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Abstract In this paper we develop the first unsupervised
approach to semantic parsing, using Markov logic

We present the first unsupervised approach  (Richardson and Domingos, 2006). Our USP sys-
to the problem of learning a semantic  tem starts by clustering tokens of the same type,
parser, using Markov logic. Our USP  and then recursively clusters expressions whose
system transforms dependency trees into  sybexpressions belong to the same clusters. Ex-
quasi-logical forms, recursively induces  periments on a biomedical corpus show that this
lambda forms from these, and clusters  gpproach is able to successfully translate syntac-
them to abstract away syntactic variations tjc variations into a logical representation of their
of the same meaning. The MAP semantic  common meaning (e.g., USP learns to map active
parse of a sentence is obtained by recur-  and passive voice to the same logical form, etc.).
sively assigning its parts to lambda-form  Thjs in turn allows it to correctly answer many
clusters and composing them. We evalu-  more questions than systems based on TextRun-
ate our approach by using it to extract @  ner (Banko et al., 2007) and DIRT (Lin and Pantel,
knowledge base from biomedical abstracts  2001).
and answer questions. USP substantially We begin by reviewing the necessary back-
outperforms TextRunner, DIRT and anin-  ground on semantic parsing and Markov logic. We
formed baseline on both precision and re-  then describe our Markov logic network for un-
call on this task. supervised semantic parsing, and the learning and
inference algorithms we used. Finally, we present
our experiments and results.

Semantic parsing maps text to formal meaning
representations. This contrasts with semantic rol@ Background
labeling (Carreras and Marquez, 2004) and othe&
forms of shallow semantic processing, which do™
not aim to produce complete formal meanings.The standard language for formal meaning repre-
Traditionally, semantic parsers were constructedgentation is first-order logic. A term is any ex-
manually, but this is too costly and brittle. Re- pression representing an object in the domain. An
cently, a number of machine learning approachestomic formula or atom is a predicate symbol ap-
have been proposed (Zettlemoyer and Collinsplied to a tuple of terms. Formulas are recursively
2005; Mooney, 2007). However, they are superconstructed from atomic formulas using logical
vised, and providing the target logical form for connectives and quantifiers. l&xical entryde-
each sentence is costly and difficult to do consisfines the logical form for a lexical item (e.g., a
tently and with high quality. Unsupervised ap-word). The semantic parse of a sentence is de-
proaches have been applied to shallow semantidved by starting with logical forms in the lexi-
tasks (e.g., paraphrasing (Lin and Pantel, 2001)xal entries and recursively composing the mean-
information extraction (Banko et al., 2007)), buting of larger fragments from their parts. In tradi-
not to semantic parsing. tional approaches, the lexical entries and meaning-
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composition rules are both manually constructed. The major limitation of supervised approaches
Below are sample rules in a definite clause gramis that they require meaning annotations for ex-
mar (DCG) for parsing the sentence: “Utah bor-ample sentences. Even in a restricted domain,

ders Idaho”. doing this consistently and with high quality re-
quires nontrivial effort. For unrestricted text, the

Verb[AyAx.borders(x,y)] — borders complexity and subjectivity of annotation render it
NP[Utah| — Utah essentially infeasible; even pre-specifying the tar-

N P[Idaho| — Idaho get predicates and objects is very difficult. There-

V P[rel(obj)] — Verbrel] NP[obj] fore, to apply semantic parsing beyond limited do-
Slrel(obj)] — NPlobj] VP[rel] mains, it is crucial to develop unsupervised meth-

ods that do not rely on labeled meanings.

The first three lines are lexical entries. They are |, the past, unsupervised approaches have been
fired upon seeing the individual words. For exam-gpplied to some semantic tasks, but not to seman-
ple, the first rule applies to the word “borders” andy; parsing. For example, DIRT (Lin and Pan-
generates syntactic categovgrbwith the mean- g 2001) learns paraphrases of binary relations
ing AyAx.borders(x, y) that represents the next- pased on distributional similarity of their argu-
to relation. nge, we use the standard lambdaments: TextRunner (Banko et al., 2007) automati-
calculus notation, where\yAx.borders(x,y)  cally extracts relational triples in open domains us-
represents a function that is true for any {)- g a self-trained extractor; SNE applies relational
pair such thaborders(x,y) holds. The last two  ¢jystering to generate a semantic network from
rules compose the meanings of sub-parts '”to_thafextRunner triples (Kok and Domingos, 2008).
of the larger part. For example, after the firStyyhile these systems illustrate the promise of un-
and third rules are fired, the fourth rule fires andsupervised methods, the semantic content they ex-
generated’ P[AyAx.borders(x,y)(Idaho)[; this  tract is nonetheless shallow and does not constitute

meaning simplifies to\x.borders(x, Idaho) by  the complete formal meaning that can be obtained
the A-reduction rule which substitutes the argu- py 5 semantic parser.

ment for a variable in a functional application. Another issue is that existing approaches to se-

A major challenge to semantic parsing is Syn-mantic parsing learn to parse syntax and semantics
tactic variations of the same meaning, WhiChtogetheﬁ The drawback is that the complexity
abound in natural languages. For example, thé, syntactic processing is coupled with semantic
aforementioned sentence can be rephrased dgrsing and makes the latter even harder. For ex-
“Utah is next to Idaho,”Utah shares a border with ample, when applying their approach to a different
Idaho,” etc. Manually encoding all these varia- gomain with somewhat less rigid syntax, Zettle-
tions into the grammar is tedious and error-pronemoyer and Collins (2007) need to introduce new
Supervised semantic parsing addresses this isSygmpinators and new forms of candidate lexical
by learning to construct the grammar automati-gnyies, Ideally, we should leverage the enormous
cally from sample meaning annotations (Mooneysrogress made in syntactic parsing and generate

2007). Existing approaches differ in the meaningsemantic parses directly from syntactic analysis.
representation languages they use and the amount

of annotation required. In the approach of Zettle-22 Markov L ogic
moyer and Collins (2005), the training data con- NLP licati th ist rich rel
sists of sentences paired with their meanings pn many appiications, there existrich refa-

lambda form. A probabilistic combinatory cate- tlolns Iarpongl (I)bjec_t S agd trecent c\j/v_(la_rk l'(n stgg;g-
gorial grammar (PCCQG) is learned using a Iog-Ca relational learning (Getoor and Taskar, )

linear model, where the probability of the final and structured pred_iction (Bakir et al, 2097) has
logical form I and meaning-derivation tre@ shown that leveraging these can greatly improve
conditioned on the sentencg is P(L,T|S) — accuracy. One of the most powerful representa-
Lexp (X, wi f3(L,T, S)). HereZ is th’e normal- tions for this is Markov logic, which is a proba-
iiation cénstant :';1n7(f~ are the feature functions °Wistic extension of first-order logic (Richardson

7 . . .
with weightsw;. Candidate lexical entries are gen-and Domingos, 2006). Markov logic makes it
erated by a QOmaln-speC|f|c procedure based on The only exception that we are aware of is Ge and
the target logical forms. Mooney (2009).



possible to compactly specify probability distri- not require domain-specific procedures for gener-
butions over complex relational domains, and hasting candidate lexicons, as is often needed by su-
been successfully applied to unsupervised corefepervised methods.

ence resolution (Poon and Domingos, 2008) and The input to our USP system consists of de-
other tasks. AMarkov logic network (MLN)s pendency trees of training sentences. Compared
a set of weighted first-order clauses. Togetheto phrase-structure syntax, dependency trees are
with a set of constants, it defines a Markov net-the more appropriate starting point for semantic
work with one node per ground atom and one feaprocessing, as they already exhibit much of the
ture per ground clause. The weight of a featureaelation-argument structure at the lexical level.

is the weight of the first-order clause that origi- USP first uses a deterministic procedure to con-
nated it. The probability of a state in such a vert dependency trees into quasi-logical forms
network is given by the log-linear modél(x) = (QLFs). The QLFs and their sub-formulas have
£ exp (3°; win;(z)), whereZ is a normalization natural lambda forms, as will be described later.
constantuw; is the weight of theth formula, and  Starting with clusters of lambda forms at the atom

n; is the number of satisfied groundings. level, USP recursively builds up clusters of larger
lambda forms. The final output is a probability
3 Unsupervised Semantic Parsing with distribution over lambda-form clusters and their
Markov Logic compositions, as well as the MAP semantic parses
of training sentences.
Unsupervised semantic parsing§P) rests on In the remainder of the section, we describe

three key ideas. First, the target predicate and oline details of USP. We first present the procedure
ject constants, which are pre-specified in supertor generating QLFs from dependency trees. We
vised semantic parsing, can be viewed as clusteigien introduce their lambda forms and clusters,
of syntactic variations of the same meaning, antyng show how semantic parsing works in this set-
can be learned from data. For examplerders  ting. Finally, we present the Markov logic net-
represents the next-to relation, and can be viewegork (MLN) used by USP. In the next sections, we
as the cluster of different forms for expressing thispresent efficient algorithms for learning and infer-

relation, such as “borders”, “is next to”, “share the ance with this MLN.

border with”; Utah represents the state of Utah,

and can be viewed as the cluster of “Utah”, “the3.1 Derivation of Quasi-Logical Forms

beehive state”, etc. A dependency treis a tree where nodes are words
Second, the identification and clustering of cangnd edges are dependency labels. To derive the

didate forms are integrated with the learning fOI‘QLF, we convert each node to an unary atom with

meaning composition, where forms that are useghe predicate being the lemma plus POS tag (be-

in composition with the same forms are encour{ow, we still use the word for simplicity), and each

aged to cluster together, and so are forms that argdge to a binary atom with the predicate being

composed of the same sub-forms. This amounts tthe dependency label. For example, the node for

a novel form of relational clustering, where clus- Utah becomes/tah(n;) and the subject depen-

tering is done not just on fixed elements in rela-dency becomesasubj(n1,n2). Here, then; are

tional tuples, but on arbitrary forms that are built Skolem constants indexed by the nodes. The QLF

up recursively. for a sentence is the conjunction of the atoms for
Third, while most existing approaches (manualthe nodes and edges, e.g., the sentence above will

or supervised learning) learn to parse both synbecomeborders(n;) A Utah(ny) A Idaho(ns) A

tax and semantics, unsupervised semantic pargsubj(ni,n,) A dobj(ny,ns).

ing starts directly from syntactic analyses and fo- .

cuses solely on translating them to semantic con3-2 Lambda-Form Clustersand Semantic

tent. This enables us to leverage advanced syn-  Parsingin USP

tactic parsers and (indirectly) the available rich re-Given a QLF, a relation or an object is repre-

sources for them. More importantly, it separatessented by the conjunction of a subset of the atoms.

the complexity in syntactic analysis from the se-For example, the next-to relation is represented

mantic one, and makes the latter much easier tby borders(n;) Ansubj(ni,ny) Adobj(ny,ns),

perform. In particular, meaning composition doesand the states of Utah and Idaho are represented



by Utah(n,) andIdaho(ns). The meaning com- forms, and then assigning each form to a cluster
position of two sub-formulas is simply their con- or an argument type. The final logical form is de-

junction. This allows the maximum flexibility in rived by composing the abstract lambda forms of
learning. In particular, lexical entries are no longerthe parts using th&-reduction rulé

limited to be adjacent words as in Zettlemoyer and

Collins (2005), but can be arbitrary fragments in a33 TheUSPMLN

dependency tree. Formally, for a QLFQ, a semantic parsé par-

For every sub-formulaF, we define a corre- Utions @ into partsps, ps, - -, pn; €ach parp is
sponding lambda form that can be derived by re2ssigned to some lambda-form clustgrand is
placing every Skolem constamt that does not further partitioned into core form and argument
appear in any unary atom i with a unique formsfy, .-, fy; each_argument form is assigned
lambda variablex;. Intuitively, such constants (0 an argument type in c. _The_ USP MLN de-
represent objects introduced somewhere else (H§€S @ joint probability distribution ovep and L
the unary atoms containing them), and correy modeling the distributions over forms and ar-
spond to the arguments of the relation repregUments given the cluster or argument type.
sented byF. For example, the lambda form Before presenting the predicates and formu-

for borders(n;) A nsubj(ny,ny) Adobj(ns,ng) @S in our MLN, we should emphasize that they
should not be confused with the atoms and formu-

las in the QLFs, which are represented by reified

Conceptually, a lambda-form cluster is a set Ofco_rl1_stantsdar|1dd\(ar|%ble_s. lambda. f
semantically interchangeable lambda forms. For o mode 'sr:” utlor:; over lam 'a or(rjns,
example, to express the meaning that Utah borV® ntroduce the pre icategorm(p, £!) an

ders Idaho, we can use any form in the clusteﬁrgFofrm(p’l’f')’ Wherﬁg_ls a pl"jr:t’l 'Efthe IT
representing the next-to relation (e.g., “borders”, exoran r_;lrgume.nt, antlis a QLF subformula.
Form(p, ) is true iff partp has core fornmg, and

“shares a border with”), any form in the cluster ’ _ ) ’ .
rgForm(p, i, f) is true iff theith argument irp

representing the state of Utah (e.g., “the beehiv ; 3 The “¢I” notation signifies that each
state”), and any form in the cluster representin as forms. e £ notation signifies that eac
part or argument can have only one form.

the state of Idaho (e.g., “Idaho”). Conditioned T del distributi .
on the clusters, the choices of individual lambda do mo he Istri utlonz_over arguments, vv'e In-
forms are independent of each other. troduce three more predicatesrgType(p; 1,a!)

To handle variable number of arguments Wesignifies that theith argument ob is assigned to
. . ) ' Targument typea; A ,i,p’) signifies that the
follow Davidsonian semantics and further de- g P re(p,1,p') Sig

lambda f into th ‘ ith argument ob is p’; Number(p, a,n) signifies
compose a fambda form Into theore [1orm a1 there are arguments ob that are assigned
which does not contain any lambda variable

bord d th ‘ot to typea. The truth value ofNumber(p,a,n) is
(eﬁg.’h or ter.s(nl))’. a? | es(;gumer_] blorm,s determined by th@rgType atoms.
whic co.n ain a singie iam . a variable (e.g., Unsupervised semantic parsing can be captured
Axy.nsubj(ni, xo) and Axz.dobj(ni, x3)). Each .
: y four formulas:
lambda-form cluster may contain some number OP
argument typeswvhich cluster distinct forms of the p € +c A Form(p, +£)
same argument in arelation. For example, in Stan-  ArgType(p, i, +a) A ArgForm(p, i, +£)
ford dependen_cies, the pbjecF ofaverbuses the de-prg(p, i,p’) A ArgType(p, i, +a) Ap’ € +¢
pendencylobj in the active voice, buisubjpass Number(p, +a, +n)
in passive.
Lambda-form clusters abstract away syntactichll free variables are implicitly universally quan-

stance of clustel with arguments of argument contains an instance of the formula, with a sep-
typeshy, - - -, Ay, its abstract lambda fornis given ~ @rate weight, for each value combination of the

by Ax - - Axp.T(n) A /\11{:1 Ai(n,x;). 2Currently, we do not handle quantifier scoping or se-
Given a sentence and its QLF, semantic parsr_nantics for specific closed-class words such as determiners

. L ' . These will be pursued in future work.

ing amounts to partitioning the atoms in the QLF, 3There are hard constraints to guarantee that these assign-

dividing each part into core form and argumentments form a legal partition. We omit them for simplicity.

IS AxpAx3. borders(nj) A nsubj(ni,xz) A
dObj(l’ll,Xg,).



variables with a plus sign. The first formula mod- Algorithm 1 USP-Parse(MLN, QLF)

els the mixture of core forms given the cluster, and Form parts for individual atoms iQ L F’ and as-
the others model the mixtures of argument forms, sign each to its most probable cluster
argument types, and argument numbers, respec- repeat

tively, given the argument type. for all partsp in the current partitiordo
To encourage clustering and avoid overfitting, for all partitions that are\-reducible from
we impose an exponential prior with weighiton p and feasiblado
the number of parametets. Find the most probable cluster and argu-
The MLN above has one problem: it often ment type assignments for the new part
clusters expressions that are semantically oppo- and its arguments
site. For example, it clusters antonyms like “el- end for

derly/young”, “mature/immature”. This issue also end for

occurs in other semantic-processing systems (e.g., Change to the new partition and assignments
DIRT). In general, this is a difficult open problem with the highest gain in probability

that only recently has started to receive some at- until none of these improve the probability
tention (Mohammad et al., 2008). Resolving this return current partition and assignments

is not the focus of this paper, but we describe a
general heuristic for fixing this problem. We ob- calledfeasibleif the core form of the new part is
serve that the problem stems from the lack of negacontained in some cluster. For example, consider
tive features for discovering meanings in contrastthe QLF of “Utah borders Idaho” and assume
In natural languages, parallel structures like conthat the current partition isx,x3.borders(ns) A
junctions are one such featutaVe thus introduce nsubj(ni,x2) A dobj(ni,x3),  Utah(np),

an exponential prior with weight on the number Idaho(ns). Then the following partition is

of conjunctions where the two conjunctive partsA-reducible from the first part in the above
are assigned to the same cluster. To detect corpartition: Axz.borders(ni) A nsubj(ni,na) A
junction, we simply used the Stanford dependenUtah(nz) A dobj(ni,x3), Idaho(ns). Whether
cies that begin with “conj”. This proves very ef- this new partition is feasible depends on whether
fective, fixing the majority of the errors in our ex- the core form of the new pahtxz.borders(ns) A

periments. nsubj(ni,n2) A Utah(ny) A dobj(ni,x3) (i.e.
borders(n;) A nsubj(nji,np) A Utah(ny)) IS
4 Inference contained in some lambda-form cluster.

Given a sentence and the quasi-logical fo€m

derived from its dependency tree, the conditional . :\Igogt.hm ! give? pz:eudo-cggle fo[] our glgo-
probability for a semantic parsé is given by fithm. Given parfp, finding partitions that are-

Pr(L|Q) x exp (X wini(L, Q). The MAP se- g}d;;lble 1;:ompsa_nd I]eas!ble c]:';lnhbe (Illone in time
mantic parse is simplyrg maxz, Y, win;(L, Q). h( ), \tl)v er? IS tf € S'Zeﬁ% _t ic uste_rlng n
Enumerating allL’s is intractable. It is also un- the number of core forms anflis the maximum

necessary, since most partitions will result in part umber of a_ltoms inacore form. We omit the proof
whose lambda forms have no cluster they can b ere but point out that it is related to the unordered

assigned to. Instead, USP uses a greedy algorithﬁ’rf:btree matching problem which can be solved in

to search for the MAP parse. First we introduce "€ time (Kilpelainen, 1992). Inverted indexes
some definitions: a partition is calledreducible  (&-9- fromp to eligible core forms) are used to fur-

fromp if it can be obtained from the current parti- ther improve the efficiency. For a new parand

e m
tion by recursivelyA-reducing the part containing a cIustefr thgt cpntz,;urlss core forrtn,tthfrzz aré

p with one of its arguments; such a partition jg\Ways ot assignings m arguments 1o argu-
- ment types of the cluster. For largeandm, this

t 4_E;<C'Udi”9 weights obo or —oo, which signify hard con- 5 very expensive. We therefore approximate it by
straints.

SFor example, in the sentence “IL-2 inhibits X in A and aSSigning each argument to the best type, indepen-
induces Y in B”, the conjunction between “inhibits” and “in- dent of other arguments.
duces” suggests that they are different. If “inhibits” arat“

duces” are indeed synonyms, such a sentence will sound awk- This al ithm i ffici di d
ward and would probably be rephrased as “IL-2 inhibits X in Is algorithm Is very efficient, and Is used re-

AandYinB". peatedly in learning.



5 Learning Algorithm 2 USP-Learn(MLN, QLF9g
Create initial clusters and semantic parses
Merge clusters with the same core form

The learning problem in USP is to maximize the
log-likelihood of observing the QLFs obtained

from the dependency trees, denoted By sum- lrb\e?:)eeg?aH 0
ming out the unobserved semantic parses: for all candidate operatior® do

Ly(Q) = logPy(Q) ScoreO py log-likelihood improvement

= log>; Py(Q, L) if score is above a threshdiden
Add O to agenda

Here,L are the semantic parsésare the MLN pa- end if
rameters, and(Q, L) are the completion likeli- end for
hoods. A serious challenge in unsupervised learn-  Execute the highest scoring operatio in
ing is the identifiability problem (i.e., the opti- the agenda

mal parameters are not unique) (Liang and Klein, Regenerate MAP parses for affected QLFs
2008). This problem is particularly severe for  anq update agenda and candidate operations
log-linear models with hard constraints, which are  yntj| agenda is empty
common in MLNs. For example, in our USP  yetyrn the MLN with learned weights and the
MLN, conditioned on the fact that € c, there is semantic parses
exactly one value of that can satisfy the formula
p € c AForm(p, f), and if we add some constant  Another major challenge in USP learning is the
number to the weights gf € c A Form(p, f) for ~ summation in the likelihood, which is over all pos-
all £, the probability distribution stays the safe. sible semantic parses for a given dependency tree.
The learner can be easily confused by the infinitelyeven an efficient sampler like MC-SAT (Poon and
many optima, especially in the early stages. Tdomingos, 2006), as used in Poon & Domingos
address this problem, we impose local normaliza{2008), would have a hard time generating accu-
tion constraints on specific groups of formulas thatate estimates within a reasonable amount of time.
are mutually exclusive and exhaustive, i.e., in eactbn the other hand, as already noted in the previous
group, we require thab¥_; e = 1, wherew;  section, the lambda-form distribution is generally
are the weights of formulas in the group. Group-sparse. Large lambda-forms are rare, as they cor-
ing is done in such a way as to encourage theespond to complex expressions that are often de-
intended mixture behaviors. Specifically, for thecomposable into smaller ones. Moreover, while
rulep € +c A Form(p, +f£), all instances given ambiguities are present at the lexical level, they
a fixed c form a group; for each of the remain- quickly diminish when more words are present.
ing three rules, all instances given a fixetbrm a  Therefore, a lambda form can usually only belong
group. Notice that with these constraints the com+to a small number of clusters, if not a unique one.
pletion likelihood P(Q, L) can be computed in We thus simplify the problem by approximating
closed form for any. In particular, each formula the sum with the mode, and search instead for the
group contributes a term equal to the weight of the, andd that maximizdog P, (Q, L). Since the op-
currently satisfied formula. In addition, the opti- timal weights and log-likelihood can be derived in
mal weights that maximize the completion likeli- closed form given the semantic pardeswe sim-
hood P(Q, L) can be derived in closed form us- ply search over semantic parses, evaluating them
ing empirical relative frequencies. E.g., the opti-using log-likelihood.
mal weight ofp € ¢ AForm(p, £) is log(ne,¢/nc), Algorithm 2 gives pseudo-code for our algo-
wherenc ¢ is the number of partp that satisfy rithm. The input consists of an MLN without
bothp € c andForm(p, ), andn. is the number \eights and the QLFs for the training sentences.
of partsp that satisfyp € c.” We leverage this fact Two operators are used for updating semantic
for efficient learning in USP. parses. The first is to merge two clusters, denoted

SRegularizations, e.g., Gaussian priors on weights, alleviPy MERGE(Cy, Co) for clustersCy, C, which does
ate this problem by penalizing large weights, but it remainsthe following:
true that weights within a short range are roughly equivalen

"To see this, notice that for a giver) the total contribu-  and there is the local normalization constraEtf evet =1,

tion to the completion likelihood from all groundings in its The optimal weightsu. : are easily derived by solving this
formula group is) . we snc¢. In addition,d " ncs = ne constrained optimization problem.




1. Create a new clusterand add all core forms above a threshold.The operation with the highest
inCy,Cy tOC; score is executed, and the parameters are updated

2. Create new argument types forby merg- with the new optimal values. The QLFs which

ing those iy, C, S0 as to maximize the log- contain an affected part are reparsed, and opera-
likelihood: ’ tions in the agenda whose score might be affected

are re-evaluated. These changes are done very ef-
ficiently using inverted indexes. We omit the de-
Here, merging two argument types refers to pooI-ta”S here due to space limitations. USP terminates
ing their argument forms to create a new argumeny/Nen the agenda is empty, and outputs the current
type. Enumerating all possible ways of creatingMLN parameters and semantic parses.

new argument types is intractable. USP approxi- USP learning uses the same optimization objec-
mates it by considering one type at a time and eiIiVG as hard EM, and is also guaranteed to find a
ther creating a new type for it or merging it to typeslocal optimum since at each step it improves the
already considered, whichever maximizes the loglog-likelihood. It differs from EM in directly opti-
likelihood. The types are considered in decreasingnizing the likelihood instead of a lower bound.
order of their numbers of occurrences so that more

information is available for each decisioMERGE 6 Experiments

clusters syntactically different expressions whose

meanings appear to be the same according to tHel Task

model.

3. RemoveC,, C,.

, Evaluating unsupervised semantic parsers is dif-
The second operator is to create a new clusge i pecause there is no predefined formal lan-

ter by composing two existing ones, denoted by, ,aqe or gold logical forms for the input sen-

COMPOSE(Cr, Ca), which does the following: tences. Thus the best way to test them is by using
1. Create a new cluster, them for the ultimate goal: answering questions

2. Find all partsr € Cg,a € C, such thata is  a@sed on the input corpus. In this paper, we ap-

an argument of, compose them te(a) by ~ Plied USP to extracting knowledge from biomedi-
A-reduction and add the new partap cal abstracts and evaluated its performance in an-

swering a set of questions that simulate the in-
0 f . ¢ imize th formation needs of biomedical researchers. We
Igun?_(le(nl_horrrés ok(a) 50 as to maximize the used the GENIA dataset (Kim et al., 2003) as
0g-likelihood. the source for knowledge extraction. It contains
COMPOSE creates clusters of large lambda-forms1999 PubMed abstracts and marks all mentions

if they tend to be composed of the same subOf biomedical entities according to the GENIA
forms (e.g., the lambda form for “is next to”). ontology, such as cell, protein, and DNA. As a
These lambda-forms may later be merged witHirst approximation to the questions a biomedi-
other clusters (e.ghorders). cal researcher might ask, we generated a set of
At learning time, USP maintains agendathat WO thousand questions on relations between enti-
contains operations that have been evaluated arf§S- Sample questions are: “What regulates MIP-
are pending execution. During initialization, Usp1alpha?”, “What does anti-STAT 1 inhibit?". To
forms a part and creates a new cluster for eacfimulate the real information need, we sample the
unary atomu(n). It also assigns binary atoms of relations from the 100 most frequently used verbs
the formb(n, ') to the part as argument forms (excluding the auxiliary verbbe have anddo),
and creates a new argument type for each. Thigand sample the entities from those annotated in
forms the initial clustering and semantic parsesGENIA, both according to their numbers of occur-

USP then merges clusters with the same core forfEnces. We evaluated USP by the number of an-
(i.e., the same unary predicate) usiMeRGe.8 At~ SWers it provided and the accuracy as determined

: . 30
each step, USP evaluates the candidate operatioR¥ manual labeling!
and adds them to the agenda if the improvement i

3. Create new argument types fofrom the ar-

- ®We currently set it to 10 to favor precision and guard
8Wword-sense disambiguation can be handled by includinggainst errors due to inexact estimates.

a new kind of operator that splits a cluster into subclusters °The labels and questions are available at

We leave this to future work. http://alchemy.cs.washington.edu/papers/poon09.



6.2 Systems resolves coreferent relation and argument strings.
On the GENIA data, using the default parameters,
Since USP is the first unsupervised semantiRESOLVER produces only a few trivial relation
parser, conducting a meaningful comparison of itclusters and no argument clusters. This is not sur-
with other systems is not straightforward. Stan-prising, since RESOLVER assumes high redun-
dard question-answering (QA) benchmarks do nogiancy in the data, and will discard any strings with
provide the most appropriate comparison, befewer than 25 extractions. For a fair compari-
cause they tend to simultaneously emphasize othebn, we also ran RESOLVER using all extractions,
aspects not directly related to semantic parsand manually tuned the parameters based on eye-
ing. Moreover, most state-of-the-art QA sys-palling of clustering quality. The best result was
tems use supervised learning in their key compoobtained with 25 rounds of execution and with the
nents and/or require domain-specific engineeringntity multiple set to 200 (the default is 30). To an-
efforts. The closest available system to USP irswer questions, the only difference from TextRun-
aims and capabilities is TextRunner (Banko et al.ner is that a question string can maich any string
2007), and we compare with it. TextRunner is thein its cluster. As in TextRunner, we report results
state-of-the-art system for open-domain informa<or both exact matchRS-EXACT) and substring
tion extraction; its goal is to extract knowledge (RS-SUB).
from text without using supervised labels. Givenp|RT: The DIRT system inputs a path and returns
that a central challenge to semantic parsing is rea set of similar paths. To use DIRT in question
solving syntactic variations of the same meaninganswering, we queried it to obtain similar paths
we also compare with RESOLVER (Yates and Et-for the relation of the question, and used these
zioni, 2009), a state-of-the-art unsupervised syspaths while matching sentences. We first used
tem based on TextRunner for jointly resolving en-MINIPAR (Lin, 1998) to parse input text using
tities and relations, and DIRT (Lin and Pantel,the same dependencies as DIRT. To determine a
2001), which resolves paraphrases of binary relamatch, we first check if the sentence contains the
tions. Finally, we also compared to an informedquestion path or one of its DIRT paths. If so, and if
baseline based on keyword matching. the available argument slot in the question is con-
Keyword: We consider a baseline system basedained in the one in the sentence, it is a match, and
on keyword matching. The question substringwe return the other argument slot from the sen-
containing the verb and the available argument isence if it is present. Ideally, a fair comparison will
directly matched with the input text, ignoring caserequire running DIRT on the GENIA text, but we
and morphology. We consider two ways to derivewere not able to obtain the source code. We thus
the answer given a match. The first oR&/) sim-  resorted to using the latest DIRT database released
ply returns the rest of sentence on the other side djy the author, which contains paths extracted from
the verb. The second onE\W-SYN) is informed  a large corpus with more than 1GB of text. This
by syntax: the answer is extracted from the subjecputs DIRT in a very advantageous position com-
or object of the verb, depending on the question. Ihared with other systems. In our experiments, we
the verb does not contain the expected argumengised the top three similar paths, as including more
the sentence is ignored. results in very low precision.
TextRunner: TextRunner inputs text and outputs USP: We built a system for knowledge extrac-
relational triples in the form{R, A1, A2), where  tion and question answering on top of USP. It
R is the relation string, andl;, A> the argument generated Stanford dependencies (de Marneffe et
strings. Given a triple and a question, we firstal,, 2006) from the input text using the Stan-
match their relation strings, and then match theord parser, and then fed these to USP-L&5rn
strings for the argument that is present in the quesyhich produced an MLN with learned weights
tion. If both match, we return the other argumentand the MAP semantic parses of the input sen-
string in the triple as an answer. We report resultsences. These MAP parses formed our knowledge
when exact match is useR-EXACT), or when  pase (KB). To answer questions, the system first

the triple string can contain the question one as @arses the questiotfsusing USP-Parse with the
substring TR-SUB).

RESOLVER: RESOLVER (Yates and Etzioni, 11, andg are set to-5 and—10.
2009) inputs TextRunner triples and collectively *?The question slot is replaced by a dummy word.



] . . . syntactic difference between active and passive
Table 1. Comparison of question answering re-\/oices It successfully identifies many distinct ar
sults on the GENIA dataset. ' y y

gument forms that mean the same (e.g., “X stimu-

# Total | # Correct| Accuracy |  lates Y~ “Y is stimulated with X”, “expression
KW 150 67 45% of X" ~ “X expression”). It also resolves many
KW-SYN 87 67 771% nouns correctly and forms meaningful groups of
TR-EXACT 29 23 79% relations. Here are some sample clusters in core
TR-SUB 152 81 53% forms:
RS-EXACT 53 24 45% {investigate, examine, evaluate, analyze, study,
RS-SUB 196 81 41% assay
DIRT 159 94 59% {diminish, reduce, decrease, attenyate
USP 334 295 88% {synthesis, production, secretion, relgase

{dramatically, substantially, significan}ly
learned MLN, and then matches the question parse An example question-answer pair, together with
to parses in the KB by testing subsumption (i.e., dhe source sentence, is shown below:
guestion parse matches a KB one iff the former is Q: What does IL-13 enhance?
subsumed by the latter). When a match occurs, our A: The 12-lipoxygenase activity of murine
system then looks for arguments of type in accorimacrophages.
dance with the question. For example, if the ques- Sentence: The data presented here indicate
tion is “What regulates MIP-1alpha?”, it searchesthat (1) the 12-lipoxygenase activity of murine
for the argument type of the relation that containsmacrophages is upregulated in vitro and in vivo
the argument form “nsubj” for subject. If such an by IL-4 and/or IL-13, . . .
argument exists for the relation part, it will be re- )
turned as the answer. 7 Conclusion

6.3 Results This paper introduces the first unsupervised ap-
I:proach to learning semantic parsers. Our USP

Table 1 shows the results for all systems. US . . .
. system is based on Markov logic, and recursively
extracted the highest number of answers, almost

doubling that of the second highest (RS-SUB).CIUSterS expressions to abstract away syntactic

. . ariations of the same lneaning. We have suc-
0,
It obtained the hlghest accuracy at 88%, ano}é sfully lied USP t xtractin knowled

the number of correct answers it extracted i . . :
) : ase from biomedical text and answering ques-
three times that of the second highest systen}. )
jons based on it.

The informed baseline (KW-SYN) did surpris- Directions for future work include: better han-

ingly well compared to systems other than USP, indIing of antonyms, subsumption relations among
terms of accuracy and number of correct answers, . o .

. gxpressions, quantifier scoping, more complex
TextRunner achieved good accuracy when exaq

match is used (TR-EXACT), but only obtained a aml_oda forms,- ete. use.of context and_dlscou-rse.
to aid expression clustering and semantic parsing;

fraction of the answers compared to USP. With - . . ) S
. . . . more efficient learning and inference; application
substring match, its recall substantially improved, _
to larger corpora,; etc.

but precision dropped more than 20 points. RE-
SOLVER improved the number of extracted an-g Acknowledgements
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