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Abstract order syntactic relations (those that can be directly
. . observed from the input) and higher-order syntac-
This paper presents a graph-theoreticmodel of ¢ relations (those that require some generalization

the acquisition of lexical syntactic representa- from what is directly observable)
tions. The representations the model learns '

are non-categorical or graded. We propose a Redington et al. (1998) give an influential account
new evaluation methodology of syntactic ac- of the acquisition of lexical syntactic representations
guisition in the framework of exemplar theory. in which a standard syntactic category like verb or

When applied to the CHILDES corpus, the  noun is assigned to each word. Our third contribu-
evaluation shows that themed%'S graﬂed SYN-  tion is to show that, in the context of acquisition,
tactic representations perform better than pre- ooy representations are superior to standard cat-
viously proposed categorical representations. . . .
egorical representations supporting judgments of
_ local syntactic coherence. A graded representation
1 Introduction formalism is one that, for any two words, can rep-

In recent years, exemplar theory has had great eg((gtsent Z.tr,:'rdb\’\f[ord wr;ﬁset syntacgc pl\r/loper_tles arde
planatory success in phonetics. Exemplar theog ermediate between the two words (Manning an

posits that linguistic production and perception ar chitze, 1999).

not mediated via abstract categories, but that insteadClearly exemplar theory is not the only frame-

each production and perception of a linguistic uni¥vork in which lexical acquisition has been explored.

is stored and retained. Linguistic inference then diGleitman (1990) for example argues for syntactic
rectly operates on these storemplars In this pa- bootstrapping to infer lexical semantics, work not at
per, we propose a new approach to lexical syntactfédds with our own (see discussion on the role of se-
acquisition in the framework of exemplar theory. ~Mantics below). Our argument for the importance

Our approach uses an evaluation measure thak distributional evidence does not call into question
is different from previous work. Lexical syntac- the large body of work in child language acquisition
tic acquisition is most often evaluated with respecihat demonstrates that “part of the capacity to learn
to standard syntactic categories like verb and noufgnguages must be ‘innate’ * (Gleitman and New-
Our first contribution in this paper is that we instead?0't, 1995). Tabula rasa learning is not possible. Our
evaluate learned representations in the context of@al is not to show that language acquisition pro-
syntactic task. This task is the determination of afe€€ds with a minimum of inductive bias. Rather, we
aspect of grammaticality that we cédcal syntactic attempt to formalize one aspect of language acquisi-
coherence tion, the use of distributional information.

Our second contribution is araph-theoretic The paper is organized as follows. Section 2 moti-
model of the acquisition of lexical syntactic rep-vates the exemplar-theoretic approach by reviewing
resentationsthat is more rigorous than previousits success in phonetics. Section 3 defines local syn-
heuristic proposals. The graph-theoretic moddhctic coherence, which is the basis for a new evalu-
can learn both categorical and non-categorical (@tion methodology for the acquisition of lexical rep-
graded) representations. The model is also a unifiedsentations. Section 4 develops the graph-theoretic
framework for syntagmatic and paradigmatic relamodel. Section 5 compares graded and categorical
tions (as will be discussed below), and for lowerrepresentations for the task of inferring local syn-
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tactic coherence. Section 6 presents our evaluatioany disambiguation that would occur either as part
Sections 7 and 8 discuss related and future work, amd exemplar-theoretic perception or in further down-

present our conclusions. stream processing. Second, it must support similar-
ity computations. Accordingly, we first motivate the
2 Exemplar theory representation we use and then introduce a similarity

.measure on these representations.

The general idea of research into exemplars in . :
. o Representation. There are two main sourcesf
speech production and perception is that encoun: . i .
. directly observable information about the syntactic
tered items (segments, words, sentences etc.) are

stored in great detail in memory along with richproperties of words: semantic cues (e.g., things are
N L . . often referred to with nouns) and the neighbors of
linguistic and extra-linguistic context information.

) . a word in sentences that it is used in. In this pa-
These exemplars are organized into clouds of mem-

. L . er, we only consider the second source of informa-
ory traces with similar traces lying close to eaclh.

other while dissimilar traces are more distant. A'Ion for acquisition, lexical neighbofS.We further

imit ourselves to the immediate left and right lexical
number of such models have had great success in. : . .
neighbors (see discussion in Section 7).

accounting for production and perception phenom- ) . i .
g P P P P When using lexical neighbors as the basis of rep-

ena in phonetics. E.g., Johnson (1997) offers an . . .
. . resentation, we have to make a basic choice as to
exemplar model which challenges the notion that . :
hether we look at left and right neighbors sepa-

speech is perceived through a process of normal’

. e . rately or whether we only look at the “correlated”
ization whereby a speaker-specific representation IS .

mapped or normalized into a speaker-neutral Catn_elghborhood information of left and right neigh-
%ors jointly. Our approach is based on the first alter-

gorical abstraction. Johnson’s model successfullx five: w cate the or i1a of left and riaht
treats aspects of vowel perception, sex identificaro e WE separale In€ processing ot lett a 9

. - . neighbors. We do this for two reasons. First, gener-
tion, and speaker variability. Crucially, no normal-alization improves and model complexity decreases
ization of percepts into categorical representatio P piexity

takes place. The correct identification of phonem i left-neighbor information and right-neighbor in-

e : :
and words in his model is a function of direct Com_f%rmatlon are looked at separately. E.g., the right

parison to richly detailed exemplars stored in memr_lelghbors ofto, might and not are similar because

. .all three words can be followed by base verbs like
ory. Other examples of exemplar-theoretic phoneti nce to dance miaht dance (miaht) not dan
accounts include (Goldinger, 1997), (PierrehumberEatiﬁ .OI ﬂa ce hbg ance ( d'?'f ) ? ance
2001), and our own work (Schiitze et al., 2007). Ex- US elrde nelg Iortshare v;ary ! .Tre.: . best d
emplar theory’s success in phonetics motivates us {0 econd, exemplar-theoretic simiiarity Is best de-
investigate its use as a model for local syntactic ph ined at the smallest possible scale in order to allow

nomena. optimal matching between parts of the stimulus and

parts of memory. In phonetics, we use a time scale
3 Local syntactic coherence of 10s of milliseconds or even less. Conceivably,

one could also use segments (e.g., consonants and
In the context sequence model for exemplarvowels) as the smallest unit; however, this would
theoretic phonetics (Wade et al., 2008), we represeptesume a segmented signal. And segmentation is
speech using amplitude envelopes derived from thgart of the perception task we want to explain in the
acoustic signal and then compute similarity as theirst place.
integral over the correlation of the two acoustic sig- Separating left and right neighbors — which
nals. amounts to looking at left and right local contexts

For the syntactic level, we need a representaf each word separately — is the smallest scale we

tion that has two key properties of the represenean operate at when doing syntactic matching. We
tation we use in phonetics in order to support a
e_xemplar-theorgtic accognt. First, the repres_ent:%]-orphology See Christiansen et al. (2004).
tion must be directly derivable from the perceived 2pgycholinguistic evidence for the importance of neighbor
input. In particular, it cannot rely on the results ofinformation for learning categories includes (Mintz, 2R02

1A comprehensive account of acquisition must also include
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choose this small scale for the same reasons as welMe then call a sequence of. half-words

choose a small scale in phonetics: to ensure maxj., ..., g, locally coherentif there is a sequence
mum flexibility when matching parts of the stimulushy, ..., h, in memory withA(< g1,...,9, >,<
with exemplars in memory. Using words, bigrams oty ..., h, >) < 6 whered is a parameter.

larger units would reduce the flexibility in matching Finally, we define a sentence to tecally n-
and require a larger amount of experience (or traineoherentif all of its subsequences of length are
ing data) to learn a particular generalization. locally coherent.

We refer to the representations of left and right The graph-theoretic model that is introduced in
contexts of a given word abalf-words In other the next section will be evaluated with respect to
words, we split a word into two entities, a left half-how well it captures local syntactic coherence. This
word that characterizes its behavior to the left andnables us to evaluate the model with respect to a
a right half-word that characterizes its behavior taask as opposed to its ability to reproduce a particu-
the right. Thus left-context and right-context com{ar linguistic representation of syntactic categofes.
ponents of the representation of a given focus wor@bviously, the notion of local syntactic coherence
are defined, where a left (right) half-word consistnly captures some aspects of syntax — e.g., it does
of a probability distribution over all words that oc- not capture long-distance dependencies. However,
cur to the left (right) of the focus word and theit is a plausible component of syntactic competence
dimensionality of the vector for each word is de-and a plausible intermediate step in the acquisition
pendent on the number of distinct neighbors (lefof syntax.
and right). For example, having experiencedke
doll twice anddrop doll once, then the left con- 4 Graph-theoretic model

text distribution, or left half-word ofloll, doll;, is _ . _ _
P(take) = 2/3, P(drop) = 1/3. By extension, the We briefly review the structuralist notions of syntag-

phrasetake the dollis represented as the following Matic and paradigmatic relationships that have been

six half-words: take, take., the, the., doll,, and frequently used in prior work in NLP (e.g., (Church

doll,.. et al., 1994)). De Saussure defined a syntagmatic
Distance measureThe basic intuition behind lo- "€lationship between two words as their contigu-

cal syntactic coherence is that an important comp@US occurrence in a sentence and a paradigmatic re-
nent of syntactic wellformedness — and a Compcjgitlonshlp as mutual substitutability (de Saussure,

nent that is of particular importance in acquisitiont962) (although he used the temapport associ-

_ is whether a similar sequence has already bedil instead ofparadigmatig. E.g.,brownanddog
stored as grammatical in memory. The same Wagand in a syntagmatic relationship with each other
that a phonetic signal that is well-formed in a partici the phrasérown dog brownandblackstand in a
ular language has many similar exemplars in menparadigmatic rela_tl_onshlp with each other_ with re-
ory, a syntactic sequence should also be licensed Bgect to the position betwedhe and dog in the

similar, previously perceived sequences in memoryrasethe X dog De Saussure’s conceptualization
To operationalize this notion, we need to be able tgf syntactic relationships captures the fact that both

compute the similarity or distance between an inddmissibleneighborsand admissiblesubstitutesin
put stimulus and exemplars in memory. We do thilanguage are an important part of the characteriza-

by first defining a distance measure for sequences BpN Of the syntactic properties of aword.
fixed length. We formalize the two relations aslistribu-

The distanceA between two sequences of half-tions over words where we assume a vocabulary
words < gi,...,gn > and< hy,... hy, >is de- 1wi;---,wy}andV isthe number of words in the

fined to be the sum of the distances of their halfvocabulary.
words: We denote thédeft syntagmatic distributiof w;

— n . . —_—
A(.<g1, o _g”>’<h1’ sy hn>) = ?:_1_A(g“ hi) . SFreudenthal et al. (2004) have much the same motivation
This definition presupposes a definition of the disy, introducing an evaluation measure of syntactic acqosit

tance of two half-words which will be given below. based on chunking.
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Piprm Pi s,rm

by pi s1.m Wherei is the vocabulary index of;, s
stands forsyntagmatic! for left andm is the order

of the distribution as discussed below. Intuitively,
i s,1,m(wj) is the probability that wordv; occurs to

the left of w;. Similarly, for theleft paradigmatic
distribution of wj, p; ,, 1. m(w;) is the probability that

w; can be substituted fap; without changing local
syntactic coherence as far as the context to the left
is concerned. Note that we distinguish between left
and right paradigmatic distributions. A wortd; can Figure 1: The distribution of typical right neighbors (the
be a perfect substitute fas; as far as the context to "ght syntagmatic distributiop; ., ») is computed from
the left is concerned, but a very unlikely substitute al'® distribution of typical “right substitutes™ (the right
far as the context to the right is concerned. E.g., iHarad|gmat|c distributioy; . r.m).
the phras&he loves her jglithe wordhimis a good

left-context substitute foher, but a terrible right- Diplm = JTNp@s,l,m,l (2

co\rll\';ext su_ﬁstltute folne;.] ) N , Pisram = J'Npiprm 3)
e will now show how e syntag-

y g Piprm = JNpi,s,r,mfl (4)

matic/paradigmatic (henceforth:  syn/para) dis-

tributions are defined iteratively, based on the Bgsic matrix arithmetic shows that .1 is sim-
bigram distributionp,,.,, and grounded by defining ply ;. (.|w;) andp; s r.1 i pright(-|w)-
Pip,t,1 @Ndp;pr1. For higher orders, the principle underlying Eq.s
puww(wiw;) is the probability that the bigram 1_4 js that when moving from left to right, we use
wyw; oceurs, that is, that; andw; occur next o, (thatis,J” N), the conditional distribution that
each other (and in that order). We define thec V' characterizes right neighbors; when moving from
joint probability matrix.J by Ji; = puw(wiw;). right to left, we usepies; (that is, JN), the condi-
Denote byN the diagonal” x V' matrix that con- tjonal distribution that characterizes left neighbors.
tains inV;; the reciprocal op,, (w;) wherep,, isthe  Thisis graphically shown in Fig. 1.

marginal distribution 0P, As illustrated by Fig. 1, the underlying graph for
1% v 1 DPisrm andp; ., »m is a weighted bipartite directed
> Puw(wiw;) = puw(wjw;) = py(w;) = o graph that connects the vocabulary on the left with
j=1 j=1 “  the vocabulary on the right. A directed edge from

The conditional probabilitypjesr Of the fol- Wi ON the left tow; on the right is weighted with
lowing word and the conditional probability Puww(witw;)/pw(wi). A directed edge fromu; on
pright Of the preceding word can be computedh_e right tow; on the left (not shown) is weighted
by multiplying (the transpose of)J and N: with pww(wz‘wj)/Pw(_wj)- _
Dreft(wilw;) = pww(wiw;)/pw(w;) = (JN);;and ~ EGs 1-4 define four Markov chains:

) — T )
pright(wi|wj) = (JTN)Z‘J'. Pislm = (JgJ N)pz,s,l,mfl (5)
The “grounding” paradigmatic distributions of or- Pip.l;m = (JTNJN)Pz‘,p,l,m—l (6)
der 1 are defined as follows. Pisrom = (J NiN)pz‘,s,r,m—l @)
. Pip,rm = (‘]NJ N)pi,p,r,mfl (8)
4 N — o N )0 ifw #w Itis easy to see that, is a stationary distribution
Pip1(wj) = pipri(ws) = 1 if w — w, o ’
T w; = w; for EQ. 1-4. Writing# for p,,, we have:
In other words, each word has only one perfect left v (wsw;)
/ right substitute and that perfect substitute is itself. (JN7); = Z Mpw(wj) = pu(w;) =
We define the syn/para distributions of higher order j=1 Pu(w;)
recursively: v W
(ITNZy = 3 Peel) ) — () =
Pisim = JNpi,p,l,m (1) j=1 pw(wj)
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Hencep,, is a solution for Eq.s (5)—(8).
The series converge WNJTN and J'NJN

are ergodic, i.e., if the chain is aperiodic and irre- £ °
ducible (Kemeny and Snell, 1976). Observe that 3 =
for many simple probabilistic context-free gram- § 0 ‘@,\\
mars (PCFGs) the series in Eq. 1-4 wilbt con- g .
verge. For simple PCFGs, the alternation between % S
syntagmatic and paradigmatic distributions is peri- < 2 - \g
odic. E.g., if inflected verb forms only occur after 8 |
nouns and nouns only before inflected verb forms, & © "y
then the right syntagmatic distributions of nouns will 3 3 - "
. . . 2} o
have non-zero activation only for verbs and the right = o ¢ sepranratel ®o g 0
paradigmatic distributions of nouns will have non- ° s 4 & 8 10 12 1
zero activation only for nouns, thus preventing con- iteration m
vergencée

The key difference between a simple PCFG anHigure 2: The distance betweariephantand giraffe
natural language is ambiguity and noise. Becaud@easured by the Jensen-Shannon divergence) is accu-
of ambiguity and noise/NJZN andJTNJN are rately represented after a_numberpf iterations. The words
likely to be ergodic — there is always a small non€!éPhan@andtheretain their large distance.
zero probability that two words can occur next to
each other. Ambiguity and noise have the same ef- Example 1. For the following matrix./

fect as teleportation for PageRank (Brin and Page,
w1 wo w3

1998) in the sense that we can jump from each word w;  82/1002 77/1002  112/100

to each other word with non-zero probability. wy 90/1002 18/1002  107/100
Assuming that the Markov chains are ergodic, all wy  99/1002  120/1002 297/100

four converge tQu,: pip.r.oc = Piploco = Pisrco = we getpr,,; = (0.31,0.28,0.41) by comput-

Pisloo = Puw, fOrl <i< V. ing the product/” Np; 1. E.Q., p1s,1(w2) =

Thus, in this formalization, given enough itera-p, . (wiws)/py(wy) - 1.0 = 77/(82 + 77 + 112) ~
tions, syntagmatic and paradigmatic distributions af 28,
words eventually all become identical with the prior By iterationm = 4, the serie; s ».m (EQ. (7))
distributionp,,. This is surprising because linguisti- andp; , m (Eg. (8)) have converged to:
cally and computationally syntagmatic and paradigp, . ..., = p; , . = (0.2704,0.2145, 0.5149)
matic relations are fundamentally different. for all three wordsw;. One can easily verify that
However, on closer inspection, we observe thahis iSp.,. E.Q.,p,(w1) = (82 4+ 90 4 99)/1002 =
limiting the number of iterations is often beneficial(82 + 77 + 112)/1002 ~ 0.27045.
when computing solutions to a problem iteratively. Example 2. We computed 15 iterations of
E.g., the expectation-maximization algorithm is of-syn/para distributions for the corpusthe giraffe
ten stopped early because results close to convégn. An elephant fell. The man ran. Anauntfell. The
gence are worse than results obtained after a smafian slept. The aunt slegfig. 2 shows that the dis-
number of iterations. From the point of view oftance between the right syntagmatic distributions of
modeling human language acquisition, early stopelephantandgiraffe is large form = 1. The reason
ping is perhaps also more realistic since humans aigthat the two words have no right neighbors in com-
unlikely to perform a large number of iterations.  mon. The right neighbors of the two words agsa
andfell. Althoughran andfell have no left neighbors
"~ “However, non-ergodicity of/N does not imply non- in common, their left neighbors h.av_e a right _ne_igh-
ergodicity of JNJT N andJ” N.JN, so Eq. (5)~(8) can con- POr in common: the wordlept This indirect simi-
verge even for non-ergodigN. larity information is exploited to deduce by iteration
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15 that the two words are very similar with respect tdetweenw; andw, is 3 since they are joined in step
their right syntactic context. In contrast, no such in3 when clustef1, 2, 4} is created.
ference, even a very indirect one, is possible for the For both graded (graph-theoretic) and categorical
right contexts otlephantandthe Consequently, the (cluster-based) representations, we need to set the
distance between the two distributions remains higharametep that is the boundary between locally co-
and unchanged with higher iterations. herent and locally incoherent sentences. This pa-
In this case, the Markov chain is not ergodic andameter gives rise to a precision-recall tradeoff. A
the syntagmatic and paradigmatic series (Eq.s (5pmalld will impose strict requirements on which se-

(8)) do not converge tp,,. guences in memory match, resulting in false nega-
tive decisions for local grammaticality. A large
5 Experimental evaluation will incorrectly judge many locally incoherent se-

I f . h luati Ki guences to be grammatical.
Recall from Section 3 that our evaluation task is to We will pick the optimalé in both cases. For

discriminate sentences that exhibit local COherenC@ategorical representations, this amounts to select-
from ;hose that do no;;htrllfat sednt.er;wces are r(_aprﬁig the HAC dendrogram with optimal performance.
sented as sequences of half-words; that syntactic cop experiment below evaluates whether grammati-

herenpe ofa sentence_ IS _deflned as all subsequen<&3§ and ungrammatical sentences are well separated
of a given lengthn exhibiting local coherence; and by the proposed meastfte

that a subsequence is locally coherent if its distance Experiment on CHILDES. We used the well-

from a seque.n(':e.z in memory is Ies§ théan known CHILDES database (MacWhinney, 2000), a
These definitions can be applied to the grapl, g of conversations between young children and

model as follows. A left half-word is a left syntag- yheir playmates, siblings, and caretakers. In order to
matic (or paradigmatic) distribution and a right half'avoid mixing varieties of English (e.g., British En-

word is a right syntagmatic (or paradigmatic) distri-yjisiy s American English), we selected the largest

bution. We compute the distance of two half-wordshomogeneous subcorpus of CHILDES, the Manch-

either as the Jensen-Shannon (JS) divergence (Lifkser corpus. It contains roughly 350,000 sentences
1991) or ag1 — cos(«)). JS divergence is more ap- 54 1 5 million words. This is a conservative esti-

propriate for the c_omparison of pr_obability distribu-ma,[e of the amount of child-directed speech a child
tions. But the cosine is more efflcgnt when a sparsg g receive annually (Redington et al., 1998). Al
vector is compared to a dense vectale therefore g in the corpus (i.e., all capitalized words) were
employ the cosine for the compute-intensive eXpe“r'epIaced with a special wordfi.". A boundary

ments in Section 6. symbol “b_" was introduced to separate sentences.

The baseline representation is the categorical regy,o representation of the corpus is then a concate-

resentation proposed by Redington et al. (1998). fiion of all its sentences. The vocabulary consists
difficulty in replicating their experiments is that they ¢ 1, _ s601 words.

use hierarchical agglomerative clustering (HAC), construction of the evaluation set. We tested

which eventually agglomerates all words in a sing,e apjjity of the two models to distinguish locally
gle category. To circumvent the need for a stopggperent vs. incoherent sentences by selecting 100
ping criterion, we represent each word as the temyestedsentences from the corpus, which were
poral sequence of clusters it occurred in during agyo; ysed to train the model. We only selected unat-
glomeration and define the distance of two words gggteq sentences that were not a substring of a sen-
the agglomeration step in which the two words argyce in the training corpus since, presumably, any
joined in a cluster. E.g., given the agglomeration Segpgtring of a sentence in the training corpus is lo-

quenceq(1},{1,2},{1,2,4},{1,2,3,4} forwiand o4y coherent. A further constraint was that the
{4},{4},{1,2,4},{1,2,3,4} for wy, the distance
®This evaluation of “separation” is not directly an evaloati
5This is so because, when computing the cosine, we can igf classification performance, but more similar to an evidua
nore all dimensions where one of the two vectors has a zemf ranking using AUC or an evaluation of clustering using a
value. measure like purity.
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unattested sentence was not allowed to contain a
word that did not occur in the training corpus, the

o

rationale being that we want to address the prob- |

lem of local coherence for known words only since >

unknown words present special challenges. Finally, § © |

we ensured that each unattested sentence containedg ©

a word that occurred in only one sentence type in 3 © |

the training corpus. In early experiments, we found = N

that local grammatical inference for frequent words § © |

is easy as there is redundant evidence available that § < |

characterizes legal syntactic environments for fre- e

quent words. Since rare words are akey challengein | W
o

syntactic acquisition, we only selected sentences as
unattested sentences that contained at least one rare
word (where a rare word is defined as a word that

occurs once in the training set). : _ o .
100 tical t ted Eyure 3: Accuracy of discrimination between grammati-
ungrammatical seniences were generate | and ungrammatical sentences for graded and categor-

randomly selecting and concatenating words fromyg| representations.

the vocabulary. Ungrammatical sentences were

matched in length to unattested sentences, so that

both sets contained the same number of sentence{egorical syntactic representations in language ac-
of a given length. As with unattested sentences, ufiuisition, which is one of the goals of the paper. Dif-
grammatical sentences that were substrings of seficult sentences (those with rare words and greater
tences in the training corpus were eliminated. Alength) are overrepresented in the test set as the dis-
there are many more infrequent words than frequefimination of short sentences containing only fre-
words in the vocabulary, the construction ensurefuent words can easily be done by simplistic mod-
that, as with unattested sentences, infrequent wor@. Thus, a test set of “easy” sentences would not
were overrepresented in ungrammatical sentencesdistinguish good models from bad models.

To summarize, our setup consists of 348,463 Discrimination experiment. In order to train the
training sentences, 100 unattested grammatical segfaph model, the entries of matrikwere estimated
tences and 100 ungrammatical sentences. using maximum likelihood based on the training

The task of discriminating the 100 unattestecOrpus. p;s;1 andp; s 1 were then computed for
from the 100 ungrammatical sentences cannot [l 8601 words. Replicating (Redington etal., 1998),
solved perfectly as CHILDES contains ungrammatthe most frequent 1000 words were clustered (using
ical sentences, a few of which were randomly sesingle-link HAC, Manning and Schuitze (1999)). For
lected as unattested sentences (&g pleaswhich ~€ach remaining wordb, the closest neighbar’ in
is missing the final letter). Similarly, one or twothe 1000 most frequent words was determined and
of the automatically generated ungrammatical senw was then assigned to the clustendf
tences were actually grammatical. Fig. 3 shows the performance of graded and cat-

Since the test set does not consist of a randoggorical representations for different subsequence
sample of sentences, performance on the test setsigesn. To compute the accuracy for eaghthe 6
not a direct indicator of the percentage of sentencerith optimal discrimination performance was cho-
that the model can correctly discriminate in a child’ssen (for both graded and categorical).
typical input. A large proportion of sentences in For a subsequence of size= 1, the performance
child input are simple 1-word, 2-word, and 3-wordis 0.5 in both cases since the 200-sentence test set
sentences that even simplistic models can evaluadees not contain unknown words. So for every half-
with high accuracy. However, the test set is approaord, there is a sequence of one half-word in the
priate for a comparative evaluation of graded antraining corpus with distance 0. Thus, all sentences

2 4 6 8 10
number of half words
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get the same local coherence scores, both for graded
and categorical representations.

This argument does not apply to= 2 since we 8 15 ;3;?;‘_12 e,
earlier defined a sentence to be locally coherent if |-t~ synt-2 e e
all of its subsequences are coherent. While subse- & & 1 paras S “a
quences of 2 half-words that are part of tbeme £ | v
word have local coherence score 0, this is not true of § S b . o oo
subsequences of 2 half-words that are paditiér- 5 § 1, e Nj/" o
entwords, e.g., the subsequeneblack.,dog > in § o Q/g;g}« i
black dog If black dogdoes not occur in the train- & 5 P
ing set, then its local coherence score-i9. o |

The main result of the experiment is that except S |
for n=1 (p = 1) and n=2 $ = 0.39) the differences ; a . z o

between categorical and graded representations are number of half words
significant ? test,p < 0.05 for 3 < n < 10). This

is evidence that graded representations are more §&g e 4: Accuracy of discrimination between grammat-
curate when determining local syntactic coherencgal and ungrammatical sentences of the exemplar-based
and grammaticality than categorical representationsaethod for different orders. Key: synt = syntagmatic,
The experimental results demonstrate that, fdpara = paradigmatic; s is of order 1; p and t are of order
syntagmatic distributions of order 1, graded repre?; d is of order 3.
sentations discriminate locally coherent vs. incoher-
ent sen_t ences b etter than _c_ategorlcal representanoH;f,ey exploit indirect evidence about the syntactic
We attribute this to the ability of exemplar theory toproperties of words
incorporate rich context information into discrimi- ) .
. - . . : To evaluate higher-order representations on
nation decisions. This is of particular importance
: : . C%HILDES, we used the same setup as before, but
for ambiguous words. Categorical representations g " . : .
. : computed several additional iterations. We also lim-
ambiguous words are problematic because they are . -
: . - ited the experiments to a subset consisting of 60,000
either too similar or not similar enough to the two .
words of the Manchester corpus. It contains only

alternatives. E.g., if a word with a verb/noun ambi- . .
V g., It & word wi v " IV:1666 different words, which reduces the storage

uity is represented as one of the alternatives, say, . AR o
guity P L |y uirements for the syn/para distributions (which is
as a verb, then subsequences containing its noun Lés

: e . -%/2 for each order) and the cost of the matrix mul-
will no longer be similar to other subsequences with.

nouns. If a special conflation category noun/verb iplications. We also used — cos(a)) instead of JS

IS )
introduced, then we are faced with the same proba_lvergence as distance m(?asure. o
The results of the experiment are shown in Fig. 4.

lem: subsequences containing the noun/verb cate- i ]
gory are not similar to subsequences containing eHigher-order representations are clearly superior for

ther non-ambiguous verbs or non-ambiguous nounSlOrt subsequences, especiallysior 2 andn = 3
(and up to 5 half-words when comparing synt-1 and

para-2). However, for long subsequences, there is no
consistent difference between the syntagmatic distri-
The main motivation for higher-order distributionsbution of order 1 (synt-1) and higher order distribu-
is that syntagmatic vectors of order 1 do not pertiOﬂS. Apparently, the generalized information avail-
form well for some infrequent words. In the ele-able in higher orders is not helpful in local grammat-
phant/giraffe example above, the distance betwee@al inference if long contexts are considered.

the two words is close to maximum for order 1 repre- We were surprised that the best-performing dis-
sentations because each occurs only once, in entirghjbution for short sequences is para-2 (paradigmatic
different contexts. As we showed in Fig. 2, higherdistribution of order 2), not a higher order distri-
order representations address this problem becausétion. E.g., para-3 performs worse than para-2.

6 Higher-order distributions
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We would expect the performance to decrease witthe CHILDES corpus, the evaluation shows that
higher order eventually since the distributions conthe graded syntactic representations learned by the
verge towardg,,. The fact that this happens so earlymodel perform significantly better than previously

in this experiment merits further investigation. proposed categorical representations. An initial
evaluation of high-order representations showed lit-
7 Related work tle improvement over low-order representations.

Data-oriented parsing (Bod et al., 2003) sharesI n futur;e work, W‘Z'”teg?' to mvestlhgate tr:_e m-f
basic assumptions about linguistic inference witﬁ uence of noise and amdlgwty Or? the qua 'tyr?
exemplar-based theory, but it does not model or ughe representations in order to characterize when

the similarity between input and stored exemplar&igher order representations improve generalization

Previous work on exemplar theory in syntax (Abbot-and exemplar-theoretic inference. We also want

Smith and Tomasello, 2006; Bybee, 2006: Hay anH) _address that the model as it gurrently stands_ is
Bresnan, 2006) has not been computational or fof[alqed uhder the fa_lse assumption _that the.traln-
mal. Previous work on non-categorical representalm-:’_Input s grammatical. Ungrammatlgal test input
tions of words has viewed these representations as ich matches a Iearneql ungrammatical sequence
an intermediate step for arriving at categorical part@'III be deemed grammatical. Future work will ex-

of speech (Redington et al., 1998; Schiitze, 199551’mine how to best treat this challenge, e.g., by using

Clark, 2003). Consequently, all of these papers evafh estimation of density instead of the simplistic “1
distance used here.

uate their results by comparing induced categories {§£arest neighbor
gold-standard parts of speech. The most important future work concerns class-

Redington et al. (1998) did not find a difference inP@S€d language models. The cognitive-linguistic
categorization accuracy between simple syntagmatigadition we have mainly addressed in this paper
representation and those using non-adjacent worgQas focused on the task of learning traditional parts

The BEAGLE model (Jones and Mewhort 2007)of speech and has usually not discussed the rele-
and related work (Sahlgren et al., 2008), merges cdf@nce of language models to acquisition. If, as we
occurrence information and word order informatior'ave @rgued, instead of learning traditional parts of

into a single composite vector through a process giPeech the focus should be on performance in par-
vector convolution. Our model differs in that it ex- icular language processing tasks (like grammatical-

plicitly captures the recursive relationship betweedy judgments), then language models are the nat-
the orders in a unified framework ural competing account that we must compare our
Previous graph-theoretic work (Biemann 2006)/vork to. Of particular relevance are class-based lan-

uses order 1 representations. Several papers haf29€ models (e.g., (Saul and Pereira, 1997; Brown

looked at higher-order representations, but have nét al., 1992)). In ongoing work, we are attempting

examined the equivalence of syn/para distributiongO show that the e>_<em'pla'1r-theoret|c model performs
when formalized as Markov chains (Schiitze anBetteron grammaticality judgments than class-based

Pedersen, 1993; Lund and Burgess, 1996; Edmoncﬁ@f‘guage models.

1997; Rapp, 2002; Biemann et al., 2004 I‘ema"r‘fb\cknowledgements. This research was funded by

and Denhiére, 2006). Toutanova et al. (2004) foung1e German Research Council (DFG, Grant SFB

that their graph model of predicate argument struc732)_ We thank K. Rothenhausler. H. Schmid and
ture deteriorated after a small number of iteration§he reviewers for their valuable corr’lments

of the random walk, similar to our findings.
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