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Abstract

We present a novel learning framework for

pipeline models aimed at improving the com-

munication between consecutive stages in a

pipeline. Our method exploits the confidence

scores associated with outputs at any given

stage in a pipeline in order to compute prob-

abilistic features used at other stages down-

stream. We describe a simple method of in-

tegrating probabilistic features into the linear

scoring functions used by state of the art ma-

chine learning algorithms. Experimental eval-

uation on dependency parsing and named en-

tity recognition demonstrate the superiority of

our approach over the baseline pipeline mod-

els, especially when upstream stages in the

pipeline exhibit low accuracy.

1 Introduction

Machine learning algorithms are used extensively

in natural language processing. Applications range

from fundamental language tasks such as part of

speech (POS) tagging or syntactic parsing, to higher

level applications such as information extraction

(IE), semantic role labeling (SRL), or question an-

swering (QA). Learning a model for a particular lan-

guage processing problem often requires the output

from other natural language tasks. Syntactic pars-

ing and dependency parsing usually start with a tex-

tual input that is tokenized, split in sentences and

POS tagged. In information extraction, named en-

tity recognition (NER), coreference resolution, and

relation extraction (RE) have been shown to benefit

from features that use POS tags and syntactic depen-

dencies. Similarly, most SRL approaches assume

a parse tree representation of the input sentences.

The common practice in modeling such dependen-

cies is to use a pipeline organization, in which the

output of one task is fed as input to the next task

in the sequence. One advantage of this model is

that it is very simple to implement; it also allows

for a modular approach to natural language process-

ing. The key disadvantage is that errors propagate

between stages in the pipeline, significantly affect-

ing the quality of the final results. One solution

is to solve the tasks jointly, using the principled

framework of probabilistic graphical models. Sut-

ton et al. (2004) use factorial Conditional Random

Fields (CRFs) (Lafferty et al., 2001) to jointly pre-

dict POS tags and segment noun phrases, improving

on the cascaded models that perform the two tasks

in sequence. Wellner et al. (2004) describe a CRF

model that integrates the tasks of citation segmen-

tation and citation matching. Their empirical results

show the superiority of the integrated model over the

pipeline approach. While more accurate than their

pipeline analogues, probabilistic graphical models

that jointly solve multiple natural language tasks are

generally more demanding in terms of finding the

right representations, the associated inference algo-

rithms and their computational complexity. Recent

negative results on the integration of syntactic pars-

ing with SRL (Sutton and McCallum, 2005) provide

additional evidence for the difficulty of this general

approach. When dependencies between the tasks

can be formulated in terms of constraints between

their outputs, a simpler approach is to solve the tasks

separately and integrate the constraints in a linear

programming formulation, as proposed by Roth and
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Yih (2004) for the simultaneous learning of named

entities and relations between them. More recently,

Finkel et al. (2006) model the linguistic pipelines

as Bayesian networks on which they perform Monte

Carlo inference in order to find the most likely out-

put for the final stage in the pipeline.

In this paper, we present a new learning method

for pipeline models that mitigates the problem of er-

ror propagation between the tasks. Our method ex-

ploits the probabilities output by any given stage in

the pipeline as weights for the features used at other

stages downstream. We show a simple method of

integrating probabilistic features into linear scoring

functions, which makes our approach applicable to

state of the art machine learning algorithms such as

CRFs and Support Vector Machines (Vapnik, 1998;

Schölkopf and Smola, 2002). Experimental results

on dependency parsing and named entity recogni-

tion show useful improvements over the baseline

pipeline models, especially when the basic pipeline

components exhibit low accuracy.

2 Learning with Probabilistic Features

We consider that the task is to learn a mapping from

inputs x ∈ X to outputs y ∈ Y(x). Each input

x is also associated with a different set of outputs

z ∈ Z(x) for which we are given a probabilistic

confidence measure p(z|x). In a pipeline model, z

would correspond to the annotations performed on

the input x by all stages in the pipeline other than

the stage that produces y. For example, in the case

of dependency parsing, x is a sequence of words, y

is a set of word-word dependencies, z is a sequence

of POS tags, and p(z|x) is a measure of the confi-

dence that the POS tagger has in the output z. Let

φ be a representation function that maps an exam-

ple (x, y, z) to a feature vector φ(x, y, z) ∈ R
d, and

w ∈ R
d a parameter vector. Equations (1) and (2)

below show the traditional method for computing

the optimal output ŷ in a pipeline model, assuming

a linear scoring function defined by w and φ.

ŷ(x) = argmax
y∈Y(x)

w · φ(x, y, ẑ(x)) (1)

ẑ(x) = argmax
z∈Z(x)

p(z|x) (2)

The weight vector w is learned by optimizing a pre-

defined objective function on a training dataset.

In the model above, only the best annotation ẑ

produced by upstream stages is used for determining

the optimal output ŷ. However, ẑ may be an incor-

rect annotation, while the correct annotation may be

ignored because it was assigned a lower confidence

value. We propose exploiting all possible annota-

tions and their probabilities as illustrated in the new

model below:

ŷ(x) = argmax
y∈Y(x)

w · ψ(x, y) (3)

ψ(x, y) =
∑

z∈Z(x)

p(z|x) · φ(x, y, z) (4)

In most cases, directly computing ψ(x, y) is unfeasi-

ble, due to a large number of annotations inZ(x). In

our dependency parsing example, Z(x) contains all

possible POS taggings of sentence x; consequently

its cardinality is exponential in the length of the sen-

tence. A more efficient way of computing ψ(x, y)
can be designed based on the observation that most

components φi of the original feature vector φ utilize

only a limited amount of evidence from the example

(x, y, z). We define (x̃, ỹ, z̃) ∈ Fi(x, y, z) to cap-

ture the actual evidence from (x, y, z) that is used by

one instance of feature function φi. We call (x̃, ỹ, z̃)
a feature instance of φi in the example (x, y, z).
Correspondingly, Fi(x, y, z) is the set of all fea-

ture instances of φi in example (x, y, z). Usually,

φi(x, y, z) is set to be equal with the number of in-

stances of φi in example (x, y, z), i.e. φi(x, y, z) =
|Fi(x, y, z)|. Table 1 illustrates three feature in-

stances (x̃, ỹ, z̃) generated by three typical depen-

dency parsing features in the example from Figure 1.

Because the same feature may be instantiated multi-

φ1 : DT→ NN φ2 : NNS→ thought φ3 : be← in

ỹ 10→11 2→4 7←9

z̃ DT10 NN11 NNS2

x̃ thought4 be7 in9

|Fi| O(|x|2) O(|x|) O(1)

Table 1: Feature instances.

ple times in the same example, the components of

each feature instance are annotated with their po-

sitions relative to the example. Given these defi-

nitions, the feature vector ψ(x, y) from (4) can be
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Figure 1: Dependency Parsing Example.

rewritten in a component-wise manner as follows:

ψ(x, y) = [ψ1(x, y) . . . ψd(x, y)] (5)

ψi(x, y) =
∑

z∈Z(x)

p(z|x) · φi(x, y, z)

=
∑

z∈Z(x)

p(z|x) · |Fi(x, y, z)|

=
∑

z∈Z(x)

p(z|x)
∑

(x̃,ỹ,z̃)∈Fi(x,y,z)

1

=
∑

z∈Z(x)

∑

(x̃,ỹ,z̃)∈Fi(x,y,z)

p(z|x)

=
∑

(x̃,ỹ,z̃)∈Fi(x,y,Z(x))

∑

z∈Z(x),z⊇z̃

p(z|x)

where Fi(x, y,Z(x)) stands for:

Fi(x, y,Z(x)) =
⋃

z∈Z(x)

Fi(x, y, z)

We introduce p(z̃|x) to denote the expectation:

p(z̃|x) =
∑

z∈Z(x),z⊇z̃

p(z|x)

Then ψi(x, y) can be written compactly as:

ψi(x, y) =
∑

(x̃,ỹ,z̃)∈Fi(x,y,Z(x))

p(z̃|x) (6)

The total number of terms in (6) is equal with the

number of instantiations of feature φi in the exam-

ple (x, y) across all possible annotations z ∈ Z(x),
i.e. |Fi(x, y,Z(x))|. Usually this is significantly

smaller than the exponential number of terms in (4).

The actual number of terms depends on the particu-

lar feature used to generate them, as illustrated in the

last row of Table 1 for the three features used in de-

pendency parsing. The overall time complexity for

calculating ψ(x, y) also depends on the time com-

plexity needed to compute the expectations p(z̃|x).

When z is a sequence, p(z̃|x) can be computed ef-

ficiently using a constrained version of the forward-

backward algorithm (to be described in Section 3).

When z is a tree, p(z̃|x) will be computed using a

constrained version of the CYK algorithm (to be de-

scribed in Section 4).

The time complexity can be further reduced if in-

stead of ψ(x, y) we use its subcomponent ψ̂(x, y)
that is calculated based only on instances that appear

in the optimal annotation ẑ:

ψ̂(x, y) = [ψ̂1(x, y) . . . ψ̂d(x, y)] (7)

ψ̂i(x, y) =
∑

(x̃,ỹ,z̃)∈Fi(x,y,ẑ)

p(z̃|x) (8)

The three models are summarized in Table 2 below.

In the next two sections we illustrate their applica-

ŷ(x) = argmax
y∈Y(x)

w · φ(x, y)

M1 φ(x, y) = φ(x, y, ẑ(x))
ẑ(x) = argmax

z∈Z(x)
p(z|x)

ŷ(x) = argmax
y∈Y(x)

w · ψ(x, y)

M2 ψ(x, y) = [ψ1(x, y) . . . ψd(x, y)]

ψi(x, y) =
∑

(x̃,ỹ,z̃)∈Fi(x,y,Z(x))

p(z̃|x)

ŷ(x) = argmax
y∈Y(x)

w · ψ̂(x, y)

M3 ψ̂(x, y) = [ψ̂1(x, y) . . . ψ̂d(x, y)]

ψ̂i(x, y) =
∑

(x̃,ỹ,z̃)∈Fi(x,y,ẑ)

p(z̃|x)

Table 2: Three Pipeline Models.

tion to two common tasks in language processing:

dependency parsing and named entity recognition.

3 Dependency Parsing Pipeline

In a traditional dependency parsing pipeline (model

M1 in Table 2), an input sentence x is first aug-
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mented with a POS tagging ẑ(x), and then pro-

cessed by a dependency parser in order to obtain

a dependency structure ŷ(x). To evaluate the new

pipeline models we use MSTPARSER
1, a linearly

scored dependency parser developed by McDonald

et al. (2005). Following the edge based factorization

method of Eisner (1996), the score of a dependency

tree in the first order version is defined as the sum of

the scores of all edges in the tree. Equivalently, the

feature vector of a dependency tree is defined as the

sum of the feature vectors of all edges in the tree:

M1: φ(x, y) =
∑

u→v∈y

φ(x, u→v, ẑ(x))

M2: ψ(x, y) =
∑

u→v∈y

ψ(x, u→v)

M3: ψ̂(x, y) =
∑

u→v∈y

ψ̂(x, u→v)

For each edge u→ v ∈ y, MSTPARSER generates

features based on a set of feature templates that take

into account the words and POS tags at positions u,

v, and their left and right neighbors u±1, v±1. For

example, a particular feature template T used inside

MSTPARSER generates the following POS bigram

features:

φi(x, u→v, z) =

{

1, if 〈zu, zv〉 = 〈t1, t2〉
0, otherwise

where t1, t2 ∈ P are the two POS tags associated

with feature index i. By replacing y with u→ v in

the feature expressions from Table 2, we obtain the

following formulations:

M1:φi(x, u→v) =

{

1, if 〈ẑu, ẑv〉=〈t1, t2〉
0, otherwise

M2:ψi(x, u→v) = p(z̃=〈t1, t2〉|x)

M3: ψ̂i(x, u→v) =

{

p(z̃=〈t1, t2〉|x), if 〈ẑu, ẑv〉=〈t1, t2〉
0, otherwise

where, following the notation from Section 2,

z̃ = 〈zu, zv〉 is the actual evidence from z that is

used by feature i, and ẑ is the top scoring annotation

produced by the POS tagger. The implementation in

MSTPARSER corresponds to the traditional pipeline

model M1. Given a method for computing feature

1URL: http://sourceforge.net/projects/mstparser

probabilities p(z̃ = 〈t1, t2〉|x), it is straightforward

to modify MSTPARSER to implement models M2

and M3 – we simply replace the feature vectors φ

with ψ and ψ̂ respectively. As mentioned in Sec-

tion 2, the time complexity of computing the fea-

ture vectors ψ in model M2 depends on the com-

plexity of the actual evidence z̃ used by the fea-

tures. For example, the feature template T used

above is based on the POS tags at both ends of a de-

pendency edge, consequently it would generate |P|2

features in model M2 for any given edge u → v.

There are however feature templates used in MST-

PARSER that are based on the POS tags of up to 4

tokens in the input sentence, which means that for

each edge they would generate |P|4 ≈ 4.5M fea-

tures. Whether using all these probabilistic features

is computationally feasible or not also depends on

the time complexity of computing the confidence

measure p(z̃|x) associated with each feature.

3.1 Probabilistic POS features

The new pipeline models M2 and M3 require an

annotation model that, at a minimum, facilitates

the computation of probabilistic confidence values

for each output. We chose to use linear chain

CRFs (Lafferty et al., 2001) since CRFs can be eas-

ily modified to compute expectations of the type

p(z̃|x), as needed by M2 and M3.

The CRF tagger was implemented in MAL-

LET (McCallum, 2002) using the original feature

templates from (Ratnaparkhi, 1996). The model

was trained on sections 2–21 from the English Penn

Treebank (Marcus et al., 1993). When tested on sec-

tion 23, the CRF tagger obtains 96.25% accuracy,

which is competitive with more finely tuned systems

such as Ratnaparkhi’s MaxEnt tagger.

We have also implemented in MALLET a con-

strained version of the forward-backward procedure

that allows computing feature probabilities p(z̃|x).
If z̃ = 〈ti1ti2 ...tik〉 specifies the tags at k positions

in the sentence, then the procedure recomputes the

α parameters for all positions between i1 and ik by

constraining the state transitions to pass through the

specified tags at the k positions. A similar approach

was used by Culotta et al. in (2004) in order to asso-

ciate confidence values with sequences of contigu-

ous tokens identified by a CRF model as fields in an

information extraction task. The constrained proce-
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dure requires (ik − i1)|P|
2 = O(N |P|2) multipli-

cations in an order 1 Markov model, where N is the

length of the sentence. Because MSTPARSER uses

an edge based factorization of the scoring function,

the constrained forward procedure will need to be

run for each feature template, for each pair of tokens

in the input sentence x. If the evidence z̃ required by

the feature template T constrains the tags at k posi-

tions, then the total time complexity for computing

the probabilistic features p(z̃|x) generated by T is:

O(N3|P|k+2)=O(N |P|2) ·O(N2) ·O(|P|k) (9)

As mentioned earlier, some feature templates used

in the dependency parser constrain the POS tags at 4

positions, leading to a O(N3|P|6) time complexity

for a length N sentence. Experimental runs on the

same machine that was used for CRF training show

that such a time complexity is not yet feasible, espe-

cially because of the large size of P (46 POS tags).

In order to speed up the computation of probabilis-

tic features, we made the following two approxima-

tions:

1. Instead of using the constrained forward-

backward procedure, we enforce an indepen-

dence assumption between tags at different po-

sitions and rewrite p(z̃ = 〈ti1ti2 ...tik〉|x) as:

p(ti1ti2 ...tik |x) ≈
k

∏

j=1

p(tij |x)

The marginal probabilities p(tij |x) are easily

computed using the original forward and back-

ward parameters as:

p(tij |x) =
αij (tij |x)βij (tij |x)

Z(x)

This approximation eliminates the factor

O(N |P|2) from the time complexity in (9).

2. If any of the marginal probabilities p(tij |x) is

less than a predefined threshold (τ |P|)−1, we

set p(z̃|x) to 0. When τ ≥ 1, the method is

guaranteed to consider at least the most proba-

ble state when computing the probabilistic fea-

tures. Looking back at Equation (4), this is

equivalent with summing feature vectors only

over the most probable annotations z ∈ Z(x).

The approximation effectively replaces the fac-

tor O(|P|k) in (9) with a quasi-constant factor.

The two approximations lead to an overall time com-

plexity of O(N2) for computing the probabilistic

features associated with any feature template T , plus

O(N |P|2) for the unconstrained forward-backward

procedure. We will use M ′2 to refer to the model

M2 that incorporates the two approximations. The

independence assumption from the first approxima-

tion can be relaxed without increasing the asymp-

totic time complexity by considering as independent

only chunks of contiguous POS tags that are at least

a certain number of tokens apart. Consequently,

the probability of the tag sequence will be approxi-

mated with the product of the probabilities of the tag

chunks, where the exact probability of each chunk

is computed in constant time with the constrained

forward-backward procedure. We will use M ′′2 to

refer to the resulting model.

3.2 Experimental Results

MSTPARSER was trained on sections 2–21 from the

WSJ Penn Treebank, using the gold standard POS

tagging. The parser was then evaluated on section

23, using the POS tagging output by the CRF tagger.

For model M1 we need only the best output from

the POS tagger. For models M ′2 and M ′′2 we com-

pute the probability associated with each feature us-

ing the corresponding approximations, as described

in the previous section. In model M ′′2 we consider

as independent only chunks of POS tags that are 4

tokens or more apart. If the distance between the

chunks is less than 4 tokens, the probability for the

entire tag sequence in the feature is computed ex-

actly using the constrained forward-backward pro-

cedure. Table 3 shows the accuracy obtained by

models M1, M ′2(τ) and M ′′2 (τ) for various values

of the threshold parameter τ . The accuracy is com-

M1 M ′2(1) M ′2(2) M ′2(4) M ′′2 (4)

88.51 88.66 88.67 88.67 88.70

Table 3: Dependency parsing results.

puted over unlabeled dependencies i.e. the percent-

age of words for which the parser has correctly iden-

tified the parent in the dependency tree. The pipeline
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Figure 2: Named Entity Recognition Example.

model M ′2 that uses probabilistic features outper-

forms the traditional pipeline model M1. As ex-

pected, M ′′2 performs slightly better than M ′2, due

to a more exact computation of feature probabilities.

Overall, only by using the probabilities associated

with the POS features, we achieve an absolute er-

ror reduction of 0.19%, in a context where the POS

stage in the pipeline already has a very high accu-

racy of 96.25%. We expect probabilistic features to

yield a more substantial improvement in cases where

the pipeline model contains less accurate upstream

stages. Such a case is that of NER based on a com-

bination of POS and dependency parsing features.

4 Named Entity Recognition Pipeline

In Named Entity Recognition (NER), the task is to

identify textual mentions of predefined types of en-

tities. Traditionally, NER is modeled as a sequence

classification problem: each token in the input sen-

tence is tagged as being either inside (I) or outside

(O) of an entity mention. Most sequence tagging

approaches use the words and the POS tags in a

limited neighborhood of the current sentence posi-

tion in order to compute the corresponding features.

We augment these flat features with a set of tree

features that are computed based on the words and

POS tags found in the proximity of the current to-

ken in the dependency tree of the sentence. We

argue that such dependency tree features are better

at capturing predicate-argument relationships, espe-

cially when they span long stretches of text. Figure 2

shows a sentence x together with its POS tagging z1,

dependency links z2, and an output tagging y. As-

suming the task is to recognize mentions of people,

the word sailors needs to be tagged as inside. If we

extracted only flat features using a symmetric win-

dow of size 3, the relationship between sailors and

thought would be missed. This relationship is use-

ful, since an agent of the predicate thought is likely

to be a person entity. On the other hand, the nodes

sailors and thought are adjacent in the dependency

tree of the sentence. Therefore, their relationship

can be easily captured as a dependency tree feature

using the same window size.

For every token position, we generate flat features

by considering all unigrams, bigrams and trigrams

that start with the current token and extend either to

the left or to the right. Similarly, we generate tree

features by considering all unigrams, bigrams and

trigrams that start with the current token and extend

in any direction in the undirected version of the de-

pendency tree. The tree features are also augmented

with the actual direction of the dependency arcs be-

tween the tokens. If we use only words to create

n-gram features, the token sailors will be associated

with the following features:

• Flat: sailors, the sailors, 〈S〉 the sailors,

sailors mistakenly, sailors mistakenly thought.

• Tree: sailors, sailors ← the, sailors →
thought, sailors→ thought← must, sailors→
thought← mistakenly.

We also allow n-grams to use word classes such as

POS tags and any of the following five categories:

〈1C〉 for tokens consisting of one capital letter, 〈AC〉
for tokens containing only capital letters, 〈FC〉 for

tokens that start with a capital letter, followed by

small letters, 〈CD〉 for tokens containing at least one

digit, and 〈CRT〉 for the current token.

The set of features can then be defined as a Carte-

sian product over word classes, as illustrated in Fig-

ure 3 for the original tree feature sailors→ thought

← mistakenly. In this case, instead of one com-

pletely lexicalized feature, the model will consider

12 different features such as sailors→ VBD← RB,

NNS→ thought← RB, or NNS→ VBD← RB.
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



〈CRT〉
NNS

sailors



×[→]×

[

VBD

thought

]

×[←]×

[

RB

mistakenly

]

Figure 3: Dependency tree features.

The pipeline model M2 uses features that appear

in all possible annotations z = 〈z1, z2〉, where z1
and z2 are the POS tagging and the dependency

parse respectively. If the corresponding evidence is

z̃ = 〈z̃1, z̃2〉, then:

p(z̃|x) = p(z̃2|z̃1, x)p(z̃1|x)

For example, NNS2 → thought4 ← RB3 is a feature

instance for the token sailors in the annotations from

Figure 2. This can be construed as having been gen-

erated by a feature template T that outputs the POS

tag ti at the current position, the word xj that is the

parent of xi in the dependency tree, and the POS tag

tk of another dependent of xj (i.e. ti → xj ← tk).

The probability p(z̃|x) for this type of features can

then be written as:

p(z̃|x) = p(i→j←k|ti, tk, x) · p(ti, tk|x)

The two probability factors can be computed exactly

as follows:

1. The M2 model for dependency parsing from

Section 3 is used to compute the probabilistic

features ψ(x, u→ v|ti, tk) by constraining the

POS annotations to pass through tags ti and tk
at positions i and k. The total time complexity

for this step is O(N3|P|k+2).

2. Having access to ψ(x, u→ v|ti, tk), the factor

p(i→j←k|ti, tk, x) can be computed in O(N3)
time using a constrained version of Eisner’s al-

gorithm, as will be explained in Section 4.1.

3. As described in Section 3.1, computing the

expectation p(ti, tk|x) takes O(N |P2|) time

using the constrained forward-backward algo-

rithm.

The current token position i can have a total of N
values, while j and k can be any positions other
than i. Also, ti and tk can be any POS tag from

P . Consequently, the feature template T induces
O(N3|P|2) feature instances. Overall, the time
complexity for computing the feature instances gen-
erated by T is O(N6|P|k+4), as results from:

O(N3|P|2) · (O(N3|P|k+2) +O(N3) +O(N |P|2))

While still polynomial, this time complexity is fea-

sible only for small values ofN . In general, the time

complexity for computing probabilistic features in

the full model M2 increases with both the number

of stages in the pipeline and the complexity of the

features.

Motivated by efficiency, we decided to use the

pipeline model M3 in which probabilities are com-

puted only over features that appear in the top scor-

ing annotation ẑ = 〈ẑ1, ẑ2〉, where ẑ1 and ẑ2 repre-

sent the best POS tagging, and the best dependency

parse respectively. In order to further speed up the

computation of probabilistic features, we made the

following approximations:

1. We consider the POS tagging and the depen-

dency parse independent and rewrite p(z̃|x) as:

p(z̃|x) = p(z̃1, z̃2|x) ≈ p(z̃1|x)p(z̃2|x)

2. We enforce an independence assumption be-

tween POS tags. Thus, if z̃1 = 〈ti1ti2 ...tik〉
specifies the tags at k positions in the sentence,

then p(z̃1|x) is rewritten as:

p(ti1ti2 ...tik |x) ≈
k

∏

j=1

p(tij |x)

3. We also enforce a similar independence as-

sumption between dependency links. Thus, if

z̃2 = 〈u1 → v1...uk → vk〉 specifies k depen-

dency links, then p(z̃2|x) is rewritten as:

p(u1→v1...uk→vk|x) ≈
k

∏

l=1

p(ul→vl|x)

For example, the probability p(z̃|x) of the feature

instance NNS2 → thought4 ← RB3 is approximated

as:

p(z̃|x) ≈ p(z̃1|x) · p(z̃2|x)

p(z̃1|x) ≈ p(t2 =NNS|x) · p(t3 =RB|x)

p(z̃2|x) ≈ p(2→4|x) · p(3→4|x)

We will use M ′3 to refer to the resulting model.
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4.1 Probabilistic Dependency Features

The probabilistic POS features p(ti|x) are computed

using the forward-backward procedure in CRFs, as

described in Section 3.1. To completely specify the

pipeline model for NER, we also need an efficient

method for computing the probabilistic dependency

features p(u→ v|x), where u→ v is a dependency

edge between positions u and v in the sentence x.

MSTPARSER is a large-margin method that com-

putes an unbounded score s(x, y) for any given sen-

tence x and dependency structure y ∈ Y(x) using

the following edge-based factorization:

s(x, y) =
∑

u→v∈y

s(x, u→v) = w
∑

u→v∈y

φ(x, u→v)

The following three steps describe a general method

for associating probabilities with output substruc-

tures. The method can be applied whenever a struc-

tured output is associated a score value that is un-

bounded in R, assuming that the score of the entire

output structure can be computed efficiently based

on a factorization into smaller substructures.

S1. Map the unbounded score s(x, y) from R

into [0, 1] using the softmax function (Bishop, 1995):

n(x, y) =
es(x,y)

∑

y∈Y(x) e
s(x,y)

The normalized score n(x, y) preserves the ranking

given by the original score s(x, y). The normaliza-

tion constant at the denominator can be computed in

O(N3) time by replacing the max operator with the

sum operator inside Eisner’s chart parsing algorithm.

S2. Compute a normalized score for the sub-

structure by summing up the normalized scores of

all the complete structures that contain it. In our

model, dependency edges are substructures, while

dependency trees are complete structures. The nor-

malized score will then be computed as:

n(x, u→v) =
∑

y∈Y(x),u→v∈y

n(x, y)

The sum can be computed in O(N3) time using a

constrained version of the algorithm that computes

the normalization constant in step S1. This con-

strained version of Eisner’s algorithm works in a

similar manner with the constrained forward back-

ward algorithm by restricting the dependency struc-

tures to contain a predefined edge or set of edges.

S3. Use the isotonic regression method of

Zadrozny and Elkan (2002) to map the normalized

scores n(x, u→ v) into probabilities p(u→ v|x). A

potential problem with the softmax function is that,

depending on the distribution of scores, the expo-

nential transform could dramatically overinflate the

higher scores. Isotonic regression, by redistributing

the normalized scores inside [0, 1], can alleviate this

problem.

4.2 Experimental Results

We test the pipeline model M ′3 versus the traditional

model M1 on the task of detecting mentions of per-

son entities in the ACE dataset2. We use the standard

training – testing split of the ACE 2002 dataset in

which the training dataset is also augmented with the

documents from the ACE 2003 dataset. The com-

bined dataset contains 674 documents for training

and 97 for testing. We implemented the CRF model

in MALLET using three different sets of features:

Tree, Flat, and Full corresponding to the union of

all flat and tree features. The POS tagger and the de-

pendency parser were trained on sections 2-21 of the

Penn Treebank, followed by an isotonic regression

step on section 23 for the dependency parser. We

compute precision recall (PR) graphs by varying a

threshold on the token level confidence output by the

CRF tagger, and summarize the tagger performance

using the area under the curve. Table 4 shows the re-

sults obtained by the two models under the three fea-

ture settings. The model based on probabilistic fea-

Model Tree Flat Full

M ′3 76.78 77.02 77.96

M1 74.38 76.53 77.02

Table 4: Mention detection results.

tures consistently outperforms the traditional model,

especially when only tree features are used. Depen-

dency parsing is significantly less accurate than POS

tagging. Consequently, the improvement for the tree

based model is more substantial than for the flat

2URL: http://www.nist.gov/speech/tests/ace
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Figure 4: PR graphs for tree features.

model, confirming our expectation that probabilis-

tic features are more useful when upstream stages in

the pipeline are less accurate. Figure 4 shows the PR

curves obtained for the tree-based models, on which

we see a significant 5% improvement in precision

over a wide range of recall values.

5 Related Work

In terms of the target task – improving the perfor-

mance of linguistic pipelines – our research is most

related to the work of Finkel et al. (2006). In their

approach, output samples are drawn at each stage

in the pipeline conditioned on the samples drawn

at previous stages, and the final output is deter-

mined by a majority vote over the samples from

the final stage. The method needs very few sam-

ples for tasks such as textual entailment, where the

final outcome is binary, in agreement with a theo-

retical result on the rate of convergence of the vot-

ing Gibbs classifier due to Ng and Jordan (2001).

While their sampling method is inherently approx-

imate, our full pipeline model M2 is exact in the

sense that feature expectations are computed exactly

in polynomial time whenever the inference step at

each stage can be done in polynomial time, irrespec-

tive of the cardinality of the final output space. Also,

the pipeline models M2 and M3 and their more effi-

cient alternatives propagate uncertainty during both

training and testing through the vector of probabilis-

tic features, whereas the sampling method takes ad-

vantage of the probabilistic nature of the outputs

only during testing. Overall, the two approaches

can be seen as complementary. In order to be ap-

plicable with minimal engineering effort, the sam-

pling method needs NLP researchers to write pack-

ages that can generate samples from the posterior.

Similarly, the new pipeline models could be easily

applied in a diverse range of applications, assum-

ing researchers develop packages that can efficiently

compute marginals over output substructures.

6 Conclusions and Future Work

We have presented a new, general method for im-

proving the communication between consecutive

stages in pipeline models. The method relies on

the computation of probabilities for count features,

which translates in adding a polynomial factor to the

overall time complexity of the pipeline whenever the

inference step at each stage is done in polynomial

time, which is the case for the vast majority of infer-

ence algorithms used in practical NLP applications.

We have also shown that additional independence

assumptions can make the approach more practical

by significantly reducing the time complexity. Ex-

isting learning based models can implement the new

method by replacing the original feature vector with

a more dense vector of probabilistic features3. It is

essential that every stage in the pipeline produces

probabilistic features, and to this end we have de-

scribed an effective method for associating proba-

bilities with output substructures.

We have shown for NER that simply using the

probabilities associated with features that appear

only in the top annotation can lead to useful im-

provements in performance, with minimal engineer-

ing effort. In future work we plan to empirically

evaluate NER with an approximate version of the

full model M2 which, while more demanding in

terms of time complexity, could lead to even more

significant gains in accuracy. We also intend to com-

prehensively evaluate the proposed scheme for com-

puting probabilities by experimenting with alterna-

tive normalization functions.
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