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Abstract

Previous work on ordering events in text has
typically focused on local pairwise decisions,
ignoring globally inconsistent labels. How-
ever, temporal ordering is the type of domain
in which global constraints should be rela-
tively easy to represent and reason over. This
paper presents a framework that informs lo-
cal decisions with two types of implicit global
constraints: transitivity (A before B and B be-
fore C implies A before C) and time expression
normalization (e.g. last month is before yes-
terday). We show how these constraints can
be used to create a more densely-connected
network of events, and how global consis-
tency can be enforced by incorporating these
constraints into an integer linear programming
framework. We present results on two event
ordering tasks, showing a 3.6% absolute in-
crease in the accuracy of before/after classifi-
cation over a pairwise model.

1 Introduction

Being able to temporally order events is a neces-
sary component for complete document understand-
ing. Interest in machine learning approaches for this
task has recently been encouraged through the cre-
ation of the Timebank Corpus (Pustejovsky et al.,
2003). However, most work on event-event order-
ing has focused on improving classifiers for pair-
wise decisions, ignoring obvious contradictions in
the global space of events when misclassifications
occur. A global framework to repair these event or-
dering mistakes has not yet been explored.

This paper addresses three main factors involved
in a global framework: the global optimization al-
gorithm, the constraints that are relevant to the task,
and the level of connectedness across pairwise de-
cisions. We employ Integer Linear Programming to
address the first factor, drawing from related work
in paragraph ordering (Bramsen et al., 2006). After
finding minimal gain with the initial model, we ex-
plore reasons for and solutions to the remaining two
factors through temporal reasoning and transitivity
rule expansion.

We analyze the connectivity of the Timebank Cor-
pus and show how textual events can be indirectly
connected through a time normalization algorithm
that automatically creates new relations between
time expressions. We show how this increased con-
nectivity is essential for a global model to improve
performance.

We present three progressive evaluations of our
global model on the Timebank Corpus, showing a
3.6% gain in accuracy over its original set of re-
lations, and an 81% increase in training data size
from previous work. In addition, we present the first
results on Timebank that include an unknown rela-
tion, establishing a benchmark for performance on
the full task of document ordering.

2 Previous Work

Recent work on classifying temporal relations
within the Timebank Corpus built 6-way relation
classifiers over 6 of the corpus’ 13 relations (Mani et
al., 2006; Mani et al., 2007; Chambers et al., 2007).
A wide range of features are used, ranging from sur-
face indicators to semantic classes. Classifiers make
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local pairwise decisions and do not consider global
implications between the relations.

The TempEval-07 (Verhagen et al., 2007) contest
recently used two relations, before and after, in a
semi-complete textual classification task with a new
third relation to distinguish relations that can be la-
beled with high confidence from those that are un-
certain, called vague. The task was a simplified clas-
sification task from Timebank in that only one verb,
the main verb, of each sentence was used. Thus, the
task can be viewed as ordering the main events in
pairwise sentences rather than the entire document.

This paper uses the core relations of TempEval
(before,after,vague) and applies them to a full docu-
ment ordering task that includes every labeled event
in Timebank. In addition, we extend the previous
work by including a temporal reasoning component
and embedding it within a global constraint model.

3 The Timebank Corpus

The Timebank Corpus (Pustejovsky et al., 2003) is
a corpus of 186 newswire articles that are tagged
for events, time expressions, and relations between
the events and times. The individual events are fur-
ther tagged for temporal information such as tense,
modality and grammatical aspect. Time expressions
use the TimeML (Ingria and Pustejovsky, 2002)
markup language. There are 6 main relations and
their inverses in Timebank: before, ibefore, includes,
begins, ends and simultaneous.

This paper describes work that classifies the re-
lations between events, making use of relations be-
tween events and times, and between the times
themselves to help inform the decisions.

4 The Global Model

Our initial model has two components: (1) a pair-
wise classifier between events, and (2) a global con-
straint satisfaction layer that maximizes the confi-
dence scores from the classifier. The first is based
on previous work (Mani et al., 2006; Chambers et
al., 2007) and the second is a novel contribution to
event-event classification.

4.1 Pairwise Classification

Classifying the relation between two events is the
basis of our model. A soft classification with confi-

dence scores is important for the global maximiza-
tion step that is described in the next section. As
in Chambers et al. (2007), we build support vec-
tor machine (SVM) classifiers and use the probabili-
ties from pairwise SVM decisions as our confidence
scores. These scores are then used to choose an op-
timal global ordering.

Following our previous work, we use the set of
features summarized in figure 1. They vary from
POS tags and lexical features surrounding the event,
to syntactic dominance, to whether or not the events
share the same tense, grammatical aspect, or aspec-
tual class. These features are the highest performing
set on the basic 6-way classification of Timebank.

Feature Description
Word* The text of the event
Lemma* The lemmatized head word
Synset* The WordNet synset of head word
POS* 4 POS tags, 3 before, and 1 event
POS bigram* The POS bigram of the event and its

preceding tag
Prep* Preposition lexeme, if in a preposi-

tional phrase
Tense* The event’s tense
Aspect* The event’s grammatical aspect
Modal* The modality of the event
Polarity* Positive or negative
Class* The aspecual class of the event
Tense Pair The two concatenated tenses
Aspect Pair The two concatenated aspects
Class Pair The two concatenated classes
POS Pair The two concatenated POS tags
Tense Match true if the events have the same tense
Aspect Match true if the events have the same as-

pect
Class Match true if the events have the same class
Dominates true if the first event syntactically

dominates the second
Text Order true if the first event occurs first in

the document
Entity Match true if they share an entity as an ar-

gument
Same Sent true if both events are in the same

sentence

Figure 1: The features to learn temporal relations be-
tween two events. Asterisks (*) indicate features that are
duplicated, one for each of the two events.

We use Timebank’s hand tagged attributes in the
feature values for the purposes of this comparative
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before after unknown
A r1 B .5 .3 .2
B r2 C .4 .3 .3
A r3 C .4 .5 .1
total 1.3 1.1 .6
A r1 B .5 .3 .2
B r2 C .4 .3 .3
A r3 C .2 .7 .1
total 1.1 1.3 .6

Figure 2: Two sets of confidence scores. The first set
chooses before for all three labels, and the second chooses
after. Other lower-scoring valid relation sets also exist,
such as before, unknown, and before.

study of global constraints, described next.

4.2 Global Constraints

Pairwise classifiers can make contradictory classifi-
cations due to their inability to consider other deci-
sions. For instance, the following three decisions are
in conflict:

A before B
B before C
A after C

Transitivity is not taken into account. In fact, there
are several ways to resolve the conflict in this exam-
ple. Given confidence scores (or probabilities) for
each possible relation between the three pairs, we
can compute an optimal label assignment. Differ-
ent scores can lead to different conflict resolutions.
Figure 2 shows two resolutions given different sets
of scores. The first chooses before for all three rela-
tions, while the second chooses after.

Bramsen et al. (2006) presented a variety of ap-
proaches to using transitivity constraints to help in-
form pairwise decisions. They found that Integer
Linear Programming (ILP) performed the best on a
paragraph ordering task, consistent with its property
of being able to find the optimal solution for a set
of constraints. Other approaches are variations on
a greedy strategy of adding pairs of events one at a
time, ordered by their confidence. These can lead to
suboptimal configurations, although they are guar-
anteed to find a solution. Mani et al. (2007) sub-
sequently proposed one of these greedy strategies as
well, but published results are not available. We also

implemented a greedy best-first strategy, but found
ILP outperformed it.

Our Integer Linear Programming framework uses
the following objective function:

max
∑

i

∑
j

pijxij (1)

with added constraints:

∀i∀j xij ∈ {0, 1} (2)

∀i xi1 + xi2 + ... + xim = 1 (3)

where xij represents the ith pair of events classified
as the jth relation of m relations. Thus, each pair
of events generates m variables. Given n pairs of
events, there are n ∗ m variables. pij is the proba-
bility of classifying pair i with relation j. Equation
2 (the first constraint) simply says that each variable
must be 0 or 1. Equation 3 contains m variables for
a single pair of events i representing its m possible
relations. It states that one relation must be set to 1
and the rest to 0. In other words, a pair of events
cannot have two relations at the same time. Finally,
a transitivity constraint is added for all connected
pairs i, j, k, for each transitivity condition that infers
relation c given a and b:

xia + xjb − xkc <= 1 (4)

We generated the set of constraints for each doc-
ument and used lpsolve1 to solve the ILP constraint
problem.

The transitivity constraints are only effective if
the available pairwise decisions constitute a con-
nected graph. If pairs of events are disconnected,
then transitivity makes little to no contribution be-
cause these constraints are only applicable to con-
nected chains of events.

4.3 Transitive Closure
In order to connect the event graph, we draw on
work from (Mani et al., 2006) and apply transitive
closure to our documents. Transitive closure was
first proposed not to address the problem of con-
nected event graphs, but rather to expand the size
of training data for relations such as before. Time-
bank is a relatively small corpus with few examples

1http://sourceforge.net/projects/lpsolve
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Total Event-Event Relations After Closure

before after
Timebank 592 656
+ closure 3919 3405

Figure 3: The number of event-event relations after tran-
sitive closure.

of each relation. One way of expand the training
set is through transitive rules. A few rules are given
here:
A simultaneous B ∧A before C → B before C

A includes B ∧A ibefore C → B before C

A before B ∧A ends C → B after C

While the original motivation was to expand the
training size of tagged relations, this approach also
creates new connections in the graph, replacing pre-
viously unlabeled event pairs with their true rela-
tions. We adopted this approach and closed the orig-
inal set of 12 relations to help connect the global
constraint model.

4.4 Initial Experiment

The first evaluation of our global temporal model
is on the Timebank Corpus over the labeled rela-
tions before and after. We merged ibefore and iafter
into these two relations as well, ignoring all oth-
ers. We use this task as a reduced evaluation to
study the specific contribution of global constraints.
We also chose this strict ordering task because it is
well defined from a human understanding perspec-
tive. Snow et al. (2008) shows that average inter-
net users can make before/after decisions with very
high confidence, although the distinction with an un-
known relation is not as clear. An evaluation includ-
ing unknown (or vague as in TempEval) is presented
later.

We expanded the corpus (prior to selecting the be-
fore/after relations) using transitive closure over all
12 relations as described above. Figure 3 shows the
increase in data size. The number of before and after
relations increase by a factor of six.

We trained and tested the system with 10-fold
cross validation and micro-averaged accuracies. The
folds were randomly generated to separate the 186
files into 10 folds (18 or 19 files per fold). The same
10-way split is used for all the evaluations. We used

Comparative Results

Training Set Accuracy
Timebank Pairwise 66.8%
Global Model 66.8%

Figure 4: Using the base Timebank annotated tags for
testing, accuracy on before/after tags in the two models.

libsvm2 to implement our SVM classifiers.
Figure 4 shows the results from our ILP model

with transitivity constraints. The first row is the
baseline pairwise classification trained and tested on
the original Timebank relations. The second row
gives performance with ILP. The model shows no
improvement. The global ILP constraints did affect
local decisions, changing 175 of them (out of 7324),
but the changes cancelled out and had no affect on
overall accuracy.

4.5 Loosely Connected Graph
Why didn’t a global model help? The problem lies
in the graph structure of Timebank’s annotated rela-
tions. The Timebank annotators were not required
to annotate relations between any particular pair of
events. Instead, they were instructed to annotate
what seemed appropriate due to the almost insur-
mountable task of annotating all pairs of events. A
modest-sized document of 30 events, for example,
would contain

(30
2

)
= 435 possible pairs. Anno-

tators thus marked relations where they deemed fit,
most likely between obvious and critical relations to
the understanding of the article. The vast majority of
possible relations are untagged, thus leaving a large
set of unlabeled (and disconnected) unknown rela-
tions.

Figure 5 graphically shows all relations that are
annotated between events and time expressions in
one of the shorter Timebank documents. Nodes rep-
resent events and times (event nodes start with the
letter ’e’, times with ’t’), and edges represent tempo-
ral relations. Solid lines indicate hand annotations,
and dotted lines indicate new rules from transitive
closure (only one, from event e4 to time t14). As
can be seen, the graph is largely disconnected and
a global model contributes little information since
transitivity constraints cannot apply.

2http://www.csie.ntu.edu.tw/̃ cjlin/libsvm
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Timebank Annotation of wsj 0551

Figure 5: Annotated relations in document wsj 0551.

The large amount of unlabeled relations in the
corpus presents several problems. First, building a
classifier for these unknown relations is easily over-
whelmed by the huge training set. Second, many of
the untagged pairs have non-unknown ordering rela-
tions between them, but were missed by the annota-
tors. This point is critical because one cannot filter
this noise when training an unknown classifier. The
noise problem will appear later and will be discussed
in our final experiment. Finally, the space of an-
notated events is very loosely connected and global
constraints cannot assist local decisions if the graph
is not connected. The results of this first experiment
illustrate this latter problem.

Bethard et al. (2007) strengthen the claim that
many of Timebank’s untagged relations should not
be left unlabeled. They performed an independent
annotation of 129 of Timebank’s 186 documents,
tagging all events in verb-clause relationships. They
found over 600 valid before/after relations that are
untagged in Timebank, on average three per docu-
ment. One must assume that if these nearby verb-
clause event pairs were missed by the annotators,
the much larger number of pairs that cross sentence
boundaries were also missed.

The next model thus attempts to fill in some of the
gaps and further connect the event graph by using
two types of knowledge. The first is by integrating
Bethard’s data, and the second is to perform tempo-
ral reasoning over the document’s time expressions
(e.g. yesterday or january 1999).

5 A Global Model With Time

Our initial model contained two components: (1) a
pairwise classifier between events, and (2) a global
constraint satisfaction layer. However, due to the
sparseness in the event graph, we now introduce
a third component addressing connectivity: (3) a
temporal reasoning component to inter-connect the
global graph and assist in training data expansion.

One important aspect of transitive closure in-
cludes the event-time and time-time relations during
closure, not just the event-event links. Starting with
5,947 different types of relations, transitive rules in-
crease the dataset to approximately 12,000. How-
ever, this increase wasn’t enough to be effective in
global reasoning. To illustrate the sparsity that still
remains, if each document was a fully connected
graph of events, Timebank would contain close to
160,000 relations3, more than a 13-fold increase.

More data is needed to enrich the Timebank event
graph. Two types of information can help: (1) more
event-event relations, and (2) a separate type of in-
formation to indirectly connect the events: event-
X-event. We incorporate the new annotations from
Bethard et al. (2007) to address (1) and introduce
a new temporal reasoning procedure to address (2).
The following section describes this novel approach
to adding time expression information to further
connect the graph.

5.1 Time-Time Information

As described above, we use event-time relations to
produce the transitive closure, as well as annotated
time-time relations. It is unclear if Mani et al. (2006)
used these latter relations in their work.

However, we also add new time-time links that
are deduced from the logical time intervals that they
describe. Time expressions can be resolved to time
intervals with some accuracy through simple rules.
New time-time relations can then be added to our
space of events through time stamp comparisons.
Take this newswire example:

The Financial Times 100-share index shed 47.3 points to
close at 2082.1, down 4.5% from the previous Friday,
and 6.8% from Oct. 13, when Wall Street’s plunge helped
spark the current weakness in London.

3Sum over the # of events nd in each document d,
(

nd
2

)
702



The first two expressions (‘previous Friday’
and ‘Oct. 13’) are in a clear before relation-
ship that Timebank annotators captured. The
‘current’ expression, is correctly tagged with the
PRESENT REF attribute to refer to the document’s
timestamp. Both ‘previous Friday’ and ‘Oct. 13’
should thus be tagged as being before this expres-
sion. However, the annotators did not tag either
of these two before relations, and so our timestamp
resolution procedure fills in these gaps. This is a
common example of two expressions that were not
tagged by the annotators, yet are in a clear temporal
relationship.

We use Timebank’s gold standard TimeML an-
notations to extract the dates and times from the
time expressions. In addition, those marked as
PRESENT REF are resolved to the document times-
tamp. Time intervals that are strictly before or after
each other are thus labeled and added to our space
of events. We create new before relations based on
the following procedure:

if event1.year < event2.year
return true

if event1.year == event2.year
if event1.month < event2.month

return true
if event1.month == event2.month

if event1.day < event2.day
return true

end
end
return false

All other time-time orderings not including the
before relation are ignored (i.e. includes is not cre-
ated, although could be with minor changes).

This new time-time knowledge is used in two sep-
arate stages of our model. The first is just prior to
transitive closure, enabling a larger expansion of our
tagged relations set and reduce the noise in the un-
known set. The second is in the constraint satisfac-
tion stage where we add our automatically computed
time-time relations (with the gold event-time rela-
tions) to the global graph to help correct local event-
event mistakes.

Total Event-Event Relations After Closure

before after
Timebank 3919 3405
+ time-time 5604 5118
+ time/bethard 7111 6170

Figure 6: The number of event-event before and after re-
lations after transitive closure on each dataset.

Comparative Results with Closure

Training Set Accuracy
Timebank Pairwise 66.8%
Global Model 66.8%
Global + time/bethard 70.4%

Figure 7: Using the base Timebank annotated tags for
testing, the increase in accuracy on before/after tags.

5.2 Temporal Reasoning Experiment

Our second evaluation continues the use of the two-
way classification task with before and after to ex-
plore the contribution of closure, time normaliza-
tion, and global constraints.

We augmented the corpus with the labeled rela-
tions from Bethard et al. (2007) and added the au-
tomatically created time-time relations as described
in section 5.1. We then expanded the corpus using
transitive closure. Figure 6 shows the progressive
data size increase as we incrementally add each to
the closure algorithm.

The time-time generation component automati-
cally added 2459 new before and after time-time re-
lations into the 186 Timebank documents. This is
in comparison to only 157 relations that the human
annotators tagged, less than 1 per document on av-
erage. The second row of figure 6 shows the dras-
tic effect that these time-time relations have on the
number of available event-event relations for train-
ing and testing. Adding both Bethard’s data and
the time-time data increases our training set by 81%
over closure without it.

We again performed 10-fold cross validation with
micro-averaged accuracies, but each fold tested only
on the transitively closed Timebank data (the first
row of figure 6). The training set used all available
data (the third row of figure 6) including the Bethard
data as well as our new time-time links.
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Figure 7 shows the results from the new model.
The first row is the baseline pairwise classification
trained and tested on the original relations only. Our
model improves by 3.6% absolute. This improve-
ment is statistically significant (p < 0.000001, Mc-
Nemar’s test, 2-tailed).

5.3 Discussion

To further illustrate why our model now improves
local decisions, we continue our previous graph ex-
ample. The actual text for the graph in figure 5 is
shown here:

docstamp: 10/30/89 (t14)
Trustcorp Inc. will become(e1) Society Bank & Trust
when its merger(e3) is completed(e4) with Society Corp.
of Cleveland, the bank said(e5). Society Corp., which is
also a bank, agreed(e6) in June(t15) to buy(e8) Trustcorp
for 12.4 million shares of stock with a market value of
about $450 million. The transaction(e9) is expected(e10)
to close(e2) around year end(t17).

The automatic time normalizer computes and adds
three new time-time relations, two connecting t15
and t17 with the document timestamp, and one con-
necting t15 and t17 together. These are not other-
wise tagged in the corpus.

Time-Time + Closure

Figure 8: Before and after time-time links with closure.

Figure 8 shows the augmented document. The
double-line arrows indicate the three new time-time
relations and the dotted edges are the new relations
added by our transitive closure procedure. Most crit-
ical to this paper, three of the new edges are event-
event relations that help to expand our training data.

If this document was used in testing (rather than
training), these new edges would help inform our
transitive rules during classification.

Even with this added information, disconnected
segments of the graph are still apparent. However,
the 3.6% performance gain encourages us to move
to the final full task.

6 Final Experiment with Unknowns

Our final evaluation expands the set of relations to
include unlabeled relations and tests on the entire
dataset available to us. The following is now a clas-
sification task between the three relations: before,
after, and unknown.

We duplicated the previous evaluation by adding
the labeled relations from Bethard et al. (2007) and
our automatically created time-time relations. We
then expanded this dataset using transitive closure.
Unlike the previous evaluation, we also use this en-
tire dataset for testing, not just for training. Thus, all
event-event relations in Bethard as well as Timebank
are used to expand the dataset with transitive closure
and are used in training and testing. We wanted to
fully evaluate document performance on every pos-
sible event-event relation that logically follows from
the data.

As before, we converted IBefore and IAfter into
before and after respectively, while all other rela-
tions are reduced to unknown. This relation set co-
incides with TempEval-07’s core three relations (al-
though they use vague instead of unknown).

Rather than include all unlabeled pairs in our un-
known set, we only include the unlabeled pairs that
span at most one sentence boundary. In other words,
events in adjacent sentences are included in the un-
known set if they were not tagged by the Timebank
annotators. The intuition is that annotators are more
likely to label nearby events, and so events in adja-
cent sentences are more likely to be actual unknown
relations if they are unlabeled. It is more likely that
distant events in the text were overlooked by con-
venience, not because they truly constituted an un-
known relationship.

The set of possible sentence-adjacent unknown re-
lations is very large (approximately 50000 unknown
compared to 7000 before), and so we randomly se-
lect a percentage of these relations for each evalu-
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Classification Accuracy
% unk base global global+time
0 72.0% 72.2% 74.0%
1 69.4% 69.5% 71.3%
3 65.5% 65.6% 67.1%
5 63.7% 63.8% 65.3%
7 61.2% 61.6% 62.8%
9 59.3% 59.5% 60.6%
11 58.1% 58.4% 59.4%
13 57.1% 57.1% 58.1%

Figure 9: Overall accuracy when training with different
percentages of unknown relations included. 13% of un-
knowns is about equal to the number of befores.

ation. We used the same SVM approach with the
features described in section 4.1.

6.1 Results

Results are presented in figure 9. The rows in the
table are different training/testing runs on varying
sizes of unknown training data. There are three
columns with accuracy results of increasing com-
plexity. The first, base, are results from pairwise
classification decisions over Timebank and Bethard
with no global model. The second, global, are re-
sults from the Integer Linear Programming global
constraints, using the pairwise confidence scores
from the base evaluation. Finally, the global+time
column shows the ILP results when all event-time,
time-time, and automatically induced time-time re-
lations are included in the global graph.

The ILP approach does not alone improve perfor-
mance on the event-event tagging task, but adding
the time expression relations greatly increases the
global constraint results. This is consistent with the
results from out first two experiments. The evalua-
tion with 1% of the unknown tags shows an almost
2% improvement in accuracy. The gain becomes
smaller as the unknown set increases in size (1.0%
gain with 13% unknown). Unknown relations will
tend to be chosen as more weight is given to un-
knowns. When there is a constraint conflict in the
global model, unknown tends to be chosen because
it has no transitive implications. All improvements
from base to global+time are statistically significant
(p < 0.000001, McNemar’s test, 2-tailed).

Base Pairwise Classification
precision recall f1-score

before 61.4 55.4 58.2
after 57.6 53.1 55.3
unk 53.0 62.8 57.5

Global+Time Classification
precision recall f1-score

before 63.7 (+2.3) 57.1 (+2.2) 60.2 (+2.0)
after 60.3 (+2.7) 54.3 (+2.9) 57.1 (+1.8)
unk 52.0 (-1.0) 62.9 (+0.1) 56.9 (-0.6)

Figure 10: Precision and Recall for the base pairwise de-
cisions and the global constraints with integrated time in-
formation.

The first row of figure 9 corresponds to the re-
sults in our second experiment in figure 7, but shows
higher accuracy. The reason is due to our different
test sets. This final experiment includes Bethard’s
event-event relations in testing. The improved per-
formance suggests that the clausal event-event rela-
tions are easier to classify, agreeing with the higher
accuracies originally found by Bethard et al. (2007).

Figure 10 shows the precision, recall, and f-score
for the evaluation with 13% unknowns. This set was
chosen for comparison because it has a similar num-
ber of unknown labels as before labels. We see an
increase in precision in both the before and after de-
cisions by up to 2.7%, an increase in recall up to
2.9%, and an fscore by as much as 2.0%. The un-
known relation shows mixed results, possibly due to
its noisy behavior as discussed throughout this pa-
per.

6.2 Discussion
Our results on the two-way (before/after) task show
that adding additional implicit temporal constraints
and then performing global reasoning results in
significant improvements in temporal ordering of
events (3.6% absolute over simple pairwise deci-
sions).

Both before and after also showed increases in
precision and recall in the three-way evaluation.
However, unknown did not parallel this improve-
ment, nor are the increases as dramatic as in the two-
way evaluation. We believe this is consistent with
the noise that exists in the Timebank corpus for un-
labeled relations. Evidence from Bethard’s indepen-
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dent annotations directly point to missing relations,
but the dramatic increase in the size of our closure
data (81%) from adding a small amount of time-time
relations suggests that the problem is widespread.
This noise in the unknown relation may be damp-
ening the gains that the two way task illustrates.

This work is also related to the task of event-time
classification. While not directly addressed in this
paper, the global methods described within clearly
apply to pairwise models of event-time ordering as
well.

Further progress in improving global constraints
will require new methods to more accurately iden-
tify unknown events, as well as new approaches to
create implicit constraints over the ordering. We ex-
pect such an improved ordering classifier to be used
to improve the performance of tasks such as summa-
rization and question answering about the temporal
nature of events.
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