. For example, 2. 3, ¢" € C'such that’ C " andd’ # 0.
in the case ofP; and P, the cardinality of 442 petermining the seC*

¢ = ((@D)(EB) GM@).@5))
is extremely smaller than the one

o) . . . .
tersections of alternative constraints@h Figure
F(ay,40) - {WL).(212),E13)}, 6 presents the algorithm determinigyf. Due to

{(,,,,,}, {(IT|.|7|),(17|.|§|),(I§I.IT|)}, the property (6) discussed in Sec. 4.3, we can em-
{(’)””}}- In Sec. 4.5 we argue irically demonstrate that the average complexity
that the algorithm presented in (Moschlttl_andof the algorithm is not bigger thaf(|C[2). Yet,
Zanzotto, 2007) has the worst-case complexity. a4ain, the worst case complexity is exponential.
Moreover, the se€* is extremely smaller than
2{L.--I€1} due to the above property (6). 4.4.3 Determining the values ofV(c)
We will analyze the average-case complex-The multiplier N(c¢) (Eqg. 8) represents the num-
ity with respect to the worst-case complexity inber of times the constraint is considered in the
Sec. 5. sum of equation 5, keeping into account the sign of

The setC* is defined as the set of all possible in-
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Algorithm Build the seC* from the set’

50

C+<—C;Cl<—0;02<—® | KEGJhGQ;l— ;
WHILE |Cy] > 1 10 L Kmaa(Gr, G2) - -
FORALL ¢ € C; '
FORALL ¢ € C} such that/ # ¢” a0 | |
c—dcdnd ms
IFc¢ C*T addcto Cy 90 |
C+<—C+UCQ;01<—CQ;CQ<—®
C*—CuCtu{n} 10 -
Figure 6:Algorithm for computingC* 0 ' NN e—

0 10 20 30 40 50

. , ) n x m placeholders
the corresponding addend. Itis possible to demon-

strate that: Figure 7: Mean execution time in milliseconds
B (ms) of the two algorithms wrtn x m wheren
N(e)=1- Z Ne ©) andm are the number of placeholders of the two
ol tDAGS

This recursive formulation of the equation allows ) )
us to easily determine the value bf(c) for every ~ SPaces (Collins and Duffy, 2002). As we are using

¢ belonging taC*. Itis possible to prove this prop- the same basic kernel, we can empirically compare

erty using set properties and the binomial theoremth® two methods.

The proof is omitted for lack of space. . .
5 Experimental evaluation

4.5 Reviewing the strictly related work _ _ . _
In this section we want to empirically estimate the

To understand if ours is an efficient algorithm, Wepenefits on the computational cost of our novel al-
compare it with the algorithm presented by (MOS-qrithm with respect to the algorithm proposed by
chlttl and.Zanzotto, 2007). We will he.reafter call (Moschitti and Zanzotto, 2007). Our algorithm is
this algorithm Knqz.  The King, algorithm and - n yrinciple exponential with respect to the set of
kernel is an approximation of what is a Kemel ernative constraints’. Yet, due to what pre-
needed for a FOR space as it is not difficult Ogented in Sec. 4.4 and as the €&t is usually

demonstrate thak . (G1,G2) < K(G1,G2)- yery small, the average complexity is extremely
The K, approximation is based on maximiza- 1o, Following the theory on the average-cost
tion over the set of possible correspondences Oéomputational complexity (Wang, 1997), we es-
the placeholders. Following our formulation, this i\ 5ted the behavior of the algorithms on a large
kernel appears as: distribution of cases. We then compared the com-
puting times of the two algorithms. Finally, as
Kinaz(G1,G2) = K and K,,,... compute slightly different kernels,
= cej{_l(leA )KS(7'177'270)KS(’717’7270) (10)  we compare the accuracy of the two methods.
1 We implemented both algorithms (G, G2) and
where F(4, 4, are all the possible correspon- Kmaz(G1, G2) in support vector machine classi-
dences between the nodﬂ$ and A2 of the two fier (JoaChlmS, 1999) and we eXperlmentEd with
tDAGs as the one presented in Sec. 4.3. This forboth implementations on the same machine. We
mulation of the kernel has the worst case complexhereafter analyze the results in term of execution
ity of our formulation, i.e., Eq. 7. time (Sec. 5.1) and in term of accuracy (Sec. 5.2).
For computing the basic kernel for the extended ] ] ]
trees, i.e. Kg(01,602,c) we use the model algo- 5.1 Average computing time analysis
rithm presented by (Zanzotto and Moschitti, 2006)For this first set of experiments, the source of ex-
and refined by (Moschitti and Zanzotto, 2007)amples is the one of the recognizing textual en-
based on the algorithm for tree fragment featurdailment challenge, i.e., RTE2 (Bar-Haim et al.,
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Kernel Accuracy Used training Support

T ' - ' B examples Vectors
1600 K Kggl" 22; o Komar 59.32 4223 4206
1400 + mag =L B2 - K 60.04 4567 4544
1200 - '
: Table 1:Comparative performances #f,,,.. and K
1000 |- : N
S 800 - : - : :
it becomes intractable after 7 placeholders. The
600 - . - computation ofK is instead more flat. This can
400 - - be explained as the computation &f is related
200 |- ] to the real alternative constraints that appears in
o L the dataset. The computation of the kerfethen
o /

0 2 4 6 8 10 12 14 outperforms the computation of the kerd€},...

#ofplaceholders 5.2 Accuracy analysis

. ] . . . As K., that has been demonstrated very effec-
Figure 8: Total execution time in seconds (s) of.” ~.
. . tive in term of accuracy for RTE an#” compute
the training phase on RTE2 wrt. different numbers_ " . . LT .
a slightly different similarity function, we want to
of allowed placeholders
show that the performance of our more computa-
tionally efficientK is comparable, and even better,

2006). The dataset of the challenge has 1,600 seff the performances dt’,,.. We then performed
tence pairs. an experiment taking as training all the data de-

The computational cost of bothi (G1, G») and rived from RTE1l, RTE2, and RTE3, (i.e., 4567

Knas(G1, Ga) depends on the number of place_training examples) and taking as testing RTE-4
hOngrSn’: 14,] of Gy and onm. — |As| the (i.e., 1000 testing examples). The results are re-

number of placeholders a®,. Then, in the first ported in Tab. 1. As the table shows, the accuracy

experiment we want to determine the relation be-Of K is higher than the accuracy éfyq.. There

tween the computational time and the factorm. are two main reasons. The first is thilt,. is

Results are reported in Fig. 7 where the computa<§ln approximation of. The second is that we

tion times are plotted with respectiox m. Each can now consider sentence pairs with more than

point in the curve represents the average execu7- placeholders. ‘Then, we can use the complete

L . . . training set as the third column of the table shows.
tion time for the pairs of instances havingx m

placeholders. As expected, the computation of thgy  conclusions and future work

function K is more efficient than the computation

K,mae. The difference between the two executionWe presented an interpretation of first order rule
times increases with x m. feature spaces agpartite directed acyclic graphs

We then performed a second experiment thaf!?AGS). This view on the problem gave us the

wants to determine the relation of the total exeP0SSibility of defining a novel and efficient algo-

cution with the maximum number of placeholdersrithm for computing the kernel function for firs_t
in the examples. This is useful to estimate the be@rder rule feature spaces. Moreover, the resulting

havior of the algorithm with respect to its applica- 2/90rithm is a valid kernel as it can be written as
tion in learning models. Using the RTE2 data, wedOt Product in the explicit space of the tDAG frag-
artificially build different versions with increasing MenNts. We demonstrated that our algorithm out-

number of placeholders. We then have RTE2 witHP€"forms in term of average complexity the previ-
1 placeholder at most in each pair, RTE2 with 20US algorithm and it yields to better accuracies for

placeholders, etc. The number of pairs in each sdf€ final task. We are investigating if this is a valid
is the same. What changes is the maximal num&lgorithm for two general directed acyclic graphs.

ber of placeholders. Results are reported in Fig. 8
where the execution time of the training phase in
seconds (s) is plotted for each different set. We
see that the computation &f ... is exponential

with respect to the number of placeholders and
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