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Abstract

We demonstrate the effectiveness of multilin-
gual learning for unsupervised part-of-speech
tagging. The key hypothesis of multilin-
gual learning is that by combining cues from
multiple languages, the structure of each be-
comes more apparent. We formulate a hier-
archical Bayesian model for jointly predicting
bilingual streams of part-of-speech tags. The
model learns language-specific features while
capturing cross-lingual patterns in tag distri-
bution for aligned words. Once the parame-
ters of our model have been learned on bilin-
gual parallel data, we evaluate its performance
on a held-out monolingual test set. Our evalu-
ation on six pairs of languages shows consis-
tent and significant performance gains over a
state-of-the-art monolingual baseline. For one
language pair, we observe a relative reduction
in error of 53%.

1 Introduction

In this paper, we explore the application of multilin-
gual learning to part-of-speech tagging when no an-
notation is available. This core task has been studied
in an unsupervised monolingual framework for over
a decade and is still an active area of research. In this
paper, we demonstrate the effectiveness of multilin-
gual learning when applied to both closely related
and distantly related language pairs. We further ana-
lyze the language features which lead to robust bilin-
gual performance.

The fundamental idea upon which our work is
based is that the patterns of ambiguity inherent in

part-of-speech tag assignments differ across lan-
guages. At the lexical level, a word with part-of-
speech tag ambiguity in one language may corre-
spond to an unambiguous word in the other lan-
guage. For example, the word “can” in English may
function as an auxiliary verb, a noun, or a regular
verb. However, each of the corresponding functions
in Serbian is expressed with a distinct lexical item.
Languages also differ in their patterns of structural
ambiguity. For example, the presence of an article
in English greatly reduces the ambiguity of the suc-
ceeding tag. In Serbian, a language without articles,
this constraint is obviously absent. The key idea of
multilingual learning is that by combining cues from
multiple languages, the structure of each becomes
more apparent.

While multilingual learning can address ambigu-
ities in each language, it must be flexible enough
to accommodate cross-lingual variations such as tag
inventory and syntactic structure. As a result of
such variations, two languages often select and order
their tags differently even when expressing the same
meaning. A key challenge of multilingual learning
is to model language-specific structure while allow-
ing information to flow between languages.

We jointly model bilingual part-of-speech tag se-
quences in a hierarchical Bayesian framework. For
each word, we posit a hidden tag state which gen-
erates the word as well as the succeeding tag. In
addition, the tags of words with common seman-
tic or syntactic function in parallel sentences are
combined into bilingual nodes representing the tag
pair. These joined nodes serve as anchors that cre-
ate probabilistic dependencies between the tag se-
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quences in each language. We use standard tools
from machine translation to discover aligned word-
pairs, and thereafter our model treats the alignments
as observed data.

Our model structure allows language-specific tag
inventories. Additionally, it assumes only that the
tags at joined nodes arecorrelated; they need not be
identical. We factor the conditional probabilities of
joined nodes into two individual transition probabil-
ities as well as a coupling probability. We define
priors over the transition, emission, and coupling
parameters and perform Bayesian inference using
Gibbs sampling and the Metropolis-Hastings algo-
rithm.

We evaluate our model on a parallel corpus of
four languages: English, Bulgarian, Serbian, and
Slovene. For each of the six language pairs, we
train a bilingual model on this corpus, and evaluate it
on held-out monolingual test sets. Our results show
consistent improvement over a monolingual baseline
for all languages and all pairings. In fact, for one
language pair – Serbian and Slovene – the error is
reduced by over 53%. Moreover, the multilingual
model significantly reduces the gap between unsu-
pervised and supervised performance. For instance,
in the case of Slovene this gap is reduced by 71%.
We also observe significant variation in the level of
improvement across language pairs. We show that a
cross-lingual entropy measure corresponds with the
observed differentials in performance.

2 Related Work

Multilingual Learning A number of approaches
for multilingual learning have focused on induc-
ing cross-lingual structures, with applications to
machine translation. Examples of such efforts
include work on the induction of synchronous
grammars (Wu and Wong, 1998; Chiang, 2005)
and learning multilingual lexical resources (Genzel,
2005).

Another thread of work using cross-lingual links
has been in word-sense disambiguation, where
senses of words can bedefinedbased on their trans-
lations (Brown et al., 1991; Dagan et al., 1991;
Resnik and Yarowsky, 1997; Ng et al., 2003).

When annotations for a task of interest are avail-
able in a source language but are missing in the

target language, the annotations can be projected
across a parallel corpus (Yarowsky et al., 2000;
Diab and Resnik, 2002; Padó and Lapata, 2006; Xi
and Hwa, 2005). In fact, projection methods have
been used to train highly accurate part-of-speech
taggers (Yarowsky and Ngai, 2001; Feldman et al.,
2006). In contrast, our own work assumes that an-
notations exist for neither language.

Finally, there has been recent work on applying
unsupervised multilingual learning to morphologi-
cal segmentation (Snyder and Barzilay, 2008). In
this paper, we demonstrate that unsupervised mul-
tilingual learning can be successfully applied to the
sentence-level task of part-of-speech tagging.

Unsupervised Part-of-Speech Tagging Since
the work of Merialdo (1994), the HMM has been the
model of choice for unsupervised tagging (Banko
and Moore, 2004). Recent advances in these
approaches include the use of a fully Bayesian
HMM (Johnson, 2007; Goldwater and Griffiths,
2007). In very recent work, Toutanova and John-
son (2008) depart from this framework and propose
an LDA-based generative model that groups words
through a latent layer of ambiguity classes thereby
leveraging morphological features. In addition, a
number of approaches have focused on develop-
ing discriminative approaches for unsupervised and
semi-supervised tagging (Smith and Eisner, 2005;
Haghighi and Klein, 2006).

Our focus is on developing a simple model that
effectively incorporates multilingual evidence. We
view this direction as orthogonal to refining mono-
lingual tagging models for any particular language.

3 Model

We propose a bilingual model for unsupervised part-
of-speech tagging that jointly tags parallel streams
of text in two languages. Once the parameters have
been learned using an untagged bilingual parallel
text, the model is applied to a held-out monolingual
test set.

Our key hypothesis is that the patterns of ambigu-
ity found in each language at the part-of-speech level
will differ in systematic ways; by considering multi-
ple language simultaneously, the total inherent am-
biguity can be reduced in each language. The model
is designed to permit information to flow across the
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Figure 1: (a) Graphical structure of two standard monolingual HMM’s. (b) Graphical structure of our bilingual model
based on word alignments.

language barrier, while respecting language-specific
idiosyncrasies such as tag inventory, selection, and
order. We assume that for pairs of words that share
similar semantic or syntactic function, the associ-
ated tags will be statistically correlated, though not
necessarily identical. We use such word pairs as
the bilingual anchors of our model, allowing cross-
lingual information to be shared via joint tagging de-
cisions. We use standard tools from machine trans-
lation to identify these aligned words, and thereafter
our model treats them as fixed and observed data.
To avoid cycles, we remove crossing edges from the
alignments.

For unaligned parts of the sentence, the tag and
word selections are identical to standard monolin-
gual HMM’s. Figure 1 shows an example of the
bilingual graphical structure we use, in comparison
to two independent monolingual HMM’s.

We formulate a hierarchical Bayesian model that
exploits both language-specific and cross-lingual
patterns to explain the observed bilingual sentences.
We present a generative story in which the observed
words are produced by the hidden tags and model
parameters. In Section 4, we describe how to in-
fer the posterior distribution over these hidden vari-
ables, given the observations.

3.1 Generative Model

Our generative model assumes the existence of two
tagsets,T andT ′, and two vocabulariesW andW ′,
one of each for each language. For ease of exposi-
tion, we formulate our model with bigram tag de-

pendencies. However, in our experiments we used
a trigram model, which is a trivial extension of the
model discussed here and in the next section.

1. For each tagt ∈ T , draw atransition distri-
bution φt over tagsT , and anemissiondistri-
butionθt over wordsW , both from symmetric
Dirichlet priors.1

2. For each tagt ∈ T ′, draw atransition distri-
butionφ′t over tagsT ′, and anemissiondistri-
butionθ′t over wordsW ′, both from symmetric
Dirichlet priors.

3. Draw a bilingualcouplingdistributionω over
tag pairsT × T ′ from a symmetric Dirichlet
prior.

4. For each bilingual parallel sentence:

(a) Draw an alignmenta from an alignment
distribution A (see the following para-
graph for formal definitions ofa andA),

(b) Draw a bilingual sequence of part-of-
speech tags(x1, ..., xm), (y1, ..., yn) ac-
cording to:

P (x1, ..., xm, y1, ..., yn|a, φ, φ′, ω). 2

This joint distribution is given in equa-
tion 1.

1The Dirichlet is a probability distribution over the simplex,
and is conjugate to the multinomial (Gelman et al., 2004).

2Note that we use a special end state rather than explicitly
modeling sentence length. Thus the values ofm andn depend
on the draw.
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(c) For each part-of-speech tagxi in the first
language, emit a word fromW : ei ∼ θxi

,

(d) For each part-of-speech tagyj in the sec-
ond language, emit a word fromW ′: fj ∼
θ′yj

.

We define an alignmenta to be a set of one-to-
one integer pairs with no crossing edges. Intuitively,
each pair(i, j) ∈ a indicates that the wordsei and
fj share some common role in the bilingual paral-
lel sentences. In our experiments, we assume that
alignments are directly observed and we hold them
fixed. From the perspective of our generative model,
we treat alignments as drawn from a distributionA,
about which we remain largely agnostic. We only
require thatA assign zero probability to alignments
which either:(i) align a single index in one language
to multiple indices in the other language or(ii) con-
tain crossing edges. The resulting alignments are
thus one-to-one, contain no crossing edges, and may
be sparse or even possibly empty. Our technique for
obtaining alignments that display these properties is
described in Section 5.

Given an alignmenta and sets of transition param-
etersφ andφ′, we factor the conditional probability
of a bilingual tag sequence(x1, ...xm), (y1, ..., yn)
into transition probabilities for unaligned tags, and
joint probabilities over aligned tag pairs:

P (x1, ..., xm, y1, ..., yn|a, φ, φ′, ω) =
∏

unalignedi

φxi−1
(xi) ·

∏

unalignedj

φ′yj−1
(yj) ·

∏

(i,j)∈a

P (xi, yj |xi−1, yj−1, φ, φ′, ω)
(1)

Because the alignment contains no crossing
edges, we can model the tags as generated sequen-
tially by a stochastic process. We define the dis-
tribution over aligned tag pairs to be a product of
each language’s transition probability and the cou-
pling probability:

P (xi, yj |xi−1, yj−1, φ, φ′, ω) =

φxi−1
(xi) φ′yj−1

(yj) ω(xi, yj)

Z
(2)

The normalization constant here is defined as:

Z =
∑

x,y

φxi−1
(x) φ′yj−1

(y) ω(x, y)

This factorization allows the language-specific tran-
sition probabilities to be shared across aligned and
unaligned tags. In the latter case, the addition of
the coupling parameterω gives the tag pair an addi-
tional role: that of multilingual anchor. In essence,
the probability of the aligned tag pair is a product
of three experts: the two transition parameters and
the coupling parameter. Thus, the combination of
a high probability transition in one language and a
high probability coupling can resolve cases of inher-
ent transition uncertainty in the other language. In
addition, any one of the three parameters can “veto”
a tag pair to which it assigns low probability.

To perform inference in this model, we predict
the bilingual tag sequences with maximal probabil-
ity given the observed words and alignments, while
integrating over the transition, emission, and cou-
pling parameters. To do so, we use a combination of
sampling-based techniques.

4 Inference

The core element of our inference procedure is
Gibbs sampling (Geman and Geman, 1984). Gibbs
sampling begins by randomly initializing all unob-
served random variables; at each iteration, each ran-
dom variablezi is sampled from the conditional dis-
tributionP (zi|z−i), wherez−i refers to all variables
other thanzi. Eventually, the distribution over sam-
ples drawn from this process will converge to the
unconditional joint distributionP (z) of the unob-
served variables. When possible, we avoid explic-
itly sampling variables which are not of direct inter-
est, but rather integrate over them—this technique
is known as “collapsed sampling,” and can reduce
variance (Liu, 1994).

We sample:(i) the bilingual tag sequences(x,y),
(ii) the two sets of transition parametersφ andφ′,
and(iii) the coupling parameterω. We integrate over
the emission parametersθ andθ′, whose priors are
Dirichlet distributions with hyperparametersθ0 and
θ′0. The resulting emission distribution over words
ei, given the other wordse−i, the tag sequencesx
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and the emission priorθ0, can easily be derived as:

P (ei|x, e−i, θ0) =

∫

θxi

θxi
(ei)P (θxi

|θ0) dθxi

=
n(xi, ei) + θ0

n(xi) + Wxi
θ0

(3)

Here,n(xi) is the number of occurrences of the
tagxi in x−i, n(xi, ei) is the number of occurrences
of the tag-word pair(xi, ei) in (x−i, e−i), andWxi

is the number of word types in the vocabularyW

that can take tagxi. The integral is tractable due
to Dirichlet-multinomial conjugacy (Gelman et al.,
2004).

We will now discuss, in turn, each of the variables
that we sample. Note that in all cases we condi-
tion on the other sampled variables as well as the
observed words and alignments,e, f anda, which
are kept fixed throughout.

4.1 Sampling Part-of-speech Tags

This section presents the conditional distributions
that we sample from to obtain the part-of-speech
tags. Depending on the alignment, there are several
scenarios. In the simplest case, both the tag to be
sampled and its succeeding tag are not aligned to
any tag in the other language. If so, the sampling
distribution is identical to the monolingual case, in-
cluding only terms for the emission (defined in equa-
tion 3), and the preceding and succeeding transi-
tions:

P (xi|x−i, y, e, f, a, φ, φ′, ω, θ0, θ
′

0) ∝

P (ei|x, e−i, θ0) φxi−1
(xi) φxi

(xi+1).

For an aligned tag pair(xi, yj), we sample the
identity of the tags jointly. By applying the chain
rule we obtain terms for the emissions in both lan-
guages and a joint term for the transition probabili-
ties:

P (xi, yj |x−i, y
−j , e, f, a, φ, φ′, ω, θ0, θ

′

0) ∝

P (ei|x, e−i, θ0)P (fj |y, f−j , θ
′

0)

P (xi, yj |x−i, y
−j , a, φ, φ′, ω)

The expansion of the joint term depends on the
alignment of the succeeding tags. In the case that

the successors are not aligned, we have a product of
the bilingual coupling probability and four transition
probabilities (preceding and succeeding transitions
in each language):

P (xi, yj |x−i, y
−j , a, φ, φ′, ω) ∝

ω(xi, yj)φxi−1
(xi) φ′yj−1

(yj) φxi
(xi+1) φ′yj

(yj+1)

Whenever one or more of the succeeding tags is
aligned, the sampling formulas must account for the
effect of the sampled tag on the joint probability
of the succeeding tags, which is no longer a sim-
ple multinomial transition probability. We give the
formula for one such case—when we are sampling
an aligned tag pair(xi, yj), whose succeeding tags
(xi+1, yj+1) are also aligned to one another:

P (xi, yj |x−i, y
−j , a, φ, φ′, ω) ∝ ω(xi, yj)

· φxi−1
(xi)φ′yj−1

(yj)

[

φxi
(xi+1)φ′yj

(yj+1)
∑

x,y φxi
(x)φ′yj

(y)ω(x, y)

]

Similar equations can be derived for cases where
the succeeding tags are not aligned to each other, but
to other tags.

4.2 Sampling Transition Parameters and the
Coupling Parameter

When computing the joint probability of an aligned
tag pair (Equation 2), we employ the transition pa-
rametersφ, φ′ and the coupling parameterω in a nor-
malized product. Because of this, we can no longer
regard these parameters as simple multinomials, and
thus can no longer sample them using the standard
closed formulas.

Instead, to resample these parameters, we re-
sort to the Metropolis-Hastings algorithm as a sub-
routine within Gibbs sampling (Hastings, 1970).
Metropolis-Hastings is a Markov chain sampling
technique that can be used when it is impossible to
directly sample from the posterior. Instead, sam-
ples are drawn from aproposaldistribution and then
stochastically accepted or rejected on the basis of:
their likelihood, their probability under the proposal
distribution, and the likelihood and proposal proba-
bility of the previous sample.

We use a form of Metropolis-Hastings known as
an independent sampler. In this setup, the proposal
distribution does not depend on the value of the
previous sample, although the accept/reject decision
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does depend on the previous model likelihood. More
formally, if we denote the proposal distribution as
Q(z), the target distribution asP (z), and the previ-
ous sample asz, then the probability of accepting a
new samplez∗ ∼ Q is set at:

min

{

1,
P (z∗) Q(z)

P (z) Q(z∗)

}

Theoretically any non-degenerate proposal distri-
bution may be used. However, a higher acceptance
rate and faster convergence is achieved when the
proposalQ is a close approximation ofP . For a par-
ticular transition parameterφx, we define our pro-
posal distributionQ to be Dirichlet with parameters
set to the bigram counts of the tags followingx in
the sampled tag data. Thus, the proposal distribu-
tion for φx has a mean proportional to these counts,
and is thus likely to be a good approximation to the
target distribution.

Likewise for the coupling parameterω, we de-
fine a Dirichlet proposal distribution. This Dirichlet
is parameterized by the counts of aligned tag pairs
(x, y) in the current set of tag samples. Since this
sets the mean of the proposal to be proportional to
these counts, this too is likely to be a good approxi-
mation to the target distribution.

4.3 Hyperparameter Re-estimation

After every iteration of Gibbs sampling the hyper-
parametersθ0 andθ′0 are re-estimated using a single
Metropolis-Hastings move. The proposal distribu-
tion is set to a Gaussian with mean at the current
value and variance equal to one tenth of the mean.

5 Experimental Set-Up

Our evaluation framework follows the standard pro-
cedures established for unsupervised part-of-speech
tagging. Given a tag dictionary (i.e., a set of possi-
ble tags for each word type), the model has to select
the appropriate tag for each token occurring in a text.
We also evaluate tagger performance when only in-
complete dictionaries are available (Smith and Eis-
ner, 2005; Goldwater and Griffiths, 2007). In both
scenarios, the model is trained only using untagged
text.

In this section, we first describe the parallel data
and part-of-speech annotations used for system eval-
uation. Next we describe a monolingual base-
line and our procedures for initialization and hyper-
parameter setting.

Data As a source of parallel data, we use Orwell’s
novel “Nineteen Eighty Four” in the original English
as well as translations to three Slavic languages —
Bulgarian, Serbian and Slovene. This data is dis-
tributed as part of the Multext-East corpus which
is publicly available. The corpus provides detailed
morphological annotation at the world level, includ-
ing part-of-speech tags. In addition a lexicon for
each language is provided.

We obtain six parallel corpora by considering
all pairings of the four languages. We compute
word level alignments for each language pair using
Giza++. To generate one-to-one alignments at the
word level, we intersect the one-to-many alignments
going in each direction and automatically remove
crossing edges in the order in which they appear left
to right. This process results in alignment of about
half the tokens in each bilingual parallel corpus. We
treat the alignments as fixed and observed variables
throughout the training procedure.

The corpus consists of 94,725 English words (see
Table 2). For every language, a random three quar-
ters of the data are used for learning the model while
the remaining quarter is used for testing. In the test
set, only monolingual information is made available
to the model, in order to simulate future performance
on non-parallel data.

Tokens Tags/Token
SR 89,051 1.41
SL 91,724 1.40
BG 80,757 1.34
EN 94,725 2.58

Table 2: Corpus statistics: SR=Serbian, SL=Slovene,
EN=English, BG=Bulgarian

Tagset The Multext-East corpus is manually an-
notated with detailed morphosyntactic information.
In our experiments, we focus on the main syntac-
tic category encoded as a first letter of the labels.
The annotation distinguishes between 13 parts-of-
speech, of which 11 are common for all languages
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Random Monolingual Unsupervised Monolingual Supervised Trigram Entropy
EN 56.24 90.71 96.97 1.558
BG 82.68 88.88 96.96 1.708
SL 84.70 87.41 97.31 1.703
SR 83.41 85.05 96.72 1.789

Table 1: Monolingual tagging accuracy for English, Bulgarian, Slovene, and Serbian for two unsupervised baselines
(random tag selection and a Bayesian HMM (Goldwater and Griffiths, 2007)) as well as a supervised HMM. In
addition, the trigram part-of-speech tag entropy is given for each language.

in our experiments.3

In the Multext-East corpus, punctuation marks are
not annotated. We expand the tag repository by
defining a separate tag for all punctuation marks.
This allows the model to make use of any transition
or coupling patterns involving punctuation marks.
We do not consider punctuation tokens when com-
puting model accuracy.

Table 2 shows the tag/token ratio for these lan-
guages. For Slavic languages, we use the tag dic-
tionaries provided with the corpus. For English,
we use a different process for dictionary construc-
tion. Using the original dictionary would result in
the tag/token ratio of 1.5, in comparison to the ra-
tio of 2.3 observed in the Wall Street Journal (WSJ)
corpus. To make our results on English tagging more
comparable to previous benchmarks, we expand the
original dictionary of English tags by merging it
with the tags from the WSJ dictionary. This process
results in a tag/token ratio of 2.58, yielding a slightly
more ambiguous dictionary than the one used in pre-
vious tagging work.4

Monolingual Baseline As our monolingual base-
line we use the unsupervised Bayesian HMM model
of Goldwater and Griffiths (2007) (BHMM1). This
model modifies the standard HMM by adding pri-
ors and by performing Bayesian inference. Its is in
line with state-of-the-art unsupervised models. This
model is a particulary informative baseline, since
our model reduces to this baseline model when there
are no alignments in the data. This implies that any
performance gain over the baseline can only be at-

3The remaining two tags are Particle and Determiner; The
English tagset does not includeParticle while the other three
languages Serbian, Slovene and Bulgarian do not haveDeter-
miner in their tagset.

4We couldn’t perform the same dictionary expansion for the
Slavic languages due to a lack of additional annotated resources.

tributed to the multilingual aspect of our model. We
used our own implementation after verifying that its
performance on WSJ was identical to that reported
in (Goldwater and Griffiths, 2007).

Supervised Performance In order to provide a
point of comparison, we also provide supervised re-
sults when an annotated corpus is provided. We use
the standard supervised HMM with Viterbi decod-
ing.

Training and Testing Framework Initially, all
words are assigned tags randomly from their tag
dictionaries. During each iteration of the sam-
pler, aligned tag pairs and unaligned tags are sam-
pled from their respective distributions given in Sec-
tion 4.1 above. The hyperparametersθ0 andθ′0 are
initialized with the values learned during monolin-
gual training. They are re-estimated after every iter-
ation of the sampler using the Metropolis Hastings
algorithm. The parametersφ and φ′ are initially
set to trigram counts and theω parameter is set to
tag pair counts of aligned pairs. After every 40 it-
erations of the sampler, a Metropolis Hastings sub-
routine is invoked that re-estimates these parameters
based on the current counts. Overall, the algorithm
is run for 1000 iterations of tag sampling, by which
time the resulting log-likelihood converges to stable
values. Each Metropolis Hastings subroutine sam-
ples 20 values, with an acceptance ratio of around
1/6, in line with the standard recommended values.

After training, trigram and word emission prob-
abilities are computed based on the counts of tags
assigned in the final iteration. For smoothing, the
final sampled values of the hyperparameters are
used. The highest probability tag sequences for each
monolingual test set are then predicted using trigram
Viterbi decoding. We report results averaged over
five complete runs of all experiments.
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6 Results

Complete Tag Dictionary In our first experiment,
we assume that a complete dictionary listing the pos-
sible tags for every word is provided in each lan-
guage. Table 1 shows the monolingual results of a
random baseline, an unsupervised Bayesian HMM
and a supervised HMM. Table 3 show the results
of our bilingual models for different language pair-
ings while repeating the monolingual unsupervised
results from Table 1 for easy comparison. The final
column indicates the absolute gain in performance
over this monolingual baseline.

Across all language pairs, the bilingual model
consistently outperforms the monolingual baseline.
All the improvements are statistically significant by
a Fisher sign test atp < 0.05. For some lan-
guage pairs, the gains are quite high. For instance,
the pairing of Serbian and Slovene (two closely re-
lated languages) yields absolute improvements of
6.7 and 7.7 percentage points, corresponding to rel-
ative reductions in error of 51.4% and 53.2%. Pair-
ing Bulgarian and English (two distantly related lan-
guages) also yields large gains: 5.6 and 1.3 percent-
age points, corresponding to relative reductions in
error of 50% and 14%, respectively.5

When we compare the best bilingual result for
each language (Table 3, in bold) to the monolin-
gual supervised results (Table 1), we find that for
all languages the gap between supervised and un-
supervised learning is reduced significantly. For En-
glish, this gap is reduced by 21%. For the Slavic lan-
guages, the supervised-unsupervised gap is reduced
by even larger amounts: 57%, 69%, and 78% for
Serbian, Bulgarian, and Slovene respectively.

While all the languages benefit from the bilin-
gual learning framework, some language combina-
tions are more effective than others. Slovene, for in-
stance, achieves a large improvement when paired
with Serbian (+7.7), a closely related Slavic lan-
guage, but only a minor improvement when coupled

5The accuracy of the monolingual English tagger is rela-
tively high compared to the 87% reported by (Goldwater and
Griffiths, 2007) on the WSJ corpus. We attribute this discrep-
ancy to the slight differences in tag inventory used in our data-
set. For example, whenParticlesandPrepositionsare merged
in the WSJ corpus (as they happen to be in our tag inventory
and corpus), the performance of Goldwater’s model on WSJ is
similar to what we report here.

Entropy Mono- Bilingual Absolute
lingual Gain

EN 0.566 90.71 91.01 +0.30
SR 0.554 85.05 90.06 +5.03
EN 0.578 90.71 92.00 +1.29
BG 0.543 88.88 94.48 +5.61
EN 0.571 90.71 92.01 +1.30
SL 0.568 87.41 88.54 +1.13
SL 0.494 87.41 95.10 +7.69
SR 0.478 85.05 91.75 +6.70
BG 0.568 88.88 91.95 +3.08
SR 0.588 85.05 86.58 +1.53
BG 0.579 88.88 90.91 +2.04
SL 0.609 87.41 88.20 +0.79

Table 3: The tagging accuracy of our bilingual models
on different language pairs, when a full tag dictionary is
provided. The Monolingual Unsupervised results from
Table 1 are repeated for easy comparison. The first col-
umn shows the cross-lingual entropy of a tag when the
tag of the aligned word in the other language is known.
The final column shows the absolute improvement over
the monolingual Bayesian HMM. The best result for each
language is shown in boldface.

with English (+1.3). On the other hand, for Bulgar-
ian, the best performance is achieved when coupling
with English (+5.6) rather than with closely related
Slavic languages (+3.1 and+2.4). As these results
show, an optimal pairing cannot be predicted based
solely on the family connection of paired languages.

To gain a better understanding of this variation
in performance, we measured the internal tag en-
tropy of each language as well as the cross-lingual
tag entropy of language pairs. For the first measure,
we computed the conditional entropy of a tag de-
cision given the previous two tags. Intuitively, this
should correspond to the inherent structural uncer-
tainty of part-of-speech decisions in a language. In
fact, as Table 1 shows, the trigram entropy is a good
indicator of the relative performance of the mono-
lingual baseline. To measure the cross-lingual tag
entropies of language pairs, we considered all bilin-
gual aligned tag pairs, and computed the conditional
entropy of the tags in one language given the tags
in the other language. This measure should indi-
cate the amount of information that one language in
a pair can provide the other. The results of this anal-
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Mono- Bilingual Absolute
lingual Gain

EN 63.57 68.22 +4.66
SR 41.14 54.73 +13.59
EN 63.57 71.34 +7.78
BG 53.19 62.55 +9.37
EN 63.57 66.48 +2.91
SL 49.90 53.77 +3.88
SL 49.90 59.68 +9.78
SR 41.14 54.08 +12.94
BG 53.19 54.22 +1.04
SR 41.14 56.91 +15.77
BG 53.19 55.88 +2.70
SL 49.90 58.50 +8.60

Table 4: Tagging accuracy for Bilingual models with re-
duced dictionary: Lexicon entries are available for only
the 100 most frequent words, while all other words be-
come fully ambiguous. The improvement over the mono-
lingual Bayesian HMM trained under similar circum-
stances is shown. The best result for each language is
shown in boldface.

ysis are given in the first column of Table 3. We ob-
serve that the cross-lingual entropy is lowest for the
Serbian and Slovene pair, corresponding with their
large gain in performance. Bulgarian, on the other
hand, has lowest cross-lingual entropy when paired
with English. This corresponds with the fact that
English provides Bulgarian with its largest perfor-
mance gain. In general, we find that the largest per-
formance gain for any language is achieved when
minimizing its cross-lingual entropy.

Reduced Tag Dictionary We also conducted ex-
periments to investigate the impact of the dictio-
nary size on the performance of the bilingual model.
Here, we provide results for the realistic scenario
where only a very small dictionary is present. Ta-
ble 4 shows the performance when a tag dictionary
for the 100 most frequent words is present in each
language. The bilingual model’s results are consis-
tently and significantly better than the monolingual
baseline for all language pairs.

7 Conclusion

We have demonstrated the effectiveness of multilin-
gual learning for unsupervised part-of-speech tag-
ging. The key hypothesis of multilingual learn-

ing is that by combining cues from multiple lan-
guages, the structure of each becomes more appar-
ent. We formulated a hierarchical Bayesian model
for jointly predicting bilingual streams of tags. The
model learns language-specific features while cap-
turing cross-lingual patterns in tag distribution. Our
evaluation shows significant performance gains over
a state-of-the-art monolingual baseline.
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