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Abstract category-splitting approach, in which a coarse ini-

tial grammar is refined by iteratively splitting each

We present a discriminative, latent variable
approach to syntactic parsing in which rules
exist at multiple scales of refinement. The
model is formally a latent variable CRF gram-
mar over trees, learned by iteratively splitting
grammar productions (not categories). Dif-
ferent regions of the grammar are refined to
different degrees, yielding grammars which
are three orders of magnitude smaller than
the single-scale baseline and 20 times smaller
than the split-and-merge grammars of Petrov
et al. (2006). In addition, our discriminative
approach integrally admits features beyond lo-
cal tree configurations. We present a multi-
scale training method along with an efficient
CKY-style dynamic program. On a variety of
domains and languages, this method produces
the best published parsing accuracies with the

grammar category into two subcategories using the
EM algorithm. Of course, each time the number of
grammar categories is doubled, the number of bi-
nary productions is increased by a factor of eight.
As a result, while our final grammars used few cat-
egories, the number of total active (non-zero) pro-
ductions was still substantial (see Section 7). In ad-
dition, it is reasonable to assume that some genera-
tively learned splits have little discriminative utility.
In this paper, we present a discriminative approach
which addresses both of these limitations.

We introduce multi-scale grammars, in which
some productions reference fine categories, while
others reference coarse categories (see Figure 2).
We use the general framework bfdden variable
CRFs(Lafferty et al., 2001; Koo and Collins, 2005),

smallest reported grammars. . . .
P g where gradient-based optimization maximizes the

likelihood of the observed variables, here parse
trees, summing over log-linearly scored derivations.
With multi-scale grammars, it is natural to refine
In latent variable approaches to parsing (Matsuzalkiroductionsrather than categories. As a result, a
et al., 2005; Petrov et al., 2006), one models an olzategory such as NP can be complex in some re-
served treebank of coargarsetrees using a gram- gions of the grammar while remaining simpler in
mar over more refined, but unobservelrivation other regions. Additionally, we exploit the flexibility
trees. The parse trees represent the desired outpfithe discriminative framework both to improve the
of the system, while the derivation trees representeatment of unknown words as well as to include
the typically much more complex underlying syntacspan featuregTaskar et al., 2004), giving the bene-
tic processes. In recent years, latent variable metfit of some input features integrally in our dynamic
ods have been shown to produce grammars whigrogram. Our multi-scale grammars are 3 orders
are as good as, or even better than, earlier parsinfi magnitude smaller than the fully-split baseline
work (Collins, 1999; Charniak, 2000). In particular,grammar and 20 times smaller than the generative
in Petrov et al. (2006) we exhibited a very accurateplit-and-merge grammars of Petrov et al. (2006).

1 Introduction
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In addition, we exhibit the best parsing numbers ofMatsuzaki et al., 2005; Liang et al., 2007) and dis-

several metrics, for several domains and languagesriminative approaches (Petrov and Klein, 2008).
Discriminative parsing has been investigated béAe take the discriminative log-linear approach here.

fore, such as in Johnson (2001), Clark and CurraNote that the comparison is only between estimation

(2004), Henderson (2004), Koo and Collins (2005)methods, as Smith and Johnson (2007) show that the

Turian et al. (2007), Finkel et al. (2008), and, mostmodel classes are the same.

similarly, in Petrov and Klein (2008). However, in . .

all of these cases, the final parsing performance fe%l‘2 Log-Linear Latent Variable Grammars

short of the best generative models by several peld @ log-linear latent variable grammar, each pro-

centage points or only short sentences were useddctionr = A, — B, C, is associated with a

Only in combination with a generative model wagnultiplicative weighte, (Johnson, 2001; Petrov and

a discriminative component able to produce higflein, 2008) (sometimes we will use the log-weight

parsing accuracies (Charniak and Johnson, 200%: when convenient). The probability of a derivation

Huang, 2008). Multi-scale grammars, in contrast; Of a sentencev is proportional to the product of the

give higher accuracies using smaller grammars thapeights of its productions:

previous work in this direction, outperforming top

generative models in grammar size and in parsing P(tw) o< H‘bf’

accuracy. ret

The score of a parsE is then the sum of the scores
2 Latent Variable Parsing of its derivations:

Treebanks are typically not annotated with fully de- P(T|w) = Z P(t|w)
tailed syntactic structure. Rather, they present only teT

a coarse trace of the true underlying processes. As
a result, learning a grammar for parsing require
the estimation of a more highly articulated modeGrammar refinement becomes challenging when the
than the naive CFG embodied by such treebankgumber of subcategories is large. If each category
A manual approach might take the category NP ang split into k& subcategories, each (binary) produc-
subdivide it into one subcategory NP"S for subjectgion will be split intok>. The resulting memory lim-
and another subcategory NP"VP for objects (Johntations alone can prevent the practical learning of
son, 1998; Klein and Manning, 2003). Howeverhighly split grammars (Matsuzaki et al., 2005). This
rather than devising linguistically motivated featuresssue was partially addressed in Petrov et al. (2006),
or splits, latent variable parsing takes a fully autowhere categories were repeatedly split and some
mated approach, in which each symbol is split intgplits were re-merged if the gains were too small.

Hierarchical Refinement

unconstrained subcategories. However, while the grammars are indeed compact
_ at the (sub-)category level, they are still dense at the
2.1 Latent Variable Grammars production level, which we address here.

Latent variable grammars augment the treebank As in Petrov et al. (2006), we arrange our subcat-
trees with latent variables at each node. This creégories into a hierarchy, as shown in Figure 1. In
ates a set of (exponentially mang@rivationsover practice, the construction of the hierarchy is tightly
split categories for each of the originphrse trees coupled to a split-based learning process (see Sec-
over unsplit categories. For each observed categofign 5). We use the naming convention that an origi-
A we now have a set of latent subcategorigs For hal categoryd becomesd, andA; in the first round;
example, NP might be split into NRhrough NR. Ao then becominglyo and Ay, in the second round,
The parameters of the refined productiongnd so on. We will usé& = z to indicate that the
A, — B, C., where A, is a subcategory ofl, B, subscript or subcategonyis a refinement of-.> We
of B, andC. of C, can then be estimated in var- iconyersely; is a coarser version af, o, in the language
ious ways; past work has included both generativef Petrov and Klein (2007); is a projection ofz.
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Qq—f. DT — the Single-scale productions Multi-scale productions H,f, DT — the
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Figure 1: Multi-scale refinement of theT — the production. The multi-scale grammar can be encoded muck mor
compactly than the equally expressive single scale grarbgnasing only the shaded features along the fringe.

will also say thati dominatesr, andz will referto  the same weights. This will be especially common
fully refined subcategories. The same terminologin the present work, where we go out of our way to
can be applied to (binary) productions, which spliachieve it (see Section 5). For example, in Figure 1,
into eight refinements each time the subcategorigbe productions DJ — the have the same weight
are split in two. for all categories DT which refine DT,.2 A multi-
The core observation leading to multi-scale gramscale grammar can capture this behavior with just 4
mars is that when we look at the refinements of groductions, while the single-scale grammar has 8
production, many are very similar in weight. It isproductions. For binary productions the savings will
therefore advantageous to record productions only af course be much higher.
the level where they are distinct from their children Interms of its semantics, a multi-scale grammar is

in the hierarchy. simply a compact encoding of a fully refined latent
variable grammatr, in which identically weighted re-
4 Multi-Scale Grammars finements of productions have been collapsed to the

coarsest possible scale. Therefore, rather than at-

A multi-scale grammar is a grammar in which someempting to control the degree to which categories
productions reference fine categories, while otheige split, multi-scale grammars simply encode pro-
reference coarse categories. As an example, cofluctions at varying scales. It is hence natural to
sider the multi-scale grammar in Figure 2, where thgpeak of refining productions, while considering
NP category has been split into two subcategoriafe categories to exist at all degrees of refinement.
(NP, NPy) to capture subject and object distinc-Multi-scale grammars enable the use of coarse (even
tions. Sinceit can occur in subject and object po-unsplit) categories in some regions of the grammar,
sition, the production NP- it has remained unsplit. while requiring very specific subcategories in others,
In contrast, in a single-scale grammar, two producas needed. As we will see in the following, this flex-
tions NR) — it and NR — it would have been nec- bjlity results in a tremendous reduction of grammar
essary. We use * as a wildcard, indicating that.NPparameters, as well as improved parsing time, be-
can combine with any other NP, while NBan only  cause the vast majority of productions end up only
combine with other NP Whenever subcategories partially split.
of different granularity are combined, the resulting gjnce a multi-scale grammar has productions
constituent takes the more specific label. which can refer to different levels of the category

In terms of its structure, a multi-scale grammar isyierarchy, there must be constraints on their coher-
a set of productions over varyingly refined symbolsence. Specifically, for each fully refined produc-
where each production is associated with a weighfion, exactly one of its dominating coarse produc-
Consider the refinement of the production shown ions must be in the grammar. More formally, the
Figure 1. The original unsplit production (at top)multi-scale grammar partitions the space of fully re-
would naively be split into a tree of many subpro<ined base rules such that eacimaps to a unique
ductions (downward in the diagram) as the grammar

categories are incrementally split. However, it may 2\ define dominating productions and refining productions
be that many of the fully refined productions sharenalogously as for subcategories.
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Grammar: S. Sa 5.1 Hierarchical Training

S VP, | i . . .
A\ /\0 i NP/\VP* i NP/\VP* We learn discriminative multi-scale grammars in an
1 NP 1 N . . . . .

NP, VP. V. NP, NP, VP, | NP, VP, iterative fashion (sge Flgure 1). As in Petrov et al.
Lexicon: A R N N 2 N (2006), we start with a simple X-bar grammar from
e (she vy NPy o it Vi« NPy gninput treebank. The parametérsf the grammar
NPy NPy NP. Vy V, NP, | V, NP,

i |

R T CE 0 (production log-weights for now) are estimated in a
she her it saw ' saw it saw her log-linear framework by maximizing the penalized

log conditional likelihoodC,,,,q — R(6), where:
Figure 2: In multi-scale grammars, the categories exist

at varying degrees of refinement. The grammar_in this Leond(0) = log H P(T;|w;)
example enforces the correct usagstoéandher, while P
allowing the use oit in both subject and object position. R(O) = Z 0,]
- T
T

dominating rule?, and for all base ruleg such that ~ We directly optimize this non-convex objective
# — 7,7 maps tof as well. This constraint is al- function using a numerical gradient based method
ways satisfied if the multi-scale grammar consists d-BFGS (Nocedal and Wright, 1999) in our imple-

fringes of the production refinement hierarchies, inthentation). To handle the non-diferentiability of the
dicated by the shading in Figure 1. L,-regularization ternR(6) we use the orthant-wise

A multi-scale grammar straightforwardly assign method of Andrew and Gao (2007). Fitting the log-
ﬁinear model involves the following derivatives:

scores to derivations in the corresponding fully re-
fined single scale grammar: simply map each refineélL...,,4(6)

derivation rule to its dominating abstraction in the 99, Z <E9 £ (0)IT3] = Ee[f"(mwi])
multi-scale grammar and give it the corresponding ‘

weight. The fully refined grammar is therefore triv-where the first term is the expected coyiptf a pro-
ially (though not compactly) reconstructable fromductionr in derivations corresponding to the correct
its multi-scale encoding. parse tre€l; and the second term is the expected
count of the production in all derivations of the sen-

It is possible to directly define a derivational se- Note that be of e A
mantics for multi-scale grammars which does nofncew:- Note thatr may be of any scale. As we
ill show below, these expectations can be com-

appeal to the underlying single scale grammaY.V i i
However, in the present work, we use our multiJouted exactly using marginals from the chart of the

scale grammars only to compute expectations of tH@SC')de/ Ouﬁ'di algorithm (Larlhandeoung, 1_990)' 4. all
underlying grammars in an efficient, implicit way. nce_t € base grammar has been est|mat_e » a
categories are split in two, meaning that all binary

productions are split in eight. When splitting an al-
5 Learning Sparse Multi-Scale Grammars ready refined grammar, we only split productions
whose log-weight in the previous grammar deviates
We now consider how to discriminatively learnfrom zero® This creates a refinement hierarchy over
multi-scale grammars by iterative splitting producProductions. Each newly split productieris given
tions. There are two main concerns. First, be@ unique feature, as well as inheriting the features of
cause multi-scale grammars are most effective whdi$ Parent productions - 7
many productions share the same weight, sparsity
is very desirable. In the present work, we exploit Or = exp (Z&)
L,-regularization, though other techniques such as
structural zeros (Mohri and Roark, 2006) couldlhe parent productionsare then removed from the
also potentially be used. Second, training requiregrammar and the new features are fit as described
repeated parsing, so we use coarse-to-fine charts , _requiarization drives more than 95% of the feature
caching to greatly accelerate each iteration. weights to zero in each round.

=7
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o in terms of the standard inside scores of the most
I__(__Su,w) refined subcategorieds:

v I(AJHZaJ)ZZ[(Afa%])

‘ —
NN <z

When working with multi-scale grammars, we
Fi 3 A multi-scale chart b d to efficientl expand the standard three-dimensional chart over
Igure o. A multi-scale chart can be used to eticien yspans and grammar categories to store the scores of
compute inside/outside scores using productions of vary- . . . .
ing specificity. all subcategories of the refinement hierarchy, as il-
lustrated in Figure 3. This allows us to compute the
_ _ scores more efficiently by summing only over rules

above. We detgct that we _have split a produc_t|on top— A, — By Cs -~ T

far when all child production features are driven to
zero under L regularization. In such cases, the chil- .. ) )

: ! . I(Az = I(Bgz,i,k)I(Cs, k
dren are collapsed to their parent production, Wthlll( 7 J) ZZ%Z (By, i, K)(Cz, k. 7)

. . T TP k
forms an entry in the multi-scale grammar.

= ZgbfZZI(B@aZ?k)I(CEaka])
5.2 Efficient Multi-Scale Inference 7 =ik
In order to compute the expected counts needed for = > _ ¢ > > Y _I(Bg,i,k)I(Cx, k, j)
training, we need to parse the training set, score 7 Y=§z=<t k
all derivations and compute posteriors for all sub- - b7 I(By,i, k) I(Cz k, §)
categories in the refinement hierarchy. The in- Z,,: Zk:y% ! ;

side/outside algorithm (Lari and Young, 1990) is an
efficient dynamic program for summing over deriva-
tions under a context-free grammar. It is fairly

straightforward to adapt this algorithm to multi- ot cqyrse, some of the same quantities are computed
scale grammars, allowing us to sum over an expQgpeatedly in the above equation and can be cached
nential number of derivationsithout explicitly re-  j, orger to obtain further efficiency gains. Due to

constructing the underlying fully split grammar. 5506 constraints we omit these details, and also the

_For single-scale latent variable grammars, the insompytation of the outside score, as well as the han-
side scorel (Az, 1, j) of a fully refined categonA; dling of unary productions.
spanning(i, j) is computed by summing over all

possible productions = Az — By Cz with weight
ér, spanning(i, k) and(k, j) respectively?

=> ¢ > _I(By,i,k)I(Cs,k, j)
7 k

5.3 Feature Count Approximations

Estimating discriminative grammars is challenging,
I(Ag,i,j) = Z ¢?Z I(By,i,k)I(Cs, k, ) as it requires repeatedly taking expectations over all
T 3 parses of all sentences in the training set. To make
this computation practical on large data sets, we
Note that this involves summing ovall relevant ;se the same approach as Petrov and Klein (2008).
fully refined grammar productions. Therein, the idea of coarse-to-fine parsing (Charniak
The key quantities we will need are marginals ogt a|., 1998) is extended to handle the repeated pars-
the formI (A, 1, j), the sum of the scores of all fully jng of the same sentences. Rather than computing
refined derivations rooted at any; dominated by the entire coarse-to-fine history in every round of
A, and spanning, j). We define these marginals training, the pruning history is cached between train-

“These scores lack any probabilistic interpretation, bat camg iterations, effectively avoiding the repeated cal-

be normalized to compute the necessary expectations for tracfJlation of S_im”%r quantities and allowing the_ effi-
ing (Petrov and Klein, 2008). cient approximation of feature count expectations.
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6 Additional Features with the following example and the spdh 4):

“

The discriminative framework gives us a convenient 0" 1[Yes2” 3, ]shessaidg. 7

way of incorporating additional, overlapping fea-e first added the following lexical features:
tures. We investigate two types of features: un- _ .

known word features (for predicting the part-of- © the first (e, last comma, preceding () and
speech tags of unknown or rare words) and span fea- following (he) words, _
tures (for determining constituent boundaries based ® the word pairs at the left edg¢,Yes), right

on individual words and the overall sentence shape). ©dge{comma,hg inside border(Yes,comma
and outside bordef‘,he).

Lexical features were added for each span of length
Building a parser that can process arbitrary serthree or more. We used two groups of span features,
tences requires the handling of previously unseepne for natural constituents and one for synthetic
words. Typically, a classification of rare words intoones: We found this approach to work slightly
word classes is used (Collins, 1999). In such an apetter than anchoring the span features to particular
proach, the word classes need to be manually deenstituent labels or having only one group.
fineda priori, for example based on discriminating We also added shape features, projecting the
word shape features (suffixes, prefixes, digits, etc.)sentence to abstract shapes to capture global sen-
While this component of the parsing system igence structures. Punctuation shape replaces ev-
rarely talked about, its importance should not be urery non-punctuation word witk and then further
derestimated: when using only one unknown worgollapses strings ok to x+. Our example be-
class, final parsing performance drops several pegomes#* * x’ ', x+. #, and the punctuation feature
centage points. Some unknown word features afer our spanis * [ x’ ", ] x. Capitalization shape
universal (e.g. digits, dashes), but most of therrojects the example sentence#toX. . xx. #, and
will be highly language dependent (prefixes, suf- [ X. . ]x for our span. Span features are a rich
fixes), making additional human expertise necessagpurce of information and our experiments should
for training a parser on a new language. It is thergde seen merely as an initial investigation of their ef-
fore beneficial to automatically learn what the disfect in our system.
criminating word shape features for a language are7
The discriminative framework allows us to do that
with ease. In our experiments we extract prefixegve ran experiments on a variety of languages and
and suffixes of length< 3 and add those features tocorpora using the standard training and test splits,
words that occuRb5 times or less in the training set. as described in Table 1. In each case, we start
These unknown word features make the latent varwith a completely unannotated X-bar grammar, ob-
able grammar learning process more language indgined from the raw treebank by a simple right-

6.1 Unknown Word Features

" Experiments

pendent than in previous work. branching binarization scheme. We then train multi-
scale grammars of increasing latent complexity as
6.2 Span Features described in Section 5, directly incorporating the

There are many features beyond local tree configdditional features from Section 6 into the training

urations which can enhance parsing discriminatiorgrocedure. Hierarchical training starting from a raw

Charniak and Johnson (2005) presents a varied ligteebank grammar and proceeding to our most re-
In reranking, one can incorporate any such featurened grammars took three days in a parallel im-

of course, but even in our dynamic programming apelementation using 8 CPUs. At testing time we

proach it is possible to include features that decommarginalize out the hidden structure and extract the
pose along the dynamic program structure, as shovifge with the highest number of expected correct pro-
by Taskar et al. (2004). We use non-lospln fea- ductions, as in Petrov and Klein (2007).

tures which condition on properties of input spans  ssynthetic constituents are nodes that are introducedglurin
(Taskar et al., 2004). We illustrate our span featurdsnarization.
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Training Set | Dev. Set Test Set i ™
ENGLISH-WSJ Sections . . 90 r 5 =
L A
(Marcus et al.. 1993) 291 Section 22 | Section 23 _ . -
ENGLISH-BROW see 10% of 10% of the S [ - )
(Francis et al. 2002) [ENGLISH-WSJ the daté the daté § 851 4
FRENCH Sentences | Sentences| Sentences §
(Abeille et al., 2000) 1-18,609 18,610-19,6099,609-20,610 s L ’
GERMAN Sentences | Sentences| Sentences g 80 1 e ]
(Skutet al., 1997) 1-18,602 |18,603-19,60119,603-20,602 & Disgfminative Mult-Scale Grammars —+— |
P o _ + Span Features -
Table 1: Corpora and standard experimental setups. ™ [ * Ge“‘;qgtgvglsiﬂ;;m;;ggggmgg e ]

10000 100000 1000000
Number of grammar productions

We compare to a baseline of discriminatively
trained latent variable grammars (Petrov and Kleirf;igure 4: Discriminative multi-scale grammars give sim-
2008). We also compare our discriminative multi/lar parsing accuracies as generative split-merge gram-
scale grammars to their generative spIit—and—merd@arS’ while using an order of magnitude fewer rules.
cousins, which have been shown to produce the
state-of-the-art figures in terms of accuracy and effi-
ciency on many corpora. For those comparisons wgets smaller when the grammars get more refined.
use the grammars from Petrov and Klein (2007). Section 8 contains an analysis of some of the learned

features, as well as a comparison between discrimi-
7.1 Sparsity natively and generatively trained grammars.
One of the main motivations behind multi-scale
grammars was to create compact grammars. Fig-
ure 4 shows parsing accuracies vs. grammar sizé&3 Efficiency
Focusing on the grammar size for now, we see that

multi-scale grammars are extremely compact - evePetrov and Klein (2007) demonstrates how the idea
our most refined grammars have less than 50,000 a8F coarse-to-fine parsing (Charniak et a|_’ 1998;
tive productions. This is 20 times smaller than thecharniak et al., 2006) can be used in the context of
generative split-and-merge grammars, which use ejgtent variable models. In coarse-to-fine parsing the
plicit category merging. The graph also shows thadentence is rapidly pre-parsed with increasingly re-
this compactness is due to controlling productiofined grammars, pruning away unlikely chart items
sparsity, as the single-scale discriminative grammayg each pass. In their work the grammar is pro-
are two orders of magnitude larger. jected onto coarser versions, which are then used
for pruning. Multi-scale grammars, in contrast, do
not require projections. The refinement hierarchy is
Figure 4 shows development set results for Erpuilt in and can be used directly for coarse-to-fine
glish. In terms of parsing accuracy, multi-scalgruning. Each production in the grammar is associ-
grammars significantly outperform discriminativelyated with a set of hierarchical features. To obtain a
trained single-scale latent variable grammars angbarser version of a multi-scale grammar, one there-
perform on par with the generative split-and-merggore simply limits which features in the refinement
grammars. The graph also shows that the unknowijerarchy can be accessed. In our experiments, we
word and span features each add about 0.5% in fingdart by parsing with our coarsest grammar and al-
parsing accuracy. Note that the span features inbw an additional level of refinement at each stage of
prove the performance of the unsplit baseline gramhe pre-parsing. Compared to the generative parser
mar by 8%, but not surprisingly their contribution of Petrov and Klein (2007), parsing with multi-scale
" SSee Gildea (2001) for the exact setup. grammars requires the evaluation of 29% fewer pro-

"This setup contains only sentences without annotation edUCtions, decreasing the average parsing time per
rors, as in (Arun and Keller, 2005). sentence by 36% to 0.36 sec/sentence.

7.2 Accuracy
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<40words|  all able models are well suited for capturing the syn-
| Parser F1_EX | F1 EX| tactic properties of a range of languages, and also

ENGLISH-WSJ shows that discriminative grammars are still effec-

Petrov and Klein (2008) |88.8 35.7|88.3 33.1 tive when trained on smaller corpora.
Charniak et al. (2005) 90.3 39.6|89.7 37.2

Petrov and Klein (2007) |90.6 39.1|90.1 37.1 .
This work w/o span featuras89.7 39.6/89.2 37.2 8 Analysis

This work w/ span featureg 90.0 40.1|89.4 37.7 ] o ]
ENGLISH-WSJ (reranked) It can be illuminating to see the subcategories that

Huang (2008) [02.3 46.2]91.7 435 are being learned by our discriminative multi-scale
ENGLISH-BROWN grammars and to compare them to generatively es-
Charniak et al. (2005) 845 34.8/829 317 timated latent variable grammars. Compared to the
Petrov and Klein (2007) |84.9 34.5/83.7 31.2 generative case, the lexical categories in the discrim-
This work w/o span featurgs85.3 35.6|84.3 32.1 inative grammars are substantially less refined. For
This work w/ span featureg 85.6 35.8/ 84.5 32.3 example, in the generative case, the nominal cate-

ENGLISH-BROWN (reranked) gories were fully refined, while in the discrimina-

Charniak etal. (2005) | 86.8 39.9]85.2 37.8 tive case, fewer nominal clusters were heavily used.
FRENCH One reason for this can be seen by inspecting the

Arun and Keller (2005) | 79.2 21.2)75.6 16.4 first two-way split in the NNP tag. The genera-
This Paper 80.1 242|772 192 e model split into initial NNPs $an, Wa) and

__ GERMAN final NNPs Erancisco, Stredt In contrast, the dis-
Petrov and Klein (2007) | 80.8 40.8/80.1 39.1 iminative split was between organizational entities
This Paper 81.5 45.2|80.7 43.9

(Stock, Exchangeand other entity typesSgptember,
Table 2: Our final test set parsing accuracies compared beW, Yorl. This constrast is unsurprising. Genera-
the best previous work on English, French and Germantive likelihood is advantaged by explaining lexical
. choice -NewandYorkoccur in very different slots.

7.4 Final Results However, they convey the same information about
For each corpus we selected the grammar that gatlee syntactic context above their base NP and are
the best performance on the development set to partberefore treated the same, discriminatively, while
the final test set. Table 2 summarizes our final teshe systematic attachment distinctions between tem-
set performance, showing that multi-scale grammagorals and named entities are more predictive.
achieve state-of-the-art performance on most tasks. Analyzing the syntactic and semantic patterns
On WSJ-English, the discriminative grammars peftearned by the grammars shows similar trends. In
form on par with the generative grammars of PetroTable 3 we compare the number of subcategories
et al. (2006), falling slightly short in terms of F1, butin the generative split-and-merge grammars to the
having a higher exact match score. When trainegverage number of features per unsplit production
on WSJ-English but tested on the Brown corpusyith that phrasal category as head in our multi-scale
the discriminative grammars clearly outperform thegrammars after 5 split (and merge) rounds. These
generative grammars, suggesting that the highly reguantities are inherently different: the number of
ularized and extremely compact multi-scale gramfeatures should be roughly cubic in the number of
mars are less prone to overfitting. All those methsubcategories. However, we observe that the num-
ods fall short of reranking parsers like Charniak antlers are very close, indicating that, due to the spar-
Johnson (2005) and Huang (2008), which, howevesity of our productions, and the efficient multi-scale
have access to many additional features, that canr@tcoding, the number of grammar parameters grows
be used in our dynamic program. linearly in the number of subcategories. Further-

When trained on the French and German treanore, while most categories have similar complex-
banks, our multi-scale grammars achieve the be#y in those two cases, the complexity of the two
figures we are aware of, without any language spenost refined phrasal categories are flipped. Gener-
cific modifications. This confirms that latent vari-ative grammars split NPs most highly, discrimina-
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ENGLISH | GERMAN | FRENCH
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n O

o oo a a3 5 o E I i
Z >anun<I<<I<0oa - -ous -0s wen
Generative Adjectives -ble -bar -ble
. 32 24 20 12 12 12 8 7 § -nth -ig -ive
subcategories - = p
Discriminative -on tat e
. 19 32 20 14 14 8 7 9 6 Nouns -en -ung -eur

production parameters ;

-cle -rei -ges
) ) _ o Verb -ed -st -ées

Table 3: Complexity of highly split phrasal categories in erbs -s -eht e
generative and discriminative grammars. Note that sub- | Adverbs -ly -mal -ent
categories are compared to production parameters, indi- | Numbers -ty -zig —

cating that the number of parameters grows cubicly in the _ _ _ _
number of subcategories for generative grammars, whiliable 4: Automatically learned suffixes with the highest
growing linearly for multi-scale grammars. weights for different languages and part-of-speech tags.

tive grammars split the VP. This distinction seemgne'[hOOIS like split-and-merge (PeFrov etal, 2.006)'
to be because the complexity of VPs is more Syntagecause fewer parameters are estimated, multi-scale

tic (e.g. complex subcategorization), while that oframmars may also be less prone t°_ overflttln_g, as
§uggested by a cross-corpus evaluation experiment.

NPs is more lexical (noun choice is generally higheF h the discriminative f K bl
entropy than verb choice). urthermore, the discriminative framework enables
the seamless integration of additional, overlapping

It is also interesting to examine the automaticaII)% atures, such as span features and unknown word

learned word class features. Table 4 shows the suf- ) .
. . . . . eatures. Such features further improve parsing per-
fixes with the highest weight for a few different cat- .

formance and make the latent variable grammars

egories across the three languages that we experi- .
. . ; very language independent.

mented with. The learning algorithm has selected i .

L : . - Our parser, along with trained grammars
discriminative suffixes that are typical derviational : : .

) ) ) . . for a variety of languages, is available at

or inflectional morphemes in their respective lan- tto-//nlo.cs. berkelev.edu
guages. Note that the highest weighted suffixes wiﬂ p-/inip.Cs. y-edu.
typically not correspond to the most common suffix
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