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Abstract

Syntactic word reordering is essential for
translations across different grammar struc-
tures between syntactically distant language-
pairs. In this paper, we propose to em-
bed local and non-local word reordering de-
cisions in a synchronous context free gram-
mar, and leverages the grammar in a chart-
based decoder. Local word-reordering is ef-
fectively encoded in Hiero-like rules; whereas
non-local word-reordering, which allows for
long-range movements of syntactic chunks,
is represented in tree-based reordering rules,
which contain variables correspond to source-
side syntactic constituents. We demonstrate
how these rules are learned from parallel cor-
pora. Our proposed shallow Tree-to-String
rules show significant improvements in trans-
lation quality across different test sets.

1 Introduction

One of the main issues that a translator (human or
machine) must address during the translation pro-
cess is how to match the different word orders be-
tween the source language and the target language.
Different language-pairs require different levels of
word reordering. For example, when we translate
between English and Spanish (or other Romance
languages), most of the word reordering needed
is local because of the shared syntactical features
(e.g., Spanish noun modifier constructs are written
in English as modifier noun). However, for syn-
tactically distant language-pairs such as Chinese-
English, long-range reordering is required where
whole phrases are moved across the sentence.
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The idea of “syntactic cohesion” (Fox, 2002) is
characterized by its simplicity, which has attracted
researchers for years. Previous works include sev-
eral approaches of incorporating syntactic informa-
tion to preprocess the source sentences to make them
more like the target language in structure. Xia and
McCord (2004) (Niessen and Ney, 2004; Collins et
al., 2005) described approaches applied to language-
pairs such as French-English and German-English.
Later, Wang et al. (2007) presented specific rules
to pre-order long-range movements of words, and
improved the translations for Chinese-to-English.
Overall, these works are similar, in that they design
a few language-specific and linguistically motivated
reordering rules, which are generally simple. The
eleven rules described in Wang et al. (2007) are ap-
pealing, as they have rather simple structure, mod-
eling only NP, VP and LCP via one-level sub-tree
structure with two children, in the source parse-tree
(a special case of ITG (Wu, 1997)). It effectively en-
hances the quality of the phrase-based translation of
Chinese-to-English. One major weakness is that the
reordering decisions were done in the preprocessing
step, therefore rendering the decoding process un-
able to recover the reordering errors from the rules if
incorrectly applied to. Also the reordering decisions
are made without the benefits of additional models
(e.g., the language models) that are typically used
during decoding.

Another method to address the re-ordering prob-
lem in translation is the Hiero model proposed by
Chiang (2005), in which a probabilistic synchronous
context free grammar (PSCFG) was applied to guide
the decoding. Hiero rules generalize phrase-pairs
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by introducing a single generic nonterminal (i.e., a
variable) [X]. The combination of variables and lex-
icalized words in a Hiero rule nicely captures local
word and phrase reordering (modeling an implicit
reordering window of max-phrase length). These
rules are then applied in a CYK-style decoder. In
Hiero rules, any nested phrase-pair can be general-
ized as variables [X]. This usually leads to too many
redundant translations, which worsens the spurious
ambiguities (Chiang, 2005) problems for both de-
coding and optimization (i.e., parameter tuning). We
found thatvariables (nonterminal [X]) in Hiero rules
offer a generalization too coarse to improve the ef-
fectiveness of hierarchical models’ performance.

We propose to enrich the variables in Hiero rules
with additional source syntactic reordering informa-
tion, in the form of shallow Tree-to-String syntactic
structures. The syntactic information is represented
by flat one-level sub-tree structures, with Hiero-like
nonterminal variables at the leaf nodes. The syntac-
tic rules, proposed in this paper, are composed of
(possibly lexicalized) source treelets and target sur-
face strings, with one or more variables that help
capture local-reordering similar to the Hiero rules.
Variables in a given rule are derived not only from
the embedded aligned blocks (phrase-pairs), but also
from the aligned source syntactic constituents. The
aligned constituents, as in our empirical observa-
tions for Chinese-English, tend to move together in
translations. The decoder is guided by these rules to
reduce spurious derivations; the rules also constrain
the exploration of the search space toward better
translation quality and sometime improved speed by
breaking long sentences into pieces. Overall, what
we want is to enable the long-range reordering deci-
sions to be local in a chart-based decoder.

To be more specific, we think the simple shal-
low syntactic structure is powerful enough for cap-
turing the major structure-reordering patterns, such
as NP, VP and LCP structures. We also use sim-
ple frequency-based feature functions, similar to the
blocks used in phrase-based decoder, to further im-
prove the rules’ representation power. Overall, this
enables us to avoid either a complex decoding pro-
cess to generate the source parse tree, or difficult
combinatorial optimizations for the feature func-
tions associated with rules.

In Marton and Resnik (2008), hiero variables
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were disambiguated with additional binary feature
functions, with their weights optimized in standard
MER training. The combinatorial effects of the
added feature functions can make the feature se-
lection and optimization of the weights rather dif-
ficult. Since the grammar is essentially the same
as the Hiero ones, a standard CYK decoder can be
simply applied in their work. Word reordering can
also be addressed via distortion models. Work in
(Al-Onaizan and Kishore, 2006; Xiong et al., 2006;
Zens et al., 2004; Kumar and Byrne, 2005; Tillmann
and Zhang, 2005) modeled the limited information
available at phrase-boundaries. Syntax-based ap-
proaches such as (Yamada and Knight, 2001; Graehl
and Knight, 2004; Liu et al., 2006) heavily rely on
the parse-tree to constrain the search space by as-
suming a strong mapping of structures across distant
language-pairs. Their algorithms are also subject to
parsers’ performances to a larger extent, and have
high complexity and less scalability in reality. In Liu
et al. (2007), multi-level tree-structured rules were
designed, which made the decoding process very
complex, and auxiliary rules have to be designed
and incorporated to shrink multiple source nonter-
minals into one target nonterminal. From our em-
pirical observations, most of the time, however, the
multi-level tree-structure is broken in the translation
process, and POS tags are frequently distorted. In-
deed, strictly following the source parse tree is usu-
ally not necessary, and maybe too expensive for the
translation process.

The remainder of this paper is structured as fol-
lows: in section § 2, we define the notations in our
synchronous context free grammar, in section § 3,
the rule extractions are illustrated in details, in sec-
tion § 4, the decoding process of applying these rules
is described. Experiments in § 5 were carried out
using GALE Dev07 datasets. Improved translation
qualities were obtained by applying the proposed
Tree-to-String rules. Conclusions and discussions
are given in § 6.

2 Shallow Tree-to-String Rules

Our proposed rules are in the form of probabilis-
tic synchronous context free grammar (PSCFG). We
adopt the notations used in (Chiang, 2005). Let NV
be a set of nonterminals, a rule has the following



form:

ey

where X abstracts nonterminal symbols in N; v €
[N, Vs] T is a sequence of one or more source !
words (as in the vocabulary of Vg) and nonterminal
symbols in N; o € [N, Vr]* is a sequence of one
or more target words (in V1) and nonterminals in N
. ~ is the one-to-one alignment of the nonterminals
between 7y and «; w contains non-negative weights
associated with each rule; ¢ is a label-symbol speci-
fying the root node of the source span covering y. In
our grammar, ¢ is one of the labels (e.g., NP) defined
in the source treebank tagset (in our case UPenn
Chinese tagset) indicating that the source span -y is
rooted at £. Additionally, a NULL tag @ in £ denotes
a flat structure of -y, in which no constituent structure
was found to cover the span, and we need to back
off to the normal Hiero-style rules. Our nonterminal
symbols include the labels and the POS tags in the
source parse trees.

In the following, we will illustrate the Tree-to-
String rules we are proposing. At the same time, we
will describe the extraction algorithm, with which
we derive our rules from the word-aligned source-
parsed parallel text. Our nonterminal set N is a re-
duced set of the treebank tagset (Xue et al., 2005). It
consists of 17 unique labels.

The rules we extract belong to one of the follow-
ing categories:

X =< lya;~w >,

e ~ contains only words, and £ is NULL,; this cor-
responds to the general blocks used in phrase-
based decoder (Och and Ney, 2004);

e 7 contains words and variables of [X,0] and
[X,1], and ¢ is NULL,; this corresponds to the
Hiero rules as in Chiang (2005);

e ~ contains words and variables in the form
of [X,TAG?], in which TAG is from the LDC
tagset; this defines a well formed subtree, in
which at least one child (constituent) is aligned
to continuous target ngrams. If v contains only
variables from LDC tag set, this indicates all
the constituents (children) in the subtree are
aligned. This is a superset of rules generalizing

!'we use end-user terminologies for source and target.
2we index the tags for multiple occurrences in one rule
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those in Wang et al. (2007). If v contains vari-
ables from POS tags, this essentially produces
a superset of the monolingual side POS-based
reordering rules explored in Tillmann (2008).

We focus on the third category — a syntactic label
£ over the span of ~, indicating the covered source
words consist of a linguistically well-defined phrase.
£ together with +y define a tree-like structure: the root
node is ¢, and the aligned children are nonterminals
in . The structure information is encoded in (¥,
) pair-wise connections, and the variables keep the
generalizations over atomic translation-pairs similar
to Hiero models. When the rule is applied during
decoding time, the labels, the tree-structure and the
lexical items need to be all matched.

3 Learning and Applying Rules

A parser is assumed for the source language in the
parallel data. In our case, a Chinese parser is applied
for training and test data. A word alignment model is
used to align the source words with the target words.

3.1 Extractions

Our rule extraction is a three-step process. First, tra-
ditional blocks (phrase-pairs) extraction is carried
out. Secondly, Tree-to-String rules, are then ex-
tracted from the aligned blocks, of which the source
side is covered by a complete subtree, with different
permutations of the embedded aligned constituents,
or partially lexicalized constituents. Otherwise, the
Hiero-like rules will be extracted when there is no
sub-tree structure identified, in our final step. Fre-
quencies of extracted rules were counted to compute
feature functions.

Figure 1-(a) shows that a subtree (with root at
VP) is aligned to the English string. Considering the
huge quantity of all the permutations of the aligned
constituents under the tree, only part of the Tree-to-
String rules extracted are shown in Figure 1-(c). The
variables incorporate linguistic information in the
assigned tag by the parser. When there is no aligned
constituent for further generalization, the variables,
defined in our grammar, back off to the Hiero-like
ones without any label-identity information. One
such example is in the rule “7E [X,0] A [X,VP] —
[X,VP] before the [X,0]”, in which the Hiero-style



[X,VP] [X,PP]

March [X,PP]

[X,VP] before the sunrise

[X,VP ] before the [X,0] ‘

vpP e -
%1 before th
/—\ ‘ ?‘F 2% H A1 ‘ ‘ crore the sunrise ‘ ‘ [X,PP] [X,VP]
PP vpP % March [X.PP] th %
E%ﬁﬁ K ZRU sunrise 1 B R/ [X,VP]
‘ 16 B § Bk ‘ ‘ March before the sunrise ‘ 1E [X,0] HI[X,VP]
March  before the sunrise

(a) Parse-Tree Alignment (b) Blocks Alignment

(c) Tree-to-String rules with root of VP

Figure 1: Example rules extracted. (a) the aligned source parse tree with target string; (b) general blocks alignment;
(c) Tree-to-String rules, with root of VP. The tree structure is aligned with target strings

Translations of “Z& 243

in the local
- locally

P
T N AQIP NP
v | N L
JLAES E 4 SR E &3
locally triggered a huge | a great shock
in the local great shocks
This. case in local triggered an enormous | shock
The cases In the locally trigger tremendous shocked
3 E3 3 EL TR EX L]

this case in the locals

triggered enormous  shock

Figure 2: Subtree of “VP(PP,VP)” triggered a reordering pattern of swapping the order of the two children PP and VP
in the source parse tree. This will move the translation “in the local” after the translation of “triggered a huge shock”,
to form the preferred translation in the highlighted cell: “triggered a huge shock in the local”.

variable [X,0] and the label-based variable [X,VP]
co-exist in our proposed rule.

We illustrate several special cases of our extracted
Tree-to-String rules in the following. We index the
variables with their positions to indicate the align-
ment ~, and skip the feature function w to simplify
the notations.

X —< [X,IP];|X,NPOQ][X,VPO] 2)

[X,NPO0] is [X,VP0] > .

The rule in Eqn. 2 shows that a source tree rooted
at IP, with two children of NP and VP generalized
into variables [X,NP] and [X,VP]; they are rewritten
into “[X,NP] is [X,VP]”, with the spontaneous word
is inserted. Such rules are not allowed in Hiero-style
models, as there is no lexical item between the two
variables (Chiang, 2005) in the source side. This
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rule will generate a spontaneous word “is” from the
given subtree structure. Usually, it is very hard to
align the spontaneous word correctly, and the rules
we proposed indicate that spontaneous words are
generated directly from the source sub-tree struc-
ture, and they might not necessarily get aligned to
some particular source words.
A second example is shown in Eqn. 3, which is
similar to the Hiero rules:
X —< 0;[X,0] zhiyi;
one of the [X,0] > .

3)

The rule in Eqn. 3 shows that when there is
no linguistically-motivated root covering the span,
([X,NULL] is then assigned), we simply back
off to the Hiero rules. In this case, the source
span of [X,0] zhiyi is rewritten into the target
“one of the [X,0]”, without considering the map-



ping of the root of the span. In this way, the repre-
sentation power is kept in the variables in our rules,
even if the source subtree is aligned to a discontin-
uous sequence on the target side. This is important
for Chinese-to-English, because the grammar struc-
ture is so different that more than 40% of the subtree
structures were not kept during the translation in our
study on hand-aligned data. Following strictly the
source side syntax will derail from these informative
translation patterns.

X —< [X,NPJ;[X,NN1][X,NN2|[X, NN3];

[X,NN3|[X,NN1][X,NN2] >. (4

Eqn. 4. is a POS-based rule — a special case in
our proposed rules. This rule shows the reorder-
ing patterns for three adjacent NN’s. POS based
rules can be very informative for some language-
pairs such as Arabic-to-English, where the ADJ is
usually moved before NN during the translations.

As also shown in Eqn. 4 for POS sequences, in the
UPenn treebank-style parse trees, a root usually have
more than two variables. Our rule set for subtree,
therefore, contain more than two variables: “X —<
[X,IP];[X,ADV P0][X, NP0][X,VPO0]; [ X, NP0
[X, ADV P0|[X,V P0] >”. A CYK-style decoder
has to rely on binarization to preprocess the
grammar as did in (Zhang et al., 2006) to handle
multi-nonterminal rules. We adopt the so-called
dotted-rule or dotted-production, similar to the
Early-style algorithm (Earley, 1970), to handle the
multi-nonterminal rules in our chart-based decoder.

3.2 Feature Functions

As used in most of the SMT decoders for a phrase-
pair, a set of standard feature functions are applied
in our decoder, including IBM Model-1 like scores
in both directions, relative frequencies in both direc-
tions. In addition to these features, a counter is as-
sociated to each rule to collect how many rules were
applied so far to generate a hypothesis. The stan-
dard Minimum Error Rate training (Och, 2003) was
applied to tune the weights for all feature types.
The number of extracted rules from the GALE
data is generally large. We pruned the rules accord-
ing to their frequencies, and only keep at most the
top-50 frequent candidates for each source side.
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4 Chart-based Decoder

Given the source sentence, with constituent parse-
trees, the decoder is to find the best derivation D*
which yield the English string e*:

¢ = agmax {6(D)o()S(Ie)}. (5

where ¢(D) is the cost for each of the derivations
that lead to e from a given source-parsed f; ¢(e)
is for cost functions from the standard n-gram lan-
guage models; ¢(fle) is the cost for the standard
translation models, including general blocks. We
separate the costs for normal blocks and the general-
ized rules explicitly here, because the blocks contain
stronger lexical evidences observed directly from
data, and we assign them with less cost penalties
via a different weight factor visible for optimization,
and prefer the lexical match over the derived paths
during the decoding.

Our decoder is a chart-based parser with beam-
search for each cell in a chart. Because the tree-
structure can have more than two children, there-
fore, the Tree-to-String rules extracted usually con-
tain more than two variables. Slightly different from
the decoder in (Chiang, 2005), we implemented
the dotted-rule in Early-style parser to handle rules
containing more than two variables. Our cube-
expansion, implemented the cube-pruning in Chiang
(2007), and integrated piece-wise cost computations
for language models via LM states. The intermedi-
ate hypotheses were merged (recombined) accord-
ing to their LM states and other cost model states.
We use MER (Och, 2003) to tune the decoder’s pa-
rameters using a development data set.

Figure 2 shows an example of a tree-based rule
fired at the subtree of VP covering the highlighted
cell. When a rule is applied at a certain cell in the
chart, the covered source ngram should match not
only the lexical items in the rules, but also the tree-
structures as well. The two children under the sub-
tree root VP are PP (“4F 4 Hb”: in the local) and VP
“5lk B KRES): triggered a huge shock ). This
rule triggered a swap of these children to generate
the correct word order in the translation: “triggered
a huge shock in the local”.



5 Experiments

Our training data consists of two corpora: the GALE
Chinese-English parallel corpus and the LDC hand-
aligned corpus'. The Chinese side of these two cor-
pora were parsed using a constituency parser (Luo,
2003). The average labeled F-measure of the parser
is 81.4%.

Parallel sentences were first word-aligned using
a MaxEnt aligner (Ittycheriah and Roukos, 2005).
Then, phrase-pairs that overlap with our develop-
ment and test set were extracted from the word
alignments (from both hand alignments and auto-
matically aligned GALE corpora) based on the pro-
jection principle (Tillmann, 2003). Besides the regu-
lar phrase-pairs, we also extracted the Tree-to-String
rules from the two corpora. The detailed statistics
are shown in Table 1. Our re-implementation of Hi-
ero system is the baseline. We integrated the eleven
reordering rules described in (Wang et al., 2007),
in our chart-based decoder. In addition, we report
the results of using the Tree-to-String rules extracted
from the hand-aligned training data and the automat-
ically aligned training data. We also report the result
of our translation quality in terms of both BLEU (Pa-
pineni et al., 2002) and TER (Snover et al., 2006)
against four human reference translations.

5.1 The Data

Table 1 shows the statistics of our training, develop-
ment and test data. As our word aligner (Ittycheriah
and Roukos, 2005) can introduce errors in extracting
Tree-to-String rules, we use a small hand-aligned
data set “CE16K”, which consists of 16K sentence-
pairs, to get relatively clean rules, free from align-
ment errors. A much larger GALE data set, which
consists of 10 million sentence-pairs, is used to in-
vestigate the scalability of our proposed approach.

Table 1: Training and Test Data

The NIST 2003 MT Evaluation (MTO03) is used
as our development data set to tune the decoder’s
parameters toward better BLEU score. The text part
of GALE 2007 Chinese-to-English Development set
(GALE DEVO07) is used as our test set. MTO03 con-
sists of 919 sentences, whereas GALE DEV07 con-
sists of 2303 sentences under two genres: NewsWire
and WebLog. Both have four human reference trans-
lations.

5.2 Details of Extracted Rules

From the hand-aligned data, the rules we extracted
fall into three categories: regular blocks (phrase-
pairs), Hiero-like rules, and Tree-to-String rules.
The statistics of the extracted rules are shown in Ta-
ble 2

Table 2: Rules extracted from hand-aligned data

Types Frequency
Block 846965
Hiero 508999
Tree-to-String | 409767
Total 1765731

Train/test | sentences | src words | tgt words
CEl16K 16379 380103 477801
GALE 10.5M 274M 310M
MTO03 919 24099 -
Dev07 2303 61881 -
'LDC2006E93
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We focus on Tree-to-String rules. Table 3 shows
the detailed statistics of the Tree-to-String rules ex-
tracted from the Chinese-to-English hand-aligned
training data. The following section provides a de-
tailed analysis of the most frequent subtrees ob-
served in our training data.

5.2.1 Frequent Subtrees: NP, VP, and DNP

The majority of Tree-to-String rules we extracted
are rooted at the following labels: NP (46%),
VP(22.8%), DNP (2.23%), and QP(2.94%).

Wang et al. (2007) covers only subtrees of NP,
VP, and LCP, which are a subset of our proposed
Tree-to-String rules here. They apply these rules as
a pre-processing step to reorder the input sentences
with hard decisions. Our proposed Tree-to-String
rules, on the contrary, are applied during the de-
coding process which allows for considering many
possible competing reordering options for the given
sentences, and the decoder will choose the best one
according to the cost functions.

Table 4 shows the statistics of reordering rules
for subtrees rooted at VP. The statistics suggest that



Table 5: Hiero, Tree-Based (eleven rules in Wang et al. (2007)), and Tree-to-String Rules with “DE”

Ruleset \ Root \ Src Tgt \ Frequency
NULL [X,0] 1 [X,1] [X,0] ’s [X,1] 347

Hiero NULL [X,0] 1 [X,1] [X,1] of [X,0] 306
NULL [X,0] 1 [X,1] [X,0] of [X,1] 174

NP DNP(NP) NP NP DNP(NP) -

Tree-Based NP DNP(PP) NP NP DNP(PP) -
NP DNP(LCP) NP NP DNP(LCP) -

[X,DNP] | [X,NP] [X,DEG] | [X,NP] [X,DEG] 580

Tree-to-String | [X,DNP] | [X,NP] [X,DEG] | [X,DEG] [X,NP] 2163
[X,DNP] | [X,NP] [X,DEG] | [X,NP] , [X,DEG] 4

Table 3: Distributions of the NP, VP, QP, LCP rules

’ Root ‘ Frequency ‘ Percentage (%) ‘
NP 189616 46.2
VP 93535 22.8
1P 68341 16.6
PP 18519 4.51
DNP 9141 2.23
QP 12064 2.94
LCP 4127 1.00
Cp 2994 0.73
PRN 2810 0.68
DP 1415 0.34
Others 6879 1.67

Total [ 409767 | -

Table 4: Distribution of the reordering rules for subtrees
rooted at VP: [X,VP]; [X,PP] [X,VP]; statistics are col-
lected from GALE training data

’ Root ‘ Target ‘ Frequency
[X,PP] [X,VP] 126310
[X,VP] [X,PP] 22144
VP [X,PP], [X,VP] 1524
[X,PP] that [X,VP] 1098
[X,PP] and [X,VP] 831

it is impossible to come up with a reordering rule
that is always applicable. For instance, (Wang et
al., 2007) will always swap the children of the sub-
tree VP(PP,VP). However, the statistics shown in Ta-
ble 4 suggest that might not be best way. In fact,
due to parser’s performance and word alignment ac-
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curacies, the statistics we collected from the GALE
dataset, containing 10 million sentence-pairs, show
that the children in the subtree VP(PP,VP) is trans-
lated monotonically 126310 times, while reordered
of only 22144 times. However, the hand-aligned
data support the swap for 1245 times, and monotoni-
cally for only 168 times. Part of this disagreement is
due to the word segmentation errors, incorrect word
alignments and unreliable parsing results.

Another observations through our extracted Tree-
to-String rules is on the controlled insertion of the
target spontaneous” (function) words. Instead of hy-
pothesizing spontaneous words based only on the
language model or only on observing in phrase-
pairs, we make use of the Tree-to-String rules to get
suggestion on the insertion of spontaneous words.
In this way, we can make sure that the spontaneous
words are generated from the structure information,
as opposed to those from a pure hypothesis. The ad-
vantage of this method is shown in Table 4. For in-
stance, the word “that” and the punctuation “,” were
generated in the target side of the rule. This proves
that our model can provide a more principled way to
generate spontaneous words needed for fluent trans-
lations.

5.2.2 DEG and DEC

An interesting linguistic phenomenon that we in-
vestigated is the Chinese word DE “[f]”. “[]” is an
informative lexical clue that indicates the need for
long range phrasal movements. Table 5 shows a few

Target spontaneous words are function words that do not
have specific lexical source informants and are needed to make
the target translation fluent.



high-frequent reordering rules that contain the Chi-
nese word “DE”.

The three type of rules handle “DE” differently. A
major difference is the structure in the source side.
Hiero rules do not consider any structure, and ap-
ply the rule of “[X,0] ] [X,1]”. Tree-based rules,
as described in Wang et al. (2007) do not handle
[] directly; they are often implicitly taken care of
when reordering DNPs instead. Our proposed Tree-
to-String rules model [] directly in a subtree con-
taining DEG/DEC, which triggers word reordering
within the structure. Our rule set includes all the
above three rule-types with the associated frequen-
cies, this enriched the reordering choices to be cho-
sen by the chart-based decoder, guided by the statis-
tics collected from the data and the language model
costs.

5.3 Evaluation

We tuned the decoding parameters using the MTO03
data set, and applied the updated parameters to the
GALE evaluation set. The eleven rules of VP, NP,
and LCP (tree-based) improved the Hiero baseline?
from 32.43 to 33.02 on BLEU. The reason, the tree-
reordering does not gain much over Hiero baseline,
is probably that the reordering patterns covered by
tree-reordering rules, are potentially handled in the
standard Hiero grammar.

A small but noticeable further improvement over
tree-based rules, from 33.02 to 33.26, was ob-
tained on applying Tree-to-String rules extracted
from hand-aligned dataset. We think that the Tree-
based rules covers major reordering patterns for
Chinese-English, and our hand-aligned dataset is
also too small to capture representative statistics and
more reordering patterns. A close check at the rules
we learned from the hand-aligned data shows that
the tree-based rules are simply the subset of the
rules extracted. The Tree-to-String grammar im-
proved the Hiero baseline from 32.43 to 33.26 on
BLEU; considering the effects from the tree-based
rules only, the additional information improved the
BLEU scores from 33.02 to 33.26. Similar pictures
of improvements were observed for the two unseen
tests of newswire and weblog in GALE data.

When applying the rules extracted from the much

3Hiero results are from our own re-implementation.
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larger GALE training set with about ten million
sentence-pairs, we achieved significant improve-
ments from both genres (newswire and web data).
The improvements are significant in both BLEU
and TER. BLEU improved from 32.44 to 33.51 on
newswire, and from 25.88 to 27.91 on web data.
Similar improvements were found in TER as shown
in the table. The gain came mostly from the richer
extracted rule set, which not only presents robust
statistics for reordering patterns, but also offers more
target spontaneous words generated from the syntac-
tic structures. Since the top-frequent rules extracted
are NP, VP, and IP as shown in Table 3, our proposed
rules will be able to win the correct word order with
reliable statistics, as long as the parser shows accept-
able performances on these structures. This is espe-
cially important for weblog data, where the parser’s
overall accuracy potentially might not be very good.

Table 7 shows the translations from different
grammars for the same source sentence. Both Tree-
based and Tree-to-String methods get the correct re-
ordering, while the latter can suggest insertions of
target spontaneous words like “a” to allow the trans-
lation to run more fluently.

6 Conclusion and Discussions

In this paper, we proposed our approach to model
both local and non-local word-reordering in one
probabilistic synchronous CFG. Our current model
incorporates source-side syntactic information, to
model the observations that the source syntactic con-
stituent tends to move together during translations.
The proposed rule set generalizes over the variables
in Hiero-rules, and we also showed the special cases
of the Tree-based rules and the POS-based rules.
Since the proposed rules has at most one-level tree
structure, they can be easily applied in a chart-based
decoder. We analyzed the statistics of our rules,
qualitatively and quantitatively. Next, we compared
our work with other research, especially with the
work in Wang et al. (2007). Finally, we reported
our empirical results on Chinese-English transla-
tions. Our Tree-to-String rules showed significant
improvements over the Hiero baseline on the GALE
DEVO7 test set.

Given the low accuracy of the parsers, and the po-
tential errors from Chinese word-segmentations, and



Table 6: Hiero, Tree-Based (NP, VP, LCP), and Tree-to-String rules extracted from hand-aligned data (H) or from

GALE training data (G)
Setup MTO03 GALEQO7-NewsWire | GALEO7-Weblog
BLEUr4n4 ‘ TER | BLEUr4n4 | TER | BLEUr4n4 ‘ TER
Hiero 32.43 59.75 31.68 61.45 25.99 65.65
Tree-based 33.02 59.84 32.22 61.46 25.67 65.64
Tree-to-String (H) 33.26 61.04 32.44 61.36 25.88 65.54
Tree-to-String (G) 35.51 57.28 33.51 59.71 2791 62.88

Table 7: Hiero, Tree-Based (NP, VP, LCP), Tree-to-String Translations

| Src-Sent \ ARy R BRRES) .
Hiero in this case local triggered shock .
Tree-Based the case triggered uproar in the local.

Tree-to-String

the case triggered a huge uproar in the local .

word-alignments, our rules learned are still noisy.
Exploring better cost functions associate each rule
might lead to further improvement. Because of
the relative high accuracy of English parsers, many
works such as Zollmann and Venugopal (2006) and
Shen et al. (2008) emphasize on using syntax in tar-
get languages, to directly influence the fluency as-
pect of the translation output. In future, we plan to
incorporate features from target-side syntactic infor-
mation, and connect them with the source informa-
tion explored in this paper, to model long-distance
reordering for better translation quality.
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