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Abstract

The accuracy of current word sense disam-
biguation (WSD) systems is affected by the
fine-grained sense inventory of WordNet as
well as a lack of training examples. Using the
WSD examples provided through OntoNotes,
we conduct the first large-scale WSD evalua-
tion involving hundreds of word types and tens
of thousands of sense-tagged examples, while
adopting a coarse-grained sense inventory. We
show that though WSD systems trained with a
large number of examples can obtain a high
level of accuracy, they nevertheless suffer a
substantial drop in accuracy when applied to
a different domain. To address this issue, we
propose combining a domain adaptation tech-
nique using feature augmentation with active
learning. Our results show that this approach
is effective in reducing the annotation effort
required to adapt a WSD system to a new do-
main. Finally, we propose that one can maxi-
mize the dual benefits of reducing the annota-
tion effort while ensuring an increase in WSD
accuracy, by only performing active learning
on the set of most frequently occurring word

types.
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label (from a pre-defined sense inventory) during the
disambiguation process. In current WSD research,
WordNet (Miller, 1990) is usually used as the sense
inventory. WordNet, however, adopts a very fine
level of sense granularity, thus restricting the accu-
racy of WSD systems. Also, current state-of-the-art
WSD systems are based on supervised learning and
face a general lack of training data.

To provide a standardized test-bed for evalua-
tion of WSD systems, a series of evaluation exer-
cises called SENSEVAL were held. In the English
all-words task of SENSEVAL-2 and SENSEVAL-

3 (Palmer et al., 2001; Snyder and Palmer, 2004),
no training data was provided and systems must tag
all the content words (noun, verb, adjective, and
adverb) in running English texts with their correct
WordNet senses. In SENSEVAL-2, the best per-
forming system (Mihalcea and Moldovan, 2001) in
the English all-words task achieved an accuracy of
69.0%, while in SENSEVAL-3, the best perform-
ing system (Decadt et al., 2004) achieved an accu-
racy of 65.2%. In SemEval-2007, which was the
most recent SENSEVAL evaluation, a similar En-
glish all-words task was held, where systems had to
provide the correct WordNet sense tag for all the

1 Introduction verbs and head words of their arguments in run-

In language, many words have multiple meaningsiing English texts. For this task, the best perform-
The process of identifying the correct meaning, oing system (Tratz et al., 2007) achieved an accuracy
sense of a word in context, is known as word sensgf 59.1%. Results of these evaluations showed that
disambiguation (WSD). WSD is one of the funda-state-of-the-art English all-words WSD systems per-
mental problems in natural language processing afidrmed with an accuracy of 60%—70%, using the
is important for applications such as machine trangine-grained sense inventory of WordNet.
lation (MT) (Chan et al., 2007a; Carpuat and Wu, The low level of performance by these state-of-
2007), information retrieval (IR), etc. the-art WSD systems is a cause for concern, since
WSD is typically viewed as a classification prob-WSD is supposed to be an enabling technology
lem where each ambiguous word is assigned a serteebe incorporated as a module into applications
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such as MT and IR. As mentioned earlier, one odmples, while the SemEval-2007 coarse-grained En-
the major reasons for the low performance is thajlish all-words task consists of 2,269 test examples.
these evaluation exercises adopted WordNet as theHence, it is necessary to address the issues of
reference sense inventory, which is often too finesense granularity, and the lack of both training and
grained. As an indication of this, inter-annotatotest data. To this end, a recent large-scale anno-
agreement (ITA) reported for manual sense-taggingtion effort called the OntoNotes project (Hovy et
on these SENSEVAL English all-words datasets ial., 2006) was started. Building on the annotations
typically in the mid-70s. To address this issue, &om the Wall Street Journal (WSJ) portion of the
coarse-grained English all-words task (Navigli et al.Penn Treebank (Marcus et al., 1993), the project
2007) was conducted during SemEval-2007. Thiadded several new layers of semantic annotations,
task used a coarse-grained version of WordNet aralich as coreference information, word senses, etc.
reported an ITA of around 90%. We note that then its first release (LDC2007T21) through the Lin-
best performing system (Chan et al., 2007b) of thiguistic Data Consortium (LDC), the project man-
task achieved a relatively high accuracy of 82.5%ually sense-tagged more than 40,000 examples be-
highlighting the importance of having an appropridonging to hundreds of noun and verb types with an
ate level of sense granularity. ITA of 90%, based on a coarse-grained sense inven-
Another issue faced by current WSD systems iry, where each word has an average of only 3.2
the lack of training data. We note that the top persenses. Thus, besides providing WSD examples that
forming systems mentioned in the previous parawvere sense-tagged with a high ITA, the project also
graphs are all based on supervised learning. Witlddressed the previously discussed issues of a lack
this approach, however, one would need to obtaiof training and test data.
a corpus where each ambiguous word occurrence isln this paper, we use the sense-tagged data pro-
manually annotated with the correct sense, to servéded by the OntoNotes project to investigate the
as training data. Since it is time consuming to peraccuracy achievable by current WSD systems when
form sense annotation of word occurrences, only adopting a coarse-grained sense inventory. Through
handful of sense-tagged corpora are publicly avaibur experiments, we then highlight that domain
able. Among the existing sense-tagged corpora, tlaelaptation for WSD is an important issue as it sub-
SEMCOR corpus (Miller et al., 1994) is one of the stantially affects the performance of a state-of-the-
most widely used. In 8MCOR, content words have art WSD system which is trained ore®@CoR but
been manually tagged with WordNet senses. Cuevaluated on sense-tagged examples in OntoNotes.
rent supervised WSD systems (which include allo address this issue, we then show that by com-
the top-performing systems in the English all-word®ining a domain adaptation technique using feature
task) usually rely on this relatively small manuallyaugmentation with active learning, one only needs
annotated corpus for training examples, and this has annotate a small amount of in-domain examples
inevitably affected the accuracy and scalability ofo obtain a substantial improvement in the accuracy
current WSD systems. of the WSD system which is previously trained on
Related to the problem of a lack of training dateout-of-domain examples.
for WSD, there is also a lack déstdata. Having The contributions of this paper are as follows.
a large amount of test data for evaluation is imporTo our knowledge, this is the first large-scale WSD
tant to ensure the robustness and scalability of WS8valuation conducted that involves hundreds of word
systems. Due to the expensive process of manugpes and tens of thousands of sense-tagged exam-
sense-tagging, the SENSEVAL English all-wordsples, and that is based on a coarse-grained sense in-
task evaluations were conducted on relatively smallentory. The present study also highlights the practi-
sets of evaluation data. For instance, the evaluatiaal significance of domain adaptation in word sense
data of SENSEVAL-2 and SENSEVAL-3 Englishdisambiguation in the context of a large-scale empir-
all-words task consists of 2,473 and 2,041 test exantcal evaluation, and proposes an effective method to
ples respectively. In SemEval-2007, the fine-grainedddress the domain adaptation problem.
English all-words task consists of only 465 test ex- In the next section, we give a brief description of

1003



our WSD system. In Section 3, we describe exper-| Section|  No. of No. of word tokens
iments where we conduct both training and evalu- word types| Individual | Cumulative
ation using data from OntoNotes. In Section 4, we 02 248 425 425
investigate the WSD performance when we train our 82 17:6 ;g; ggi
system on examples that are gathered from a differ- 05 587 625 1546
ent domain as compared to the OntoNotes evalua15g 294 446 1992
tion data. In Section 5, we perform domain adapta- [ g7 270 549 2541
tion experiments using a recently introduced feature| 08 177 301 2842
augmentation technique. In Section 6, we investi- | 09 308 677 3519
gate the use of active learning to reduce the annota{ 10 648 3048 6567
tion effort required to adapt our WSD system to the | 11 724 4071 10638
domain of the OntoNotes data, before concluding in ig ;ig 3233 iggi‘ll
Section 7. 14 710 3900 23411
15 748 4768 28179
2 TheWSD System 16 306 576 28755
For the experiments reported in this paper, we fol- | 17 219 398 29153
low the supervised learning approach of (Lee and 18 266 566 29719
Ng, 2002), by training an individual classifier for ;g gég 222 286132?1
each_word using the knowledge sources of local cpl— 51 562 770 31114
locations, parts-of-speech (POS), and surroundmg| >3 BT 3755 | - |

words.
For local collocations, we use 11 featuresTable 1: Size of the sense-tagged data in the various WSJ

Co1,-1,C11, C g9, Ca2, C o1, C_11, C12, sections.

C_3-1,C_21,C_12,andC 3, whereC; ; refers to

the ordered sequence of tokens in the local contedhez, 2005). In these tasks, the practice is to use
of an ambiguous word. Offsetsi andj denote the jocyments from WSJ sections 02-21 as training data
starting and ending position (relativew) of the se- 5 \wsJ section 23 as test data. Hence for our ex-
guence, where a negative (positive) offset refers to;?eriments reported in this paper, we follow this con-
token to its left (right). For parts-of-speech, we Usgention and use the annotated instances from WSJ
7 features:P_3, Py, P_1, Po, P1, P5, P53, Where  qacigns 02-21 as our training data, and instances in
Py is the POS ofv, and P_; (F) is the POS of the \y/s3 section 23 as our test data.

ith token to the left (right) ofv. For surrounding A5 mentioned in Section 1, the OntoNotes data
words, we consider all unigrams (single words) irbrovided WSD examples for a large number of
the_surrounding context @f. These Words_ canbein ouns and verbs, which are sense-tagged accord-
a different sentence from. For our experiments re- jnq 14 a coarse-grained sense inventory. In Table 1,
ported in this paper, we use support vector machinggs show the amount of sense-tagged data available
(SVM) as our learning algorithm, which was showry. oy ontoNotes, across the various WSJ sections.
to achieve good WSD performance in (Lee and NGy, the taple. for each WSJ section, we list the num-
2002; Chan etal., 2007b). ber of word types, the number of sense-tagged ex-

3 Training and Evaluating on OntoNotes amples, and the cumulative count on the number of

. We removed erroneous examples which were simply
The annotated data of OntoNotes is drawn from th@gged with ‘XXX’ as sense-tag, or tagged with senses thet we

Wall Street Journal (WSJ) portion of the Penn Treensot found in the sense-inventory provided. Also, since wi wi
bank corpus, divided into sections 00-24. Theske comparing against training ore®@CoR later (which was

. . . gged using WordNet senses), we removed examples tagged
WSJ documents have been widely used in Vanoqlglth OntoNotes senses which were not mapped to WordNet

NLP tasks such as syntactic parsing (Collins, 199Qknses. on the whole, about 7% of the original OntoNotes ex-
and semantic role labeling (SRL) (Carreras and Maamples were removed as a result.
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sense-tagged examples. From the table, we see tkeay domain of interest. Hence, in this section, we in-
sections 02-21, which will be used as training dataestigate the performance of our WSD system when
in our experiments, contain a total of slightly overit is trained on out-of-domain data.

31,000 sense-tagged examples. In the English all-words task of the previous SEN-
Using examples from sections 02-21 as traininEVAL evaluations (SENSEVAL-2, SENSEVAL-
data, we trained our WSD system and evaluated éh SemEval-2007), the best performing English
the examples from section 23. In our experimentsjll-words task systems with the highest WSD ac-

if a word type in section 23 has no training exameuracy were trained on B1CoRr (Mihalcea and
ples from sections 02-21, we randomly select aioldovan, 2001; Decadt et al., 2004; Chan et al.,
OntoNotes sense as the answer. Using these e3007b). Hence, we similarly trained our WSD sys-
perimental settings, our WSD system achieved aem on $MCoR and evaluated on section 23 of the
accuracy of 89.1%. We note that this accuracy i©ntoNotes corpus. For those word types in section
much higher than the 60%—70% accuracies achievéd which do not have training examples froraNg
by state-of-the-art English all-words WSD system&OR, we randomly chose an OntoNotes sense as
which are trained using the fine-grained sense invethie answer. In training one31CoR, we have also
tory of WordNet. Hence, this highlights the impor-ensured that there is a domain difference between
tance of having an appropriate level of sense grangur training and test data. This is because while
larity. the OntoNotes data was gathered from WSJ, which
Besides training on the entire set of examplegontains mainly business related news, tES0OR
from sections 02-21, we also investigated the pefOrpus is the sense-tagged portion of the Brown Cor-
formance achievable from training on various subPUs (BC), which is a mixture of several genres such
sections of the data and show these results as “ONs scientific texts, fictions, etc.
in Figure 1. From the figure, we see that WSD accu- Evaluating on the section 23 test data, our WSD
racy increases as we add more training examples. System achieved only 76.2% accuracy. Compared to
The fact that current state-of-the-art WSD systhe 89.1% accuracy achievable when we had trained
tems are able to achieve a high level of perforon examples from sections 02-21, this is a substan-
mance is important, as this means that WSD systerfiglly lower and disappointing drop of performance
will potentially be more usable for inclusion in end-and motivates the need for domain adaptation.
applications. For instance, the high level of perfor- The need for domain adaptation is a general and
mance by syntactic parsers allows it to be used as §RPortant issue for many NLP tasks (Daume Il and
enabling technology in various NLP tasks. Here, wdarcu, 2006). For instance, SRL systems are usu-
note that the 89.1% WSD accuracy we obtained @lly trained and evaluated on data drawn from the
comparable to state-of-the-art syntactic parsing a¥¥SJ- In the CoNLL-2005 shared task on SRL (Car-
curacies, such as the 91.0% performance by the sf&'as and Marquez, 2005), however, a task of train-
tistical parser of Charniak and Johnson (2005).  ing and evaluating systems on different domains was
included. For that task, systems that were trained on
4 Building WSD Systemswith the PropBank corpus (Palmer et al., 2005) (which
Out-of-Domain Data was gathered from the WSJ), suffered a 10% drop
in accuracy when evaluated on test data drawn from
Although our WSD system had achieved a higlBC, as compared to the performance achievable
accuracy of 89.1%, this was achieved by trainwhen evaluated on data drawn from WSJ. More re-
ing on a large amount (about 31,000) of manuallgently, CONLL-2007 included a shared task on de-
sense annotated examples from sections 02-21 of thendency parsing (Nivre et al., 2007). In this task,
OntoNotes data. Further, all these training data argystems that were trained on Penn Treebank (drawn
test data are gathered from the same domain of WSdom WSJ), but evaluated on data drawn from a
In reality, however, since manual sense annotation d@fferent domain (such as chemical abstracts and
time consuming, it is not feasible to collect such garent-child dialogues) showed a similar drop in per-
large amount of manually sense-tagged data for efermance. For research involving training and eval-
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WSD Accuracies on Section 23
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Figure 1. WSD accuracies evaluated on section 23, usEigC®R and different OntoNotes sections as training
data. ON: only OntoNotes as training data.-SON: SEMCOR and OntoNotes as training data, SON Augment:
Combining $MCoOR and OntoNotes via the Augment domain adaptation technique.

uating WSD systems on data drawn from differenb.1 The AUGMENT technique for Domain
domains, several prior research efforts (Escudero et  Adaptation

al., 2000; Martinez and Agirre, 2000) observed gpq o sumenT technique introduced by Daume il
similar drop in performan_ce of about 10% when %2007) is a simple yet very effective approach to per-
WSD system that was trained on the BC part of thg, . ing gomain adaptation. This technique is appli-
DSO corpus was evaluated on the WSJ part of the, e \yhen one has access to training data from the
corpus, and vice versa. source domain and a small amount of training data

In the rest of this paper, we perform domain adapfrom the target domain.
tation experiments for WSD, focusing on domain The technique essentially augments the feature
adaptation methods that use in-domain annotateghace of an instance. Assumiags an instance and
data. In particular, we use a feature augmentatiqes original feature vector i9(z), the augmented
technique recently introduced by Daume IIl (2007)feature vector for instance is
and active learning (Lewis and Gale, 1994) to per-
form domain adaptation of WSD systems. & < ®(x), ®(x),0 > ifxe D,

(@) < ®(x),0,d(x) > ifxeD,’

5 Combining In-Domain and

Out-of-Domain Data for Training where 0 is a zero vector of siz¢d(x)|, Ds and
D, are the sets of instances from the source and

In this section, we will first introduce thelGMENT  target domains respectively. We see that the tech-
technique of Daume 11l (2007), before showing thenique essentially treats the first part of the aug-
performance of our WSD system with and withoutnmented feature space as holding general features that
using this technique. are not meant to be differentiated between different
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domains. Then, different parts of the augmented fe@ — the set of 8MCoR training examples

ture space are reserved for holding source domai < the set of OntoNotes sections 02-21 examples
specific, or target domain specific features. DeSpilv%ﬁn:;mitis

its relative simplicity, this AGMENT technique has pmi:% ~o

been shown to outperform other domain adaptation T «— WSD system trained on Pand Dr using AUGMENT
techniques on various tasks such as named entigghnique

recognition, part-of-speech tagging, etc. for eachd € D4 do
9 P P 9gIng 5« word sense prediction fatusingl’

p < confidence of predictiod
if p < pmin then
As mentioned in Section 4, training our WSD sys- Pmin < P, Omin < d
tem on EMCOR examples gave a relatively low ac- end
curacy of 76.2%, as compared to the 89.1% accuracy eDZdH D — {dmin}
obtained from training on the OntoNotes section 02-  provide correct sensgfor dynin and add ghiy, to Dr-
21 examples. Assuming we have access to some iknd
domain training data, then a simple method to poten-
tially obtain better accuracies is to train on both the
out-of-domain and in-domain examples. To investi-
gate this, we combined thee®CoRr examples with  that we have access to a large amount of in-domain
various amounts of OntoNotes examples to train ouraining examples. Although we observe that in
WSD system and show the resulting “8ON” ac-  this scenario, “ON” performs better than “SON”,
curacies obtained in Figure 1. We also performetSC+ON Augment” continues to perform better
another set of experiments, where instead of simpihan “ON” (where the improvement is statistically
combining the 8MCoOR and OntoNotes examples, significant) till the result for sections 02-09. Beyond
we applied the AGMENT technique when combin- that, as we add more OntoNotes examples, signif-
ing these examples, treating@COR examples as icance testing reveals that the “$SON Augment”
out-of-domain (source domain) data and OntoNotesgnd “ON” strategies give comparable performance.
examples as in-domain (target domain) data. Wehis means that the “SEON Augment” strategy,
similarly show the resulting accuracies as “8ON  besides giving good performance when one has few
Augment” in Figure 1. in-domain examples, does continue to perform well
Comparing the “SGON” and “SC+ON Aug- even when one has a large number of in-domain ex-
ment” accuracies in Figure 1, we see that thecA amples.
MENT techniquealways helps to improve the ac-
curacy of our WSD system. Further, notice fromg Active L earning with AUGMENT
the first few sets of results in the figure that when  Technique
we have access to limited in-domain training exam-
ples from OntoNotes, incorporating additional out-So far in this paper, we have seen that when we have
of-domain training data froms&vCoR (either using access to some in-domain examples, a good strategy
the strategies “SEON” or “SC+ON Augment”) is to combine the out-of-domain and in-domain ex-
achieves better accuracies than “ON”. Significancamples via the AGMENT technique. This suggests
tests using one-tailed paired t-test reveal that thetlgat when one wishes to apply a WSD system to a
accuracy improvements are statistically significamiew domain of interest, it is worth the effort to an-
at the level of significance 0.01 (all significance testaotate a small number of examples gathered from
in the rest of this paper use the same level of signithe new domain. However, instead of randomly se-
icance 0.01). These results validate the contributidecting in-domain examples to annotate, we could
of the SemCor examples. This trend continues tillse active learning (Lewis and Gale, 1994) to help
the result for sections 02-06. select in-domain examples to annotate. By doing
The right half of Figure 1 shows the accuracyso, we could minimize the manual annotation effort
trend of the various strategies, in the unlikely eventeeded.

5.2 Experimental Results

Figure 2: The active learning algorithm.
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WSD Accuracies on Section 23
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Figure 3: Results of applying active learning with the @MENT technique on different number of word types. Each
curve represents the adaptation process of applying detiveing on a certain number of most frequently occurring
word types.

In WSD, several prior research efforts have sucAUGMENT technique during each iteration of active
cessfully used active learning to reduce the annotéearning to combine theEBvCoR examples and the
tion effort required (Zhu and Hovy, 2007; Chan andselected adaptation examples.

Ng, 2007; Chen et al., 2006; Fujii et al., 1998). With As shown in Figure 2, we train an initial WSD
the exception of (Chan and Ng, 2007) which triecsystem using only the séds of SEMCOR exam-

to adapt a WSD system trained on the BC part gfles. We then apply our WSD system on theBgt

the DSO corpus to the WSJ part of the DSO corpusf OntoNotes adaptation examples. The example in
the other researchers simply applied active learning 4 which is predicted with the lowest confidence
to reduce the annotation effort required and did nakill be removed fromD 4 and added to the séd;

deal with the issue of adapting a WSD system to af in-domain examples that have been selected via
new domain. Also, these prior research efforts onlyctive learning thus far. We then use the @VENT
experimented with a few word types. In contrast, weechnique to combine the set of example®igand
perform active learning experiments on the hundreds to train a new WSD system, which is then ap-
of word types in the OntoNotes data, with the aim oplied again on the seb 4 of remaining adaptation
adapting our WSD system trained oENBCOR to  examples, and this active learning process continues
the WSJ domain represented by the OntoNotes datmtil we have used up all the adaptation examples.

For our active learning experiments, we use ihblote that because we are using OntoNotes sections

uncertainty samplingstrategy (Lewis and Gale, 02-21 (which have already been sense-tagged be-
1994), as shown in Figure 2. For our experiment§9reha”d) as our adaptation data, the annotation of
the SEMCOR examples will be our initial set of the selected example during each active learning it-
training examples, while the OntoNotes example@ration is simply simulated by referring to its tagged
from sections 02-21 will be used as our pool of€NSE.

adaptation examples, from which we will select ex- i

amples to annotate via active learning. Also, sincg'1 Experimental Results

we have found that the UGMENT technique is use- As mentioned earlier, we use the examples in
ful in increasing WSD accuracy, we will apply theOntoNotes sections 02-21 as our adaptation exam-

1008



ples during active learning. Hence, we perforn¥ Conclusion

active learning experiments aal the word types i .
that have sense-tagged examples from OntoNotUsSlng the WSD examples made available through

sections 02-21, and show the evaluation results onntONOteS' which are sense-tagged according to a

. i . coarse-grained sense inventory, we show that our
OntoNotes section 23 as the topmost “all” curve in . . .
. . L WSD system is able to achieve a high accuracy
Figure 3. Since our aim is to reduce the human an- .
. : . . of 89.1% when we train and evaluate on these ex-
notation effort required in adapting a WSD system

to a new domain, we may not want to perform activ amples. However, when we apply a WSD system

. . ; hat is trained on SMCOR, we suffer a substan-
learning on all the word types in practice. Instead, . o
. . . - fial drop in accuracy, highlighting the need to per-
we can maximize the benefits by performing actlv(i

. . orm domain adaptation. We show that by com-
learning only on the more frequently occurring word . . . : .
o . ining the AuGMENT domain adaptation technique
types. Hence, in Figure 3, we also show via var-

with active learning, we are able to effectively re-

ious curves the results of applying active Iearnin% . .
. . duce the amount of annotation effort required for do-
only to various sets of word types, according to their

main adaptation.
frequency, or number of sense-tagged examples in
OntoNotes sections 02-21. Note that the various ac-

curacy curves in Figure 3 are plotted in terms oReferences
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