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Abstract

Graph-based and transition-based approaches
to dependency parsing adopt very different
views of the problem, each view having its
own strengths and limitations. We study both
approaches under the framework of beam-
search. By developing a graph-based and a
transition-based dependency parser, we show
that a beam-search decoder is a competitive
choice for both methods. More importantly,
we propose a beam-search-based parser that
combines both graph-based and transition-
based parsing into a single system for train-
ing and decoding, showing that it outper-
forms both the pure graph-based and the pure
transition-based parsers. Testing on the En-
glish and Chinese Penn Treebank data, the
combined system gave state-of-the-art accura-
cies of92.1% and86.2%, respectively.

1 Introduction

Graph-based (McDonald et al., 2005; McDon-
ald and Pereira, 2006; Carreras et al., 2006) and
transition-based (Yamada and Matsumoto, 2003;
Nivre et al., 2006) parsing algorithms offer two dif-
ferent approaches to data-driven dependency pars-
ing. Given an input sentence, a graph-based algo-
rithm finds the highest scoring parse tree from all
possible outputs, scoring each complete tree, while
a transition-based algorithm builds a parse by a se-
quence of actions, scoring each action individually.

The terms “graph-based” and “transition-based”
were used by McDonald and Nivre (2007) to de-
scribe the difference between MSTParser (McDon-
ald and Pereira, 2006), which is a graph-based parser

with an exhaustive search decoder, and MaltParser
(Nivre et al., 2006), which is a transition-based
parser with a greedy search decoder. In this paper,
we do not differentiate graph-based and transition-
based parsers by their search algorithms: a graph-
based parser can use an approximate decoder while
a transition-based parser is not necessarily determin-
istic. To make the concepts clear, we classify the two
types of parser by the following two criteria:

1. whether or not the outputs are built by explicit
transition-actions, such as ”Shift” and ”Reduce”;

2. whether it is dependency graphs or transition-
actions that the parsing model assigns scores to.

By this classification, beam-search can be applied
to both graph-based and transition-based parsers.

Representative of each method, MSTParser and
MaltParser gave comparable accuracies in the
CoNLL-X shared task (Buchholz and Marsi, 2006).
However, they make different types of errors, which
can be seen as a reflection of their theoretical differ-
ences (McDonald and Nivre, 2007). MSTParser has
the strength of exact inference, but its choice of fea-
tures is constrained by the requirement of efficient
dynamic programming. MaltParser is deterministic,
yet its comparatively larger feature range is an ad-
vantage. By comparing the two, three interesting re-
search questions arise: (1) how to increase the flex-
ibility in defining features for graph-based parsing;
(2) how to add search to transition-based parsing;
and (3) how to combine the two parsing approaches
so that the strengths of each are utilized.

In this paper, we study these questions under one
framework: beam-search. Beam-search has been
successful in manyNLP tasks (Koehn et al., 2003;
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Inputs: training examples(xi, yi)
Initialization: set ~w = 0
Algorithm:
// R training iterations; N examples
for t = 1..R, i = 1..N :

zi = arg maxy∈GEN(xi) Φ(y) · ~w
if zi 6= yi:

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 1: The perceptron learning algorithm

Collins and Roark, 2004), and can achieve accuracy
that is close to exact inference. Moreover, a beam-
search decoder does not impose restrictions on the
search problem in the way that an exact inference
decoder typically does, such as requiring the “op-
timal subproblem” property for dynamic program-
ming, and therefore enables a comparatively wider
range of features for a statistical system.

We develop three parsers. Firstly, using the same
features as MSTParser, we develop a graph-based
parser to examine the accuracy loss from beam-
search compared to exact-search, and the accuracy
gain from extra features that are hard to encode
for exact inference. Our conclusion is that beam-
search is a competitive choice for graph-based pars-
ing. Secondly, using the transition actions from
MaltParser, we build a transition-based parser and
show that search has a positive effect on its accuracy
compared to deterministic parsing. Finally, we show
that by using a beam-search decoder, we are able
to combine graph-based and transition-based pars-
ing into a single system, with the combined system
significantly outperforming each individual system.
In experiments with the English and Chinese Penn
Treebank data, the combined parser gave92.1% and
86.2% accuracy, respectively, which are comparable
to the best parsing results for these data sets, while
the Chinese accuracy outperforms the previous best
reported by1.8%. In line with previous work on de-
pendency parsing using the Penn Treebank, we fo-
cus on projective dependency parsing.

2 The graph-based parser

Following MSTParser (McDonald et al., 2005; Mc-
Donald and Pereira, 2006), we define the graph-

Variables: agenda – the beam for state items
item – partial parse tree
output – a set of output items
index, prev – word indexes

Input: x – POS-tagged input sentence.
Initialization: agenda = [“”]
Algorithm:
for index in 1..x.length():

clearoutput
for item in agenda:

// for all prev words that can be linked with
// the current word atindex
prev = index− 1
while prev 6= 0: // while prev is valid

// add link makingprev parent ofindex
newitem = item // duplicateitem
newitem.link(prev, index) // modify
output.append(newitem) // record
// if prev does not have a parent word,
// add link makingindex parent ofprev
if item.parent(prev) == 0:

item.link(index, prev) // modify
output.append(item) // record

prev = the index of the first word before
prev whose parent does not exist
or is on its left;0 if no match

clearagenda
put the best items fromoutput to agenda

Output: the best item inagenda

Figure 2: A beam-search decoder for graph-based pars-
ing, developed from the deterministic Covington algo-
rithm for projective parsing (Covington, 2001).

based parsing problem as finding the highest scoring
treey from all possible outputs given an inputx:

F (x) = arg max
y∈GEN(x)

Score(y)

whereGEN(x) denotes the set of possible parses for
the inputx. To repeat our earlier comments, in this
paper we do not consider the method of finding the
arg max to be part of the definition of graph-based
parsing, only the fact that the dependency graph it-
self is being scored, and factored into scores at-
tached to the dependency links.

The score of an output parsey is given by a linear
model:

Score(y) = Φ(y) · ~w
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whereΦ(y) is the global feature vector fromy and
~w is the weight vector of the model.

We use the discriminative perceptron learning al-
gorithm (Collins, 2002; McDonald et al., 2005) to
train the values of~w. The algorithm is shown in Fig-
ure 1. Averaging parameters is a way to reduce over-
fitting for perceptron training (Collins, 2002), and is
applied to all our experiments.

While the MSTParser uses exact-inference (Eis-
ner, 1996), we apply beam-search to decoding. This
is done by extending the deterministic Covington
algorithm for projective dependency parsing (Cov-
ington, 2001). As shown in Figure 2, the decoder
works incrementally, building a state item (i.e. par-
tial parse tree) word by word. When each word is
processed, links are added between the current word
and its predecessors. Beam-search is applied by
keeping theB best items in the agenda at each pro-
cessing stage, while partial candidates are compared
by scores from the graph-based model, according to
partial graph up to the current word.

Before decoding starts, the agenda contains an
empty sentence. At each processing stage, existing
partial candidates from the agenda are extended in
all possible ways according to the Covington algo-
rithm. The topB newly generated candidates are
then put to the agenda. After all input words are pro-
cessed, the best candidate output from the agenda is
taken as the final output.

The projectivity of the output dependency trees
is guaranteed by the incremental Covington process.
The time complexity of this algorithm isO(n2),
wheren is the length of the input sentence.

During training, the “early update” strategy of
Collins and Roark (2004) is used: when the correct
state item falls out of the beam at any stage, parsing
is stopped immediately, and the model is updated
using the current best partial item. The intuition is
to improve learning by avoiding irrelevant informa-
tion: when all the items in the current agenda are
incorrect, further parsing steps will be irrelevant be-
cause the correct partial output no longer exists in
the candidate ranking.

Table 1 shows the feature templates from the
MSTParser (McDonald and Pereira, 2006), which
are defined in terms of the context of a word, its
parent and its sibling. To give more templates, fea-
tures from templates 1 – 5 are also conjoined with

1 Parent word (P) Pw; Pt; Pwt
2 Child word (C) Cw; Ct; Cwt
3 P and C PwtCwt; PwtCw;

PwCwt; PwtCt;
PtCwt; PwCw; PtCt

4 A tag Bt PtBtCt
betweenP, C

5 Neighbour words PtPLtCtCLt;
of P, C, PtPLtCtCRt;
left (PL/CL) PtPRtCtCLt;
and right (PR/CR) PtPRtCtCRt;

PtPLtCLt; PtPLtCRt;
PtPRtCLt; PtPRtCRt;
PLtCtCLt; PLtCtCRt;
PRtCtCLt; PRtCtCRt;
PtCtCLt; PtCtCRt;
PtPLtCt; PtPRtCt

6 sibling (S) of C CwSw; CtSt;
CwSt; CtSw;
PtCtSt;

Table 1: Feature templates from MSTParser
w – word; t –POS-tag.

1 leftmost (CLC) and PtCtCLCt;
rightmost (CRC) PtCtCRCt
children ofC

2 left (la) and right (ra) Ptla; Ptra;
arity of P Pwtla; Pwtra

Table 2: Additional feature templates for the graph-based
parser

the link direction and distance, while features from
template 6 are also conjoined with the direction and
distance between the child and its sibling. Here
“distance” refers to the difference between word in-
dexes. We apply all these feature templates to the
graph-based parser. In addition, we define two extra
feature templates (Table 2) that capture information
about grandchildren and arity (i.e. the number of
children to the left or right). These features are not
conjoined with information about direction and dis-
tance. They are difficult to include in an efficient
dynamic programming decoder, but easy to include
in a beam-search decoder.
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Figure 3: Feature context for the transition-based algo-
rithm

3 The transition-based parser

We develop our transition-based parser using the
transition model of the MaltParser (Nivre et al.,
2006), which is characterized by the use of a stack
and four transition actions: Shift, ArcRight, ArcLeft
and Reduce. An input sentence is processed from
left to right, with an index maintained for the current
word. Initially empty, the stack is used throughout
the parsing process to store unfinished words, which
are the words before the current word that may still
be linked with the current or a future word.

The Shift action pushes the current word to the
stack and moves the current index to the next word.
The ArcRight action adds a dependency link from
the stack top to the current word (i.e. the stack top
becomes the parent of the current word), pushes the
current word on to the stack, and moves the current
index to the next word. The ArcLeft action adds a
dependency link from the current word to the stack
top, and pops the stack. The Reduce action pops the
stack. Among the four transition actions, Shift and
ArcRight push a word on to the stack while ArcLeft
and Reduce pop the stack; Shift and ArcRight read
the next input word while ArcLeft and ArcRight add
a link to the output. By repeated application of these
actions, the parser reads through the input and builds
a parse tree.

The MaltParser works deterministically. At each
step, it makes a single decision and chooses one of
the four transition actions according to the current
context, including the next input words, the stack
and the existing links. As illustrated in Figure 3, the
contextual information consists of the top of stack
(ST), the parent (STP) of ST, the leftmost (STLC) and
rightmost child (STRC) of ST, the current word (N0),
the next three words from the input (N1, N2, N3) and
the leftmost child ofN0 (N0LC). Given the context

s, the next actionT is decided as follows:

T (s) = arg max
T∈ACTION

Score(T, s)

where ACTION = {Shift, ArcRight, ArcLeft,
Reduce}.

One drawback of deterministic parsing is error
propagation, since once an incorrect action is made,
the output parse will be incorrect regardless of the
subsequent actions. To reduce such error propa-
gation, a parser can keep track of multiple candi-
date outputs and avoid making decisions too early.
Suppose that the parser builds a set of candidates
GEN(x) for the inputx, the best outputF (x) can
be decided by considering all actions:

F (x) = arg max
y∈GEN(x)

∑
T ′∈act(y) Score(T ′, sT ′)

Here T ′ represents one action in the sequence
(act(y)) by which y is built, andsT ′ represents the
corresponding context whenT ′ is taken.

Our transition-based algorithm keepsB different
sequences of actions in the agenda, and chooses the
one having the overall best score as the final parse.
Pseudo code for the decoding algorithm is shown
in Figure 4. Here each state item contains a partial
parse tree as well as a stack configuration, and state
items are built incrementally by transition actions.
Initially the stack is empty, and the agenda contains
an empty sentence. At each processing stage, one
transition action is applied to existing state items as
a step to build the final parse. Unlike the MaltParser,
which makes a decision at each stage, our transition-
based parser applies all possible actions to each ex-
isting state item in the agenda to generate new items;
then from all the newly generated items, it takes the
B with the highest overall score and puts them onto
the agenda. In this way, some ambiguity is retained
for future resolution.

Note that the number of transition actions needed
to build different parse trees can vary. For exam-
ple, the three-word sentence “A B C” can be parsed
by the sequence of three actions “Shift ArcRight
ArcRight” (B modifies A; C modifies B) or the
sequence of four actions “Shift ArcLeft Shift Ar-
cRight” (both A and C modifies B). To ensure that
all final state items are built by the same number
of transition actions, we require that the final state
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Variables: agenda – the beam for state items
item – (partial tree, stack config)
output – a set of output items
index – iteration index

Input: x – POS-tagged input sentence.
Initialization: agenda = [(“”, [])]
Algorithm:
for index in 1 .. 2× x.length()−1:

clearoutput
for item in agenda:

// when all input words have been read, the
// parse tree has been built; only pop.
if item.length() ==x.length():

if item.stacksize()> 1:
item.Reduce()
output.append(item)

// when some input words have not been read
else:

if item.lastaction()6= Reduce:
newitem = item
newitem.Shift()
output.append(newitem)

if item.stacksize()> 0:
newitem = item
newitem.ArcRight()
output.append(newitem)
if ( item.parent(item.stacktop())==0):

newitem = item
newitem.ArcLeft()
output.append(newitem)

else:
newitem = item
newitem.Reduce()
output.append(newitem)

clearagenda
transfer the best items fromoutput to agenda

Output: the best item inagenda

Figure 4: A beam-search decoding algorithm for
transition-based parsing

items must 1) have fully-built parse trees; and 2)
have only one root word left on the stack. In this
way, popping actions should be made even after a
complete parse tree is built, if the stack still contains
more than one word.

Now because each word excluding the root must
be pushed to the stack once and popped off once
during the parsing process, the number of actions

Inputs: training examples(xi, yi)
Initialization: set ~w = 0
Algorithm:
// R training iterations; N examples
for t = 1..R, i = 1..N :

zi = arg maxy∈GEN(xi)

∑
T ′∈act(yi)

Φ(T ′, c′) · ~w
if zi 6= yi:

~w = ~w +
∑

T ′∈act(yi)
Φ(T ′, cT ′)

−
∑

T ′∈act(zi)
Φ(T ′, cT ′)

Outputs: ~w

Figure 5: the perceptron learning algorithm for the
transition-based parser

1 stack top STwt; STw; STt
2 current word N0wt; N0w; N0t
3 next word N1wt; N1w; N1t
4 ST and N0 STwtN0wt; STwtN0w;

STwN0wt; STwtN0t;
STtN0wt; STwN0w; STtN0t

5 POSbigram N0tN1t
6 POStrigrams N0tN1tN2t; STtN0tN1t;

STPtSTtN0t; STtSTLCtN0t;
STtSTRCtN0t; STtN0tN0LCt

7 N0 word N0wN1tN2t; STtN0wN1t;
STPtSTtN0w; STtSTLCtN0w;
STtSTRCtN0w; STtN0wN0LCt

Table 3: Feature templates for the transition-based parser
w – word; t –POS-tag.

needed to parse a sentence is always2n − 1, where
n is the length of the sentence. Therefore, the de-
coder has linear time complexity, given a fixed beam
size. Because the same transition actions as the
MaltParser are used to build each item, the projec-
tivity of the output dependency tree is ensured.

We use a linear model to score each transition ac-
tion, given a context:

Score(T, s) = Φ(T, s) · ~w

Φ(T, s) is the feature vector extracted from the ac-
tion T and the contexts, and ~w is the weight vec-
tor. Features are extracted according to the templates
shown in Table 3, which are based on the context in
Figure 3. Note that our feature definitions are sim-
ilar to those used by MaltParser, but rather than us-
ing a kernel function with simple features (e.g.STw,
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N0t, but notSTwt or STwN0w), we combine features
manually.

As with the graph-based parser, we use the dis-
criminative perceptron (Collins, 2002) to train the
transition-based model (see Figure 5). It is worth
noticing that, in contrast to MaltParser, which trains
each action decision individually, our training algo-
rithm globally optimizes all action decisions for a
parse. Again, “early update” and averaging parame-
ters are applied to the training process.

4 The combined parser

The graph-based and transition-based approaches
adopt very different views of dependency parsing.
McDonald and Nivre (2007) showed that the MST-
Parser and MaltParser produce different errors. This
observation suggests a combined approach: by using
both graph-based information and transition-based
information, parsing accuracy can be improved.

The beam-search framework we have developed
facilitates such a combination. Our graph-based
and transition-based parsers share many similarities.
Both build a parse tree incrementally, keeping an
agenda of comparable state items. Both rank state
items by their current scores, and use the averaged
perceptron with early update for training. The key
differences are the scoring models and incremental
parsing processes they use, which must be addressed
when combining the parsers.

Firstly, we combine the graph-based and the
transition-based score models simply by summation.
This is possible because both models are global and
linear. In particular, the transition-based model can
be written as:

ScoreT(y) =
∑

T ′∈act(y) Score(T ′, sT ′)

=
∑

T ′∈act(y) Φ(T ′, sT ′) · ~wT

= ~wT ·
∑

T ′∈act(y) Φ(T ′, sT ′)

If we take
∑

T ′∈act(y) Φ(T ′, sT ′) as the global fea-
ture vectorΦT(y), we have:

ScoreT(y) = ΦT(y) · ~wT

which has the same form as the graph-based model:

ScoreG(y) = ΦG(y) · ~wG

Sections Sentences Words
Training 2–21 39,832 950,028
Dev 22 1,700 40,117
Test 23 2,416 56,684

Table 4: The training, development and test data from
PTB

We therefore combine the two models to give:

ScoreC(y) = ScoreG(y) + ScoreT(y)

= ΦG(y) · ~wG + ΦT(y) · ~wT

Concatenating the feature vectorsΦG(y) andΦT(y)
to give a global feature vectorΦC(y), and the weight
vectors ~wG and ~wT to give a weight vector~wC, the
combined model can be written as:

ScoreC(y) = ΦC(y) · ~wC

which is a linear model with exactly the same form
as both sub-models, and can be trained with the per-
ceptron algorithm in Figure 1. Because the global
feature vectors from the sub models are concate-
nated, the feature set for the combined model is the
union of the sub model feature sets.

Second, the transition-based decoder can be used
for the combined system. Both the graph-based de-
coder in Figure 2 and the transition-based decoder in
Figure 4 construct a parse tree incrementally. How-
ever, the graph-based decoder works on a per-word
basis, adding links without using transition actions,
and so is not appropriate for the combined model.
The transition-based algorithm, on the other hand,
uses state items which contain partial parse trees,
and so provides all the information needed by the
graph-based parser (i.e. dependency graphs), and
hence the combined system.

In summary, we build the combined parser by
using a global linear model, the union of feature
templates and the decoder from the transition-based
parser.

5 Experiments

We evaluate the parsers using the English and Chi-
nese Penn Treebank corpora. The English data
is prepared by following McDonald et al. (2005).
Bracketed sentences from the Penn Treebank (PTB)
3 are split into training, development and test sets
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Figure 6: The influence of beam size on the transition-
based parser, using the development data
X-axis: number of training iterations
Y-axis: word precision

as shown in Table 4, and then translated into depen-
dency structures using the head-finding rules from
Yamada and Matsumoto (2003).

Before parsing,POS tags are assigned to the in-
put sentence using our reimplementation of thePOS-
tagger from Collins (2002). Like McDonald et al.
(2005), we evaluate the parsing accuracy by the
precision of lexical heads (the percentage of input
words, excluding punctuation, that have been as-
signed the correct parent) and by the percentage
of complete matches, in which all words excluding
punctuation have been assigned the correct parent.

5.1 Development experiments

Since the beam size affects all three parsers, we
study its influence first; here we show the effect on
the transition-based parser. Figure 6 shows different
accuracy curves using the development data, each
with a different beam sizeB. The X-axis represents
the number of training iterations, and the Y-axis the
precision of lexical heads.

The parsing accuracy generally increases as the
beam size increases, while the quantity of increase
becomes very small whenB becomes large enough.
The decoding times after the first training iteration
are 10.2s, 27.3s, 45.5s, 79.0s, 145.4s, 261.3s and
469.5s, respectively, whenB = 1, 2, 4, 8, 16, 32, 64.

Word Complete
MSTParser 1 90.7 36.7
Graph [M] 91.2 40.8
Transition 91.4 41.8
Graph [MA] 91.4 42.5
MSTParser 2 91.5 42.1
Combined [TM] 92.0 45.0
Combined [TMA] 92.1 45.4

Table 5: Accuracy comparisons usingPTB 3

In the rest of the experiments, we setB = 64 in
order to obtain the highest possible accuracy.

When B = 1, the transition-based parser be-
comes a deterministic parser. By comparing the
curves whenB = 1 andB = 2, we can see that,
while the use of search reduces the parsing speed, it
improves the quality of the output parses. Therefore,
beam-search is a reasonable choice for transition-
based parsing.

5.2 Accuracy comparisons

The test accuracies are shown in Table 5, where each
row represents a parsing model. Rows “MSTParser
1/2” show the first-order (using feature templates 1 –
5 from Table 1) (McDonald et al., 2005) and second-
order (using all feature templates from Table 1)
(McDonald and Pereira, 2006) MSTParsers, as re-
ported by the corresponding papers. Rows “Graph
[M]” and “Graph [MA]” represent our graph-based
parser using features from Table 1 and Table 1 + Ta-
ble 2, respectively; row “Transition” represents our
transition-based parser; and rows “Combined [TM]”
and “Combined [TMA]” represent our combined
parser using features from Table 3 + Table 1 and Ta-
ble 3 + Table 1 + Table 2, respectively. Columns
“Word” and “Complete” show the precision of lexi-
cal heads and complete matches, respectively.

As can be seen from the table, beam-search re-
duced the head word accuracy from91.5%/42.1%
(“MSTParser 2”) to91.2%/40.8% (“Graph [M]”)
with the same features as exact-inference. How-
ever, with only two extra feature templates from
Table 2, which are not conjoined with direction or
distance information, the accuracy is improved to
91.4%/42.5% (“Graph [MA]”). This improvement
can be seen as a benefit of beam-search, which al-
lows the definition of more global features.
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Sections Sentences Words
Training 001–815; 16,118 437,859

1001–1136
Dev 886–931; 804 20,453

1148–1151
Test 816–885; 1,915 50,319

1137–1147

Table 6: Training, development and test data fromCTB

Non-root Root Comp.
Graph [MA] 83.86 71.38 29.82
Duan 2007 84.36 73.70 32.70
Transition 84.69 76.73 32.79
Combined [TM] 86.13 77.04 35.25
Combined [TMA] 86.21 76.26 34.41

Table 7: Test accuracies withCTB 5 data

The combined parser is tested with various sets
of features. Using only graph-based features in Ta-
ble 1, it gave88.6% accuracy, which is much lower
than91.2% from the graph-based parser using the
same features (“Graph [M]”). This can be explained
by the difference between the decoders. In particu-
lar, the graph-based model is unable to score the ac-
tions “Reduce” and “Shift”, since they do not mod-
ify the parse tree. Nevertheless, the score serves as a
reference for the effect of additional features in the
combined parser.

Using both transition-based features and graph-
based features from the MSTParser (“Combined
[TM]”), the combined parser achieved92.0% per-
word accuracy, which is significantly higher than the
pure graph-based and transition-based parsers. Ad-
ditional graph-based features further improved the
accuracy to92.1%/45.5%, which is the best among
all the parsers compared.1

5.3 Parsing Chinese

We use the Penn Chinese Treebank (CTB) 5 for ex-
perimental data. Following Duan et al. (2007), we

1A recent paper, Koo et al. (2008) reported parent-prediction
accuracy of92.0% using a graph-based parser with a different
(larger) set of features (Carreras, 2007). By applying separate
word cluster information, Koo et al. (2008) improved the accu-
racy to93.2%, which is the best known accuracy on thePTB

data. We excluded these from Table 5 because our work is not
concerned with the use of such additional knowledge.

split the corpus into training, development and test
data as shown in Table 6, and use the head-finding
rules in Table 8 in the Appendix to turn the bracketed
sentences into dependency structures. Most of the
head-finding rules are from Sun and Jurafsky (2004),
while we added rules to handle NN and FRAG, and
a default rule to use the rightmost node as the head
for the constituent that are not listed.

Like Duan et al. (2007), we use gold-standard
POS-tags for the input. The parsing accuracy is eval-
uated by the percentage of non-root words that have
been assigned the correct head, the percentage of
correctly identified root words, and the percentage
of complete matches, all excluding punctuation.

The accuracies are shown in Table 7. Rows
“Graph [MA]”, “Transition”, “Combined [TM]” and
“Combined [TMA]” show our models in the same
way as for the English experiments from Section 5.2.
Row “Duan 2007” represents the transition-based
model from Duan et al. (2007), which applies beam-
search to the deterministic model from Yamada and
Matsumoto (2003), and achieved the previous best
accuracy on the data.

Our observations on parsing Chinese are essen-
tially the same as for English. Our combined parser
outperforms both the pure graph-based and the pure
transition-based parsers. It gave the best accuracy
we are aware of for dependency parsing usingCTB.

6 Related work

Our graph-based parser is derived from the work
of McDonald and Pereira (2006). Instead of per-
forming exact inference by dynamic programming,
we incorporated the linear model and feature tem-
plates from McDonald and Pereira (2006) into our
beam-search framework, while adding new global
features. Nakagawa (2007) and Hall (2007) also
showed the effectiveness of global features in im-
proving the accuracy of graph-based parsing, us-
ing the approximate Gibbs sampling method and a
reranking approach, respectively.

Our transition-based parser is derived from the
deterministic parser of Nivre et al. (2006). We
incorporated the transition process into our beam-
search framework, in order to study the influence
of search on this algorithm. Existing efforts to
add search to deterministic parsing include Sagae
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and Lavie (2006b), which applied best-first search
to constituent parsing, and Johansson and Nugues
(2006) and Duan et al. (2007), which applied beam-
search to dependency parsing. All three methods es-
timate the probability of each transition action, and
score a state item by the product of the probabilities
of all its corresponding actions. But different from
our transition-based parser, which trains all transi-
tions for a parse globally, these models train the
probability of each action separately. Based on the
work of Johansson and Nugues (2006), Johansson
and Nugues (2007) studied global training with an
approximated large-margin algorithm. This model
is the most similar to our transition-based model,
while the differences include the choice of learning
and decoding algorithms, the definition of feature
templates and our application of the “early update”
strategy.

Our combined parser makes the biggest contribu-
tion of this paper. In contrast to the models above,
it includes both graph-based and transition-based
components. An existing method to combine mul-
tiple parsing algorithms is the ensemble approach
(Sagae and Lavie, 2006a), which was reported to
be useful in improving dependency parsing (Hall et
al., 2007). A more recent approach (Nivre and Mc-
Donald, 2008) combined MSTParser and MaltParser
by using the output of one parser for features in the
other. Both Hall et al. (2007) and Nivre and McDon-
ald (2008) can be seen as methods to combine sep-
arately defined models. In contrast, our parser com-
bines two components in a single model, in which
all parameters are trained consistently.

7 Conclusion and future work

We developed a graph-based and a transition-based
projective dependency parser using beam-search,
demonstrating that beam-search is a competitive
choice for both parsing approaches. We then com-
bined the two parsers into a single system, using dis-
criminative perceptron training and beam-search de-
coding. The appealing aspect of the combined parser
is the incorporation of two largely different views of
the parsing problem, thus increasing the information
available to a single statistical parser, and thereby
significantly increasing the accuracy. When tested
using both English and Chinese dependency data,

the combined parser was highly competitive com-
pared to the best systems in the literature.

The idea of combining different approaches to
the same problem using beam-search and a global
model could be applied to other parsing tasks, such
as constituent parsing, and possibly otherNLP tasks.
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Appendix

Constituent Rules
ADJP r ADJP JJ AD; r
ADVP r ADVP AD CS JJ NP PP P VA VV; r
CLP r CLP M NN NP; r
CP r CP IP VP; r
DNP r DEG DNP DEC QP; r
DP r M; l DP DT OD; l
DVP r DEV AD VP; r
FRAG r VV NR NN NT; r
IP r VP IP NP; r
LCP r LCP LC; r
LST r CD NP QP; r
NP r NP NN IP NR NT; r
NN r NP NN IP NR NT; r
PP l P PP; l
PRN l PU; l
QP r QP CLP CD; r
UCP l IP NP VP; l
VCD l VV VA VE; l
VP l VE VC VV VNV VPT VRD VSB

VCD VP; l
VPT l VA VV; l
VRD l VVI VA; l
VSB r VV VE; r
default r

Table 8: Head-finding rules to extract dependency data
from CTB
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and Svetoslav Marinov. 2006. Labeled pseudo-
projective dependency parsing with support vector ma-
chines. InProceedings of CoNLL, pages 221–225,
New York City, USA, June.

K Sagae and A Lavie. 2006a. Parser combination by
reparsing. InIn Proc. HLT/NAACL, pages 129–132,
New York City, USA, June.

Kenji Sagae and Alon Lavie. 2006b. A best-first prob-
abilistic shift-reduce parser. InProceedings of COL-
ING/ACL (poster), pages 691–698, Sydney, Australia,
July.

Honglin Sun and Daniel Jurafsky. 2004. Shallow
semantic parsing of Chinese. InProceedings of
NAACL/HLT, Boston, USA, May.

H Yamada and Y Matsumoto. 2003. Statistical depen-
dency analysis using support vector machines. InPro-
ceedings of IWPT, Nancy, France, April.

571


