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Abstract

This paper presents a graph-theoretic model of
the acquisition of lexical syntactic representa-
tions. The representations the model learns
are non-categorical or graded. We propose a
new evaluation methodology of syntactic ac-
quisition in the framework of exemplar theory.
When applied to the CHILDES corpus, the
evaluation shows that the model’s graded syn-
tactic representations perform better than pre-
viously proposed categorical representations.

1 Introduction

In recent years, exemplar theory has had great ex-
planatory success in phonetics. Exemplar theory
posits that linguistic production and perception are
not mediated via abstract categories, but that instead
each production and perception of a linguistic unit
is stored and retained. Linguistic inference then di-
rectly operates on these storedexemplars. In this pa-
per, we propose a new approach to lexical syntactic
acquisition in the framework of exemplar theory.

Our approach uses an evaluation measure that
is different from previous work. Lexical syntac-
tic acquisition is most often evaluated with respect
to standard syntactic categories like verb and noun.
Our first contribution in this paper is that we instead
evaluate learned representations in the context of a
syntactic task. This task is the determination of an
aspect of grammaticality that we calllocal syntactic
coherence.

Our second contribution is agraph-theoretic
model of the acquisition of lexical syntactic rep-
resentationsthat is more rigorous than previous
heuristic proposals. The graph-theoretic model
can learn both categorical and non-categorical (or
graded) representations. The model is also a unified
framework for syntagmatic and paradigmatic rela-
tions (as will be discussed below), and for lower-

order syntactic relations (those that can be directly
observed from the input) and higher-order syntac-
tic relations (those that require some generalization
from what is directly observable).

Redington et al. (1998) give an influential account
of the acquisition of lexical syntactic representations
in which a standard syntactic category like verb or
noun is assigned to each word. Our third contribu-
tion is to show that, in the context of acquisition,
graded representations are superior to standard cat-
egorical representationsin supporting judgments of
local syntactic coherence. A graded representation
formalism is one that, for any two words, can rep-
resent a third word whose syntactic properties are
intermediate between the two words (Manning and
Schütze, 1999).

Clearly exemplar theory is not the only frame-
work in which lexical acquisition has been explored.
Gleitman (1990) for example argues for syntactic
bootstrapping to infer lexical semantics, work not at
odds with our own (see discussion on the role of se-
mantics below). Our argument for the importance
of distributional evidence does not call into question
the large body of work in child language acquisition
that demonstrates that “part of the capacity to learn
languages must be ’innate’ ” (Gleitman and New-
port, 1995). Tabula rasa learning is not possible. Our
goal is not to show that language acquisition pro-
ceeds with a minimum of inductive bias. Rather, we
attempt to formalize one aspect of language acquisi-
tion, the use of distributional information.

The paper is organized as follows. Section 2 moti-
vates the exemplar-theoretic approach by reviewing
its success in phonetics. Section 3 defines local syn-
tactic coherence, which is the basis for a new evalu-
ation methodology for the acquisition of lexical rep-
resentations. Section 4 develops the graph-theoretic
model. Section 5 compares graded and categorical
representations for the task of inferring local syn-
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tactic coherence. Section 6 presents our evaluation.
Sections 7 and 8 discuss related and future work, and
present our conclusions.

2 Exemplar theory

The general idea of research into exemplars in
speech production and perception is that encoun-
tered items (segments, words, sentences etc.) are
stored in great detail in memory along with rich
linguistic and extra-linguistic context information.
These exemplars are organized into clouds of mem-
ory traces with similar traces lying close to each
other while dissimilar traces are more distant. A
number of such models have had great success in
accounting for production and perception phenom-
ena in phonetics. E.g., Johnson (1997) offers an
exemplar model which challenges the notion that
speech is perceived through a process of normal-
ization whereby a speaker-specific representation is
mapped or normalized into a speaker-neutral cate-
gorical abstraction. Johnson’s model successfully
treats aspects of vowel perception, sex identifica-
tion, and speaker variability. Crucially, no normal-
ization of percepts into categorical representations
takes place. The correct identification of phonemes
and words in his model is a function of direct com-
parison to richly detailed exemplars stored in mem-
ory. Other examples of exemplar-theoretic phonetic
accounts include (Goldinger, 1997), (Pierrehumbert,
2001), and our own work (Schütze et al., 2007). Ex-
emplar theory’s success in phonetics motivates us to
investigate its use as a model for local syntactic phe-
nomena.

3 Local syntactic coherence

In the context sequence model for exemplar-
theoretic phonetics (Wade et al., 2008), we represent
speech using amplitude envelopes derived from the
acoustic signal and then compute similarity as the
integral over the correlation of the two acoustic sig-
nals.

For the syntactic level, we need a representa-
tion that has two key properties of the represen-
tation we use in phonetics in order to support an
exemplar-theoretic account. First, the representa-
tion must be directly derivable from the perceived
input. In particular, it cannot rely on the results of

any disambiguation that would occur either as part
of exemplar-theoretic perception or in further down-
stream processing. Second, it must support similar-
ity computations. Accordingly, we first motivate the
representation we use and then introduce a similarity
measure on these representations.

Representation.There are two main sources1 of
directly observable information about the syntactic
properties of words: semantic cues (e.g., things are
often referred to with nouns) and the neighbors of
a word in sentences that it is used in. In this pa-
per, we only consider the second source of informa-
tion for acquisition, lexical neighbors.2 We further
limit ourselves to the immediate left and right lexical
neighbors (see discussion in Section 7).

When using lexical neighbors as the basis of rep-
resentation, we have to make a basic choice as to
whether we look at left and right neighbors sepa-
rately or whether we only look at the “correlated”
neighborhood information of left and right neigh-
bors jointly. Our approach is based on the first alter-
native: we separate the processing of left and right
neighbors. We do this for two reasons. First, gener-
alization improves and model complexity decreases
if left-neighbor information and right-neighbor in-
formation are looked at separately. E.g., the right
neighbors ofto, might andnot are similar because
all three words can be followed by base verbs like
dance: to dance, might dance, (might) not dance.
But their left neighbors are very different.

Second, exemplar-theoretic similarity is best de-
fined at the smallest possible scale in order to allow
optimal matching between parts of the stimulus and
parts of memory. In phonetics, we use a time scale
of 10s of milliseconds or even less. Conceivably,
one could also use segments (e.g., consonants and
vowels) as the smallest unit; however, this would
presume a segmented signal. And segmentation is
part of the perception task we want to explain in the
first place.

Separating left and right neighbors – which
amounts to looking at left and right local contexts
of each word separately – is the smallest scale we
can operate at when doing syntactic matching. We

1A comprehensive account of acquisition must also include
morphology. See Christiansen et al. (2004).

2Psycholinguistic evidence for the importance of neighbor
information for learning categories includes (Mintz, 2002).
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choose this small scale for the same reasons as we
choose a small scale in phonetics: to ensure maxi-
mum flexibility when matching parts of the stimulus
with exemplars in memory. Using words, bigrams or
larger units would reduce the flexibility in matching
and require a larger amount of experience (or train-
ing data) to learn a particular generalization.

We refer to the representations of left and right
contexts of a given word ashalf-words. In other
words, we split a word into two entities, a left half-
word that characterizes its behavior to the left and
a right half-word that characterizes its behavior to
the right. Thus left-context and right-context com-
ponents of the representation of a given focus word
are defined, where a left (right) half-word consists
of a probability distribution over all words that oc-
cur to the left (right) of the focus word and the
dimensionality of the vector for each word is de-
pendent on the number of distinct neighbors (left
and right). For example, having experiencedtake
doll twice anddrop doll once, then the left con-
text distribution, or left half-word ofdoll, dolll, is
P (take) = 2/3, P (drop) = 1/3. By extension, the
phrasetake the dollis represented as the following
six half-words: takel, taker , thel, ther, dolll, and
dollr.

Distance measure.The basic intuition behind lo-
cal syntactic coherence is that an important compo-
nent of syntactic wellformedness – and a compo-
nent that is of particular importance in acquisition
– is whether a similar sequence has already been
stored as grammatical in memory. The same way
that a phonetic signal that is well-formed in a partic-
ular language has many similar exemplars in mem-
ory, a syntactic sequence should also be licensed by
similar, previously perceived sequences in memory.
To operationalize this notion, we need to be able to
compute the similarity or distance between an in-
put stimulus and exemplars in memory. We do this
by first defining a distance measure for sequences of
fixed length.

The distance∆ between two sequences of half-
words< g1, . . . , gn > and< h1, . . . , hn > is de-
fined to be the sum of the distances of their half-
words:
∆(<g1, . . . , gn>,<h1, . . . , hn>) =

∑n
i=1

∆(gi, hi)
This definition presupposes a definition of the dis-
tance of two half-words which will be given below.

We then call a sequence ofn half-words
g1, . . . , gn locally coherentif there is a sequence
h1, . . . , hn in memory with∆(< g1, . . . , gn >,<
h1, . . . , hn >) < θ whereθ is a parameter.

Finally, we define a sentence to belocally n-
coherentif all of its subsequences of lengthn are
locally coherent.

The graph-theoretic model that is introduced in
the next section will be evaluated with respect to
how well it captures local syntactic coherence. This
enables us to evaluate the model with respect to a
task as opposed to its ability to reproduce a particu-
lar linguistic representation of syntactic categories.3

Obviously, the notion of local syntactic coherence
only captures some aspects of syntax – e.g., it does
not capture long-distance dependencies. However,
it is a plausible component of syntactic competence
and a plausible intermediate step in the acquisition
of syntax.

4 Graph-theoretic model

We briefly review the structuralist notions of syntag-
matic and paradigmatic relationships that have been
frequently used in prior work in NLP (e.g., (Church
et al., 1994)). De Saussure defined a syntagmatic
relationship between two words as their contigu-
ous occurrence in a sentence and a paradigmatic re-
lationship as mutual substitutability (de Saussure,
1962) (although he used the termrapport associ-
atif instead ofparadigmatic). E.g.,brown anddog
stand in a syntagmatic relationship with each other
in the phrasebrown dog; brownandblackstand in a
paradigmatic relationship with each other with re-
spect to the position betweenthe and dog in the
phrasethe X dog. De Saussure’s conceptualization
of syntactic relationships captures the fact that both
admissibleneighborsand admissiblesubstitutesin
language are an important part of the characteriza-
tion of the syntactic properties of a word.

We formalize the two relations asdistribu-
tions over words, where we assume a vocabulary
{w1, . . . , wV } andV is the number of words in the
vocabulary.

We denote theleft syntagmatic distributionof wi

3Freudenthal et al. (2004) have much the same motivation
in introducing an evaluation measure of syntactic acquisition
based on chunking.
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by pi,s,l,m wherei is the vocabulary index ofwi, s
stands forsyntagmatic, l for left andm is the order
of the distribution as discussed below. Intuitively,
pi,s,l,m(wj) is the probability that wordwj occurs to
the left of wi. Similarly, for the left paradigmatic
distributionof wi, pi,p,l,m(wj) is the probability that
wj can be substituted forwi without changing local
syntactic coherence as far as the context to the left
is concerned. Note that we distinguish between left
and right paradigmatic distributions. A wordwj can
be a perfect substitute forwi as far as the context to
the left is concerned, but a very unlikely substitute as
far as the context to the right is concerned. E.g., in
the phraseShe loves her job, the wordhim is a good
left-context substitute forher, but a terrible right-
context substitute forher.

We will now show how the syntag-
matic/paradigmatic (henceforth: syn/para) dis-
tributions are defined iteratively, based on the
bigram distributionpww, and grounded by defining
pi,p,l,1 andpi,p,r,1.

pww(wiwj) is the probability that the bigram
wiwj occurs, that is, thatwi andwj occur next to
each other (and in that order). We define theV × V
joint probability matrixJ by Jij = pww(wiwj).

Denote byN the diagonalV ×V matrix that con-
tains inNii the reciprocal ofpw(wi) wherepw is the
marginal distribution ofpww:

V
∑

j=1

pww(wiwj) =
V

∑

j=1

pww(wjwi) = pw(wi) =
1

Nii

The conditional probabilitypleft of the fol-
lowing word and the conditional probability
pright of the preceding word can be computed
by multiplying (the transpose of)J and N :
pleft(wi|wj) = pww(wiwj)/pw(wj) = (JN)ij ; and
pright(wi|wj) = (JT N)ij.

The “grounding” paradigmatic distributions of or-
der 1 are defined as follows.

pi,p,l,1(wj) = pi,p,r,1(wj) =

{

0 if wi 6= wj

1 if wi = wj

In other words, each word has only one perfect left
/ right substitute and that perfect substitute is itself.
We define the syn/para distributions of higher order
recursively:

pi,s,l,m = JNpi,p,l,m (1)

pi,p,r,m pi,s,r,m

woman

girl

boy

man

ran

sang

laughed

cried

Figure 1: The distribution of typical right neighbors (the
right syntagmatic distributionpi,s,r,m) is computed from
the distribution of typical “right substitutes” (the right
paradigmatic distributionpi,p,r,m).

pi,p,l,m = JT Npi,s,l,m−1 (2)

pi,s,r,m = JT Npi,p,r,m (3)

pi,p,r,m = JNpi,s,r,m−1 (4)

Basic matrix arithmetic shows thatpi,s,l,1 is sim-
ply pleft(.|wi) andpi,s,r,1 is pright(.|wi).

For higher orders, the principle underlying Eq.s
1–4 is that when moving from left to right, we use
pright (that is,JT N ), the conditional distribution that
characterizes right neighbors; when moving from
right to left, we usepleft (that is,JN ), the condi-
tional distribution that characterizes left neighbors.
This is graphically shown in Fig. 1.

As illustrated by Fig. 1, the underlying graph for
pi,s,r,m andpi,p,r,m is a weighted bipartite directed
graph that connects the vocabulary on the left with
the vocabulary on the right. A directed edge from
wi on the left towj on the right is weighted with
pww(wiwj)/pw(wi). A directed edge fromwj on
the right towi on the left (not shown) is weighted
with pww(wiwj)/pw(wj).

Eq.s 1–4 define four Markov chains:
pi,s,l,m = (JNJT N)pi,s,l,m−1 (5)
pi,p,l,m = (JT NJN)pi,p,l,m−1 (6)
pi,s,r,m = (JT NJN)pi,s,r,m−1 (7)
pi,p,r,m = (JNJT N)pi,p,r,m−1 (8)
It is easy to see thatpw is a stationary distribution

for Eq. 1–4. Writing~x for pw, we have:

(JN~x)i =
V

∑

j=1

pww(wiwj)

pw(wj)
pw(wj) = pw(wi) = xi

(JT N~x)i =
V

∑

j=1

pww(wjwi)

pw(wj)
pw(wj) = pw(wi) = xi
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Hence,pw is a solution for Eq.s (5)–(8).

The series converge ifJNJT N and JT NJN
are ergodic, i.e., if the chain is aperiodic and irre-
ducible (Kemeny and Snell, 1976). Observe that
for many simple probabilistic context-free gram-
mars (PCFGs) the series in Eq. 1–4 willnot con-
verge. For simple PCFGs, the alternation between
syntagmatic and paradigmatic distributions is peri-
odic. E.g., if inflected verb forms only occur after
nouns and nouns only before inflected verb forms,
then the right syntagmatic distributions of nouns will
have non-zero activation only for verbs and the right
paradigmatic distributions of nouns will have non-
zero activation only for nouns, thus preventing con-
vergence.4

The key difference between a simple PCFG and
natural language is ambiguity and noise. Because
of ambiguity and noise,JNJT N andJT NJN are
likely to be ergodic – there is always a small non-
zero probability that two words can occur next to
each other. Ambiguity and noise have the same ef-
fect as teleportation for PageRank (Brin and Page,
1998) in the sense that we can jump from each word
to each other word with non-zero probability.

Assuming that the Markov chains are ergodic, all
four converge topw: pi,p,r,∞ = pi,p,l,∞ = pi,s,r,∞ =
pi,s,l,∞ = pw, for 1 ≤ i ≤ V .

Thus, in this formalization, given enough itera-
tions, syntagmatic and paradigmatic distributions of
words eventually all become identical with the prior
distributionpw. This is surprising because linguisti-
cally and computationally syntagmatic and paradig-
matic relations are fundamentally different.

However, on closer inspection, we observe that
limiting the number of iterations is often beneficial
when computing solutions to a problem iteratively.
E.g., the expectation-maximization algorithm is of-
ten stopped early because results close to conver-
gence are worse than results obtained after a small
number of iterations. From the point of view of
modeling human language acquisition, early stop-
ping is perhaps also more realistic since humans are
unlikely to perform a large number of iterations.

4However, non-ergodicity ofJN does not imply non-
ergodicity ofJNJ

T
N andJ

T
NJN , so Eq. (5)–(8) can con-

verge even for non-ergodicJN .
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Figure 2: The distance betweenelephantand giraffe
(measured by the Jensen-Shannon divergence) is accu-
rately represented after a number of iterations. The words
elephantandtheretain their large distance.

Example 1.For the following matrixJ








w1 w2 w3

w1 82/1002 77/1002 112/1002
w2 90/1002 18/1002 107/1002
w3 99/1002 120/1002 297/1002









we get p1,s,r,1 = (0.31, 0.28, 0.41) by comput-
ing the productJT Np1,p,r,1. E.g., p1,s,r,1(w2) =
pww(w1w2)/pw(w1) · 1.0 = 77/(82 + 77 + 112) ≈
0.28.

By iteration m = 4, the seriespi,s,r,m (Eq. (7))
andpi,p,r,m (Eq. (8)) have converged to:
pi,s,r,m = pi,p,r,m = (0.2704, 0.2145, 0.5149)
for all three wordswi. One can easily verify that
this ispw. E.g.,pw(w1) = (82 + 90 + 99)/1002 =
(82 + 77 + 112)/1002 ≈ 0.27045.

Example 2. We computed 15 iterations of
syn/para distributions for the corpus:The giraffe
ran. An elephant fell. The man ran. An aunt fell. The
man slept. The aunt slept.Fig. 2 shows that the dis-
tance between the right syntagmatic distributions of
elephantandgiraffe is large form = 1. The reason
is that the two words have no right neighbors in com-
mon. The right neighbors of the two words areran
andfell. Althoughranandfell have no left neighbors
in common, their left neighbors have a right neigh-
bor in common: the wordslept. This indirect simi-
larity information is exploited to deduce by iteration
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15 that the two words are very similar with respect to
their right syntactic context. In contrast, no such in-
ference, even a very indirect one, is possible for the
right contexts ofelephantandthe. Consequently, the
distance between the two distributions remains high
and unchanged with higher iterations.

In this case, the Markov chain is not ergodic and
the syntagmatic and paradigmatic series (Eq.s (5)–
(8)) do not converge topw.

5 Experimental evaluation

Recall from Section 3 that our evaluation task is to
discriminate sentences that exhibit local coherence
from those that do not; that sentences are repre-
sented as sequences of half-words; that syntactic co-
herence of a sentence is defined as all subsequences
of a given lengthn exhibiting local coherence; and
that a subsequence is locally coherent if its distance
from a sequence in memory is less thanθ.

These definitions can be applied to the graph
model as follows. A left half-word is a left syntag-
matic (or paradigmatic) distribution and a right half-
word is a right syntagmatic (or paradigmatic) distri-
bution. We compute the distance of two half-words
either as the Jensen-Shannon (JS) divergence (Lin,
1991) or as(1− cos(α)). JS divergence is more ap-
propriate for the comparison of probability distribu-
tions. But the cosine is more efficient when a sparse
vector is compared to a dense vector.5 We therefore
employ the cosine for the compute-intensive experi-
ments in Section 6.

The baseline representation is the categorical rep-
resentation proposed by Redington et al. (1998). A
difficulty in replicating their experiments is that they
use hierarchical agglomerative clustering (HAC),
which eventually agglomerates all words in a sin-
gle category. To circumvent the need for a stop-
ping criterion, we represent each word as the tem-
poral sequence of clusters it occurred in during ag-
glomeration and define the distance of two words as
the agglomeration step in which the two words are
joined in a cluster. E.g., given the agglomeration se-
quences{1}, {1, 2}, {1, 2, 4}, {1, 2, 3, 4} for w1 and
{4}, {4}, {1, 2, 4}, {1, 2, 3, 4} for w4, the distance

5This is so because, when computing the cosine, we can ig-
nore all dimensions where one of the two vectors has a zero
value.

betweenw1 andw4 is 3 since they are joined in step
3 when cluster{1, 2, 4} is created.

For both graded (graph-theoretic) and categorical
(cluster-based) representations, we need to set the
parameterθ that is the boundary between locally co-
herent and locally incoherent sentences. This pa-
rameter gives rise to a precision-recall tradeoff. A
smallθ will impose strict requirements on which se-
quences in memory match, resulting in false nega-
tive decisions for local grammaticality. A largeθ
will incorrectly judge many locally incoherent se-
quences to be grammatical.

We will pick the optimalθ in both cases. For
categorical representations, this amounts to select-
ing the HAC dendrogram with optimal performance.
The experiment below evaluates whether grammati-
cal and ungrammatical sentences are well separated
by the proposed measure.6

Experiment on CHILDES. We used the well-
known CHILDES database (MacWhinney, 2000), a
corpus of conversations between young children and
their playmates, siblings, and caretakers. In order to
avoid mixing varieties of English (e.g., British En-
glish vs. American English), we selected the largest
homogeneous subcorpus of CHILDES, the Manch-
ester corpus. It contains roughly 350,000 sentences
and 1.5 million words. This is a conservative esti-
mate of the amount of child-directed speech a child
would receive annually (Redington et al., 1998). All
names in the corpus (i.e., all capitalized words) were
replaced with a special word “n ”. A boundary
symbol “ b ” was introduced to separate sentences.
The representation of the corpus is then a concate-
nation of all its sentences. The vocabulary consists
of V = 8601 words.

Construction of the evaluation set. We tested
the ability of the two models to distinguish locally
coherent vs. incoherent sentences by selecting 100
unattestedsentences from the corpus, which were
not used to train the model. We only selected unat-
tested sentences that were not a substring of a sen-
tence in the training corpus since, presumably, any
substring of a sentence in the training corpus is lo-
cally coherent. A further constraint was that the

6This evaluation of “separation” is not directly an evaluation
of classification performance, but more similar to an evaluation
of ranking using AUC or an evaluation of clustering using a
measure like purity.
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unattested sentence was not allowed to contain a
word that did not occur in the training corpus, the
rationale being that we want to address the prob-
lem of local coherence for known words only since
unknown words present special challenges. Finally,
we ensured that each unattested sentence contained
a word that occurred in only one sentence type in
the training corpus. In early experiments, we found
that local grammatical inference for frequent words
is easy as there is redundant evidence available that
characterizes legal syntactic environments for fre-
quent words. Since rare words are a key challenge in
syntactic acquisition, we only selected sentences as
unattested sentences that contained at least one rare
word (where a rare word is defined as a word that
occurs once in the training set).

100 ungrammatical sentences were generated by
randomly selecting and concatenating words from
the vocabulary. Ungrammatical sentences were
matched in length to unattested sentences, so that
both sets contained the same number of sentences
of a given length. As with unattested sentences, un-
grammatical sentences that were substrings of sen-
tences in the training corpus were eliminated. As
there are many more infrequent words than frequent
words in the vocabulary, the construction ensured
that, as with unattested sentences, infrequent words
were overrepresented in ungrammatical sentences.

To summarize, our setup consists of 348,463
training sentences, 100 unattested grammatical sen-
tences and 100 ungrammatical sentences.

The task of discriminating the 100 unattested
from the 100 ungrammatical sentences cannot be
solved perfectly as CHILDES contains ungrammat-
ical sentences, a few of which were randomly se-
lected as unattested sentences (e.g.,yes pleas, which
is missing the final letter). Similarly, one or two
of the automatically generated ungrammatical sen-
tences were actually grammatical.

Since the test set does not consist of a random
sample of sentences, performance on the test set is
not a direct indicator of the percentage of sentences
that the model can correctly discriminate in a child’s
typical input. A large proportion of sentences in
child input are simple 1-word, 2-word, and 3-word
sentences that even simplistic models can evaluate
with high accuracy. However, the test set is appro-
priate for a comparative evaluation of graded and
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Figure 3: Accuracy of discrimination between grammati-
cal and ungrammatical sentences for graded and categor-
ical representations.

categorical syntactic representations in language ac-
quisition, which is one of the goals of the paper. Dif-
ficult sentences (those with rare words and greater
length) are overrepresented in the test set as the dis-
crimination of short sentences containing only fre-
quent words can easily be done by simplistic mod-
els. Thus, a test set of “easy” sentences would not
distinguish good models from bad models.

Discrimination experiment. In order to train the
graph model, the entries of matrixJ were estimated
using maximum likelihood based on the training
corpus. pi,s,l,1 andpi,s,r,1 were then computed for
all 8601 words. Replicating (Redington et al., 1998),
the most frequent 1000 words were clustered (using
single-link HAC, Manning and Schütze (1999)). For
each remaining wordw, the closest neighborw′ in
the 1000 most frequent words was determined and
w was then assigned to the cluster ofw′.

Fig. 3 shows the performance of graded and cat-
egorical representations for different subsequence
sizesn. To compute the accuracy for eachn, theθ
with optimal discrimination performance was cho-
sen (for both graded and categorical).

For a subsequence of sizen = 1, the performance
is 0.5 in both cases since the 200-sentence test set
does not contain unknown words. So for every half-
word, there is a sequence of one half-word in the
training corpus with distance 0. Thus, all sentences
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get the same local coherence scores, both for graded
and categorical representations.

This argument does not apply ton = 2 since we
earlier defined a sentence to be locally coherent if
all of its subsequences are coherent. While subse-
quences of 2 half-words that are part of thesame
word have local coherence score 0, this is not true of
subsequences of 2 half-words that are part ofdiffer-
ent words, e.g., the subsequence<blackr,dogl > in
black dog. If black dogdoes not occur in the train-
ing set, then its local coherence score is> 0.

The main result of the experiment is that except
for n=1 (p = 1) and n=2 (p = 0.39) the differences
between categorical and graded representations are
significant (χ2 test,p < 0.05 for 3 ≤ n ≤ 10). This
is evidence that graded representations are more ac-
curate when determining local syntactic coherence
and grammaticality than categorical representations.

The experimental results demonstrate that, for
syntagmatic distributions of order 1, graded repre-
sentations discriminate locally coherent vs. incoher-
ent sentences better than categorical representations.
We attribute this to the ability of exemplar theory to
incorporate rich context information into discrimi-
nation decisions. This is of particular importance
for ambiguous words. Categorical representations of
ambiguous words are problematic because they are
either too similar or not similar enough to the two
alternatives. E.g., if a word with a verb/noun ambi-
guity is represented as one of the alternatives, say,
as a verb, then subsequences containing its noun use
will no longer be similar to other subsequences with
nouns. If a special conflation category noun/verb is
introduced, then we are faced with the same prob-
lem: subsequences containing the noun/verb cate-
gory are not similar to subsequences containing ei-
ther non-ambiguous verbs or non-ambiguous nouns.

6 Higher-order distributions

The main motivation for higher-order distributions
is that syntagmatic vectors of order 1 do not per-
form well for some infrequent words. In the ele-
phant/giraffe example above, the distance between
the two words is close to maximum for order 1 repre-
sentations because each occurs only once, in entirely
different contexts. As we showed in Fig. 2, higher-
order representations address this problem because
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Figure 4: Accuracy of discrimination between grammat-
ical and ungrammatical sentences of the exemplar-based
method for different orders. Key: synt = syntagmatic,
para = paradigmatic; s is of order 1; p and t are of order
2; q is of order 3.

they exploit indirect evidence about the syntactic
properties of words.

To evaluate higher-order representations on
CHILDES, we used the same setup as before, but
computed several additional iterations. We also lim-
ited the experiments to a subset consisting of 60,000
words of the Manchester corpus. It contains only
V =1666 different words, which reduces the storage
requirements for the syn/para distributions (which is
2 ·V 2 for each order) and the cost of the matrix mul-
tiplications. We also used(1− cos(α)) instead of JS
divergence as distance measure.

The results of the experiment are shown in Fig. 4.
Higher-order representations are clearly superior for
short subsequences, especially forn = 2 andn = 3
(and up to 5 half-words when comparing synt-1 and
para-2). However, for long subsequences, there is no
consistent difference between the syntagmatic distri-
bution of order 1 (synt-1) and higher order distribu-
tions. Apparently, the generalized information avail-
able in higher orders is not helpful in local grammat-
ical inference if long contexts are considered.

We were surprised that the best-performing dis-
tribution for short sequences is para-2 (paradigmatic
distribution of order 2), not a higher order distri-
bution. E.g., para-3 performs worse than para-2.
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We would expect the performance to decrease with
higher order eventually since the distributions con-
verge towardspw. The fact that this happens so early
in this experiment merits further investigation.

7 Related work

Data-oriented parsing (Bod et al., 2003) shares
basic assumptions about linguistic inference with
exemplar-based theory, but it does not model or use
the similarity between input and stored exemplars.
Previous work on exemplar theory in syntax (Abbot-
Smith and Tomasello, 2006; Bybee, 2006; Hay and
Bresnan, 2006) has not been computational or for-
mal. Previous work on non-categorical representa-
tions of words has viewed these representations as
an intermediate step for arriving at categorical parts
of speech (Redington et al., 1998; Schütze, 1995;
Clark, 2003). Consequently, all of these papers eval-
uate their results by comparing induced categories to
gold-standard parts of speech.

Redington et al. (1998) did not find a difference in
categorization accuracy between simple syntagmatic
representation and those using non-adjacent words.

The BEAGLE model (Jones and Mewhort, 2007),
and related work (Sahlgren et al., 2008), merges co-
occurrence information and word order information
into a single composite vector through a process of
vector convolution. Our model differs in that it ex-
plicitly captures the recursive relationship between
the orders in a unified framework.

Previous graph-theoretic work (Biemann, 2006)
uses order 1 representations. Several papers have
looked at higher-order representations, but have not
examined the equivalence of syn/para distributions
when formalized as Markov chains (Schütze and
Pedersen, 1993; Lund and Burgess, 1996; Edmonds,
1997; Rapp, 2002; Biemann et al., 2004; Lemaire
and Denhière, 2006). Toutanova et al. (2004) found
that their graph model of predicate argument struc-
ture deteriorated after a small number of iterations
of the random walk, similar to our findings.

8 Conclusions and Future Work

In this paper, we have presented a graph-theoretic
model of the acquisition of lexical syntactic rep-
resentations and a new exemplar-based evaluation
of lexical syntactic acquisition. When applied to

the CHILDES corpus, the evaluation shows that
the graded syntactic representations learned by the
model perform significantly better than previously
proposed categorical representations. An initial
evaluation of high-order representations showed lit-
tle improvement over low-order representations.

In future work, we intend to investigate the in-
fluence of noise and ambiguity on the quality of
the representations in order to characterize when
higher order representations improve generalization
and exemplar-theoretic inference. We also want
to address that the model as it currently stands is
trained under the false assumption that the train-
ing input is grammatical. Ungrammatical test input
which matches a learned ungrammatical sequence
will be deemed grammatical. Future work will ex-
amine how to best treat this challenge, e.g., by using
an estimation of density instead of the simplistic “1
nearest neighbor” distance used here.

The most important future work concerns class-
based language models. The cognitive-linguistic
tradition we have mainly addressed in this paper
has focused on the task of learning traditional parts
of speech and has usually not discussed the rele-
vance of language models to acquisition. If, as we
have argued, instead of learning traditional parts of
speech the focus should be on performance in par-
ticular language processing tasks (like grammatical-
ity judgments), then language models are the nat-
ural competing account that we must compare our
work to. Of particular relevance are class-based lan-
guage models (e.g., (Saul and Pereira, 1997; Brown
et al., 1992)). In ongoing work, we are attempting
to show that the exemplar-theoretic model performs
better on grammaticality judgments than class-based
language models.
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the reviewers for their valuable comments.

References

Abbot-Smith, Kirsten and Michael Tomasello. 2006.
Exemplar-learning and schematization in a usage-
based account of syntactic acquisition.The Linguistic
Review, 23:275–290.

925



Biemann, Chris, Stefan Bordag, and Uwe Quasthoff.
2004. Automatic acquisition of paradigmatic relations
using iterated co-occurrences. InLREC.

Biemann, Chris. 2006. Unsupervised part-of-speech tag-
ging employing efficient graph clustering. InACL.

Bod, Rens, Remko Scha, and Khalil Sima′an. 2003.
Data-Oriented Parsing. CSLI Publications.

Brin, Sergey and Lawrence Page. 1998. The anatomy
of a large-scale hypertextual web search engine. In
WWW, pages 107–117.

Brown, Peter F., Peter V. deSouza, Robert L. Mercer, Vin-
cent J. Della Pietra, and Jenifer C. Lai. 1992. Class-
based n-gram models of natural language.Comput.
Linguist., 18(4):467–479.

Bybee, Joan L. 2006. From usage to grammar: The
mind’s response to repetition.Language, 82:711–733.

Christiansen, Morten, Luca Onnis, Padraic Monaghan,
and Nick Chater. 2004. Happy endings in language
acquisition. InAMLaP.

Church, Kenneth, Patrick Hanks, Donald Hindle,
William Gale, and Rosamund Moon. 1994. Lexical
substitutability. In Atkins, B.T.S. and A. Zampolli, ed-
itors,Computational Approaches to the Lexicon. OUP.

Clark, Alexander. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In EACL, pages 59–66.

de Saussure, Ferdinand. 1962.Cours de linguistique
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