LTAG Dependency Parsing with Bidirectional I ncremental Construction

Libin Shen Aravind K. Joshi
BBN Technologies University of Pennsylvania
| shen@bn. com j oshi @i s. upenn. edu
Abstract parsing in which we learn the word dependency re-
lations encoded in LTAG derivations instead of the
In this paper, we first introduce a new archi- full-fledged trees.
tecture for parsing, bidirectional incremental)
parsing. We propose a novel algorithm forin- 1.1 Parsing

cremental construction, which can be applied Two types of parsing strategies are popular in nat-

to many structure learning problems in NLP. . . .
)) ural language parsing, which are chart parsing and
We apply this algorithm to LTAG dependency) guage p . 9 P 9
incremental parsing.

parsing, and achieve significant improvement))
on accuracy over the previous best result on Suppose the input sentencedigws...w,. Let cell
the same data set. [i, j] representw;w;1...w;, a substring of the sen-
tence. As far as CFG parsing is concerned, a chart
parser computes the possible structures over all pos-
1 Introduction sible cells[i, j], wherel < i < j < n. The order
of computing on these(n + 1)/2 cells is based on
The phrase “Bidirectional Incremental” may appeagome partial order, such thafp:, ps] =< [q1, ¢2] if
self-contradictory at first sight, since incrementa}]1 < p1 < pa < qo. In order to employ dynamic
parsing usually means left-to-right parsing in thgyrogramming, one can only use a fragment of a hy-
context of conventional parsing. In this paper, Weothesis to represent the whole hypothesis, which
will extend the meaning of incremental parsing. js assumed to satisfy conditional independence as-
The idea of bidirectional parsing is related tosumption. It is well known that richer context rep-
the bidirectional sequential classification method dgesentation gives rise to better parsing performance
scribed in (Shen et al., 2007). In that paper, a tagg€fohnson, 1998). However, the need for tractability
assigns labels to words of highest confidence firsgoes not allow much internal information to be used
and then these labels in turn serve as the context @f represent a hypothesis. The designs of hypothe-
later labelling operations. The bidirectional taggeges in (Collins, 1999; Charniak, 2000) show a del-
obtained the best results in literature on POS taggingate balance between expressiveness and tractabil-
on the standard PTB dataset. ity, which play an important role in natural language
We extend this method from labelling to structureparsing.
learning, The search space of structure learning is Some recent work on incremental parsing
much larger, so that it is appropriate to exploit con{Collins and Roark, 2004; Shen and Joshi, 2005)
fidence scores in search. showed another way to handle this problem. In
In this paper, we are interested in LTAG depenthese incremental parsers, tree structures are used
dency parsing because TAG parsing is a well knowto represent the left context. In this way, one can
problem of high computational complexity in reg-access the whole tree to collect rich context in-
ular parsing. In order to get a focus for the learnformation at the expense of being limited to beam
ing algorithm, we work on a variant of LTAG basedsearch, which only maintains k-best results at each

495

Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 495-504,
Honolulu, October 2008. (©)2008 Association for Computational Linguistics

step. Compared to chart parsing, incremental parfr each cell instead of only one, which differenti-
ing searches for the analyses for ogly — 1 cells, ates this model from normal greedy search. So our
1,1,12,2],1,2], .., [41,[1,4], .., [1,n], incremen- model is more robust. Furthermore, we need to find
tally, while complex structures are used for the anakn effective way to iterate between these two tasks.
yses for each cell, which satisfy conditional inde- Instead of giving an algorithm specially designed
pendence under a much weaker assumption. for parsing, we generalize the problem for graphs. A
In this paper, we call this particular approachsentence can be viewed as a graph in which words
left-to-right incremental parsing, since one can alsare viewed as vertices and neighboring words are
search from right to left incrementally in a similarconnected with an arc. In Sections 2 and 3, we
way. A major problem of the left-to-right approachwill propose decoding and training algorithms re-
is that one can only utilize the structural informationspectively for graph-based incremental construction,

on the left side but not the right side. which can be applied to many structure learning
. e _ problems in NLP.
1.2 Parsing as Bidirectional Construction We will apply this algorithm to dependency pars-

A natural way to handle this problem is to employing of Lexicalized Tree Adjoining Grammar (Joshi

bidirectional search, which means we can dynam@nd Schabes, 1997). Specifically, we will train and
cally search the space in two directions. So we evaluate an LTAG dependency parser over the LTAG
pand the idea of incremental parsing by introducing@ebank described in Shen et al. (2008). We report

greedy search. Specifically, we look for the hypothethe experimental results on PTB section 23 of the
ses over the cel[l,n] by building analyses over LTAG treebank. The accuracy on LTAG dependency

2n —1cells[a;1,ais],i = 1,..,2n— 1 step by step, 1S 90.5%, which is 1.2 points over 89.3%, the previ-
whereag,_; L o1 2] = [1,n]. Furthermore, for 0US best result (Shen and Joshi, 2005) on the same

any|a; 1, ;) data set.
It should be noted that PTB-based bracketed la-
® a1 =a;p, Of belling is not an appropriate evaluation metric here,

since the experiments are on an LTAG treebank.
e Jj,k, suchthafa;1,a;2] = [a;1,ar2], where The derived trees in the LTAG treebank are different
Jj<ik<iandaj2+1=a,;. from the CFG trees in PTB. Hence, we do not use
metrics such as labeled precision and labeled recall
It is easy to show that the séfa;1,a;2] | 1 < for evaluation.
i < 2n — 1} forms atreerelation, which means that
each cell except the last one will be used to build a2 Graph-based Incremental Construction
other cell just once. In this framework, we can begin
with several starting points in a sentence and searét
in any direction. So left-to-right parsing is only aNow we define the problem formally. We will use
special case aihcremental parsing defined in this dependency parsing as an example to illustrate the
way. We still use complex structures to represeritlea.
the partial analyses, so as to employ both top-down We are given a connected grapiV, E') whose
and bottom-up information as in (Collins and Roarkhidden structure id/, whereV = {v;}, E C
2004; Shen and Joshi, 2005). Furthermore, we cdn x V is a symmetric relation, antl = {uy} is
utilize the rich context on both sides of the partiacomposed of a set of elements that vary with ap-
results. plications. As far as dependency parsing is con-
Similar to bidirectional labelling in (Shen et al., cerned, the input graph is simply a chain of ver-
2007), there are two learning tasking in this modetices, whereF(v;_1, v;), and its hidden structure is
First, we need to learn which cell we should choos€lui, = (vs, , ve, , bi) }, Where vertex,., depends on
At each step, we can select only one path. Sewertexv,, with labelby.
ondly, we need to learn which operation we should A graph-based incremental construction algo-
take for a given cell. We maintain k-best candidatedthm looks for the hidden structure in a bottom-up

|dea and Data Structures

496

style. the features in the fragment hypothesisagf and
Let z; andz; be two sets of connected vertexesvice versa.
inV, wherez; N z; = ¢ and they are directly con- We are especially interested in the following two
nected via an edge if. Lety* be a hypothesized dependency relations.
hidden structure of;, andy®’ a hypothesized hid- o
den structure of;. e level-0 dependencyDy(z;, zj) <= i = j.
Suppose we choose to combig® andy®’ with
an operation- to build a hypothesized hidden struc-
ture forz;, = x; U z;. We say the process of con-
struction isincremental if the output of the opera- Level-O dependency means that the features of
tion, y** = r(z;,z;,y",y*) D y* Uy for all a hypothesis for a vertex; do not depend on the
the possiblexi,xj,y”,yfj and operation. As far hypotheses for other vertices. Level-1 dependency
as dependency parsing is concerned, incrementalityeans that the features depend on the hypotheses of
means that we cannot remove any links coming fromearby vertices only.
the substructures. The learning algorithm for level-0 dependency is
Oncey™" is built, we can no longer usg® or similar to the guided learning algorithm for labelling
y* as a building block. It is easy to see that leftas described in (Shen et al., 2007). Level-1 depen-
to right incremental construction is a special case afency requires more data structures to maintain the
our approach. So the question is how we decide the/potheses with dependency relations among them.
order of construction as well as the type of operatiorlowever, we do not get into the details of level-1
r. For example, in the very first step of dependencformalism in this papers for two reasons. One is the
parsing, we need to decide which two words are ttimit of page space and depth of a conference pa-
be combined as well as the dependency label to lper. On the other hand, our experiments show that
used. the parsing performance with level-1 dependency is
This problem is solved statistically, based on thelose to what level-0 dependency could provides.
features defined on the substructures involved in tHaterested readers could refer to (Shen, 2006) for
operation and their context. Suppose we are givatetailed description of the learning algorithms for
the weights of these features, we will show in théevel-1 dependency.
next section how these parameters guide us to build _
a set of hypothesized hidden structures with beaf? Algorithms
search. In Section 3, we will present a PerceptroAlgorithm 1 shows the procedure of building hy-
like algorithm (Collins, 2002; Daumeé Il and Marcu, potheses incrementally on a given gra@ghV, E).

e level-1 dependencyD; (z;,z;) <= x; and
x; are directly connected i6'.

2005) to obtain the parameters. Parametek is used to set the beam width of search.
Now we introduce the data structure to be used ieight vectorw is used to compute score of an op-
our algorithms. eration.
A fragment is aconnectedsub-graph otz(V, E). We have two setd] and(@, to maintain hypothe-

Each fragment is associated with a set of hypothe-ses. Hypotheses iH are selected in beam search,
sized hidden structures, fimgment hypothesesfor and hypotheses i) are candidate hypotheses for
short: Y = {yf{, ...,yj }. Eachy” is a possible frag- the next step of search in various directions.
ment hypothesis af. We first initiate the hypotheses for each vertex,
It is easy to see that an operation to combine twand put them into seff. For example, in depen-
fragments may depend on the fragments in the codency parsing, the initial value is a set of possible
text, i.e. fragments directly connected to one of th®OS tags for each single word. Then we use a queue
operands. So we introduce tbependency relation () to collect all the possible hypotheses over the ini-
over fragments. Suppose there is a dependency &l hypothesed.
lation D C F x F, whereF C 2V is the set of all Whenever(Q) is not empty, we search for the hy-
fragments in graplé. D(z;, z;) means that any op- pothesis with the highest score according to a given
eration on a fragment hypothesis :of depends on weight vectorw. Suppose we findz, y). We select

497

Algorithm 1 Incremental Construction

Require: graphG(V, E); NN NN CD NN
Require: beam widthe;,
Require: weight vectorw;

L H — inity(); DT NN MD VB CD NN

20 Q —initq(H); ’ the HstudentH wiIH tak(ﬂ four course%
3: repeat

4 (2),y) « argmax(y)eq score(y); Figure 2: Step 1

5. H «— updatey (H,z');

6: @ «— updateq(Q, H,z');

7: until (Q = ¢) ro

DT NN MD VB CD NN br NN MD VB CD NN

’ the studentH wiIH tak%’ four course%

’ the HstudentH wiIH tak%’ fouvH course%

Figure 1: After initialization Figure 3: Step 2

e inity() initiates hypotheses for each vertex.
Here we set the initial fragment hypotheses,
Yo = {y¥t, ..y}, wherex; = {v;} con-
tains only one vertex.

top k-best hypotheses for segmanirom @ and use
them to updatéZ. Then we remove frond) all the
hypotheses for segments that have overlap with seg-
mentx. In the end, we build new candidate hypothe-

ses with the updated selected hypothesigeand o inito(H) initiates the queue of candidate op-

add them ta. erations over the current hypothesé#s Sup-
posed there exist segmentsandz; which are

_ _ directly connected inG. We apply all possi-
We use an example of dependency parsing to illus- ¢ operations to all fragment hypothesesafor

trate the incremental construction algorithm first. andz;, and add the result hypothesesgnFor

Suppose the input sentencehs student will take example, we generate, y) with some opera-
four courses We are also given the candidate POS {jon - where segment is z; U z;.

tags for each word. Sothe graph is just a linear struc-
ture in this case. We use level-0 dependency and set

2.3 An Example

All the candidate operations are organized with

beam width to two respect to the segments. For each segment, we
We use boxes to represent fragments. The depen- maintain topk candidates according to their
scores.

dency links are from the parent to the child.

Figure 1 shows the result after initialization. Fig- updater;(H, z) is used to update hypotheses in
ure 2 shows the result after the first step, combining 7 First we remove froni all the hypotheses

the fragments ofour andcourses Figure 3 shows whose corresponding segment is a sub-set of

the result after the second step, combinihg and Then, we add intd7 the topk hypotheses for
student and figure 4 shows the result after the third segment:.

step, combiningake andfour courses Due to lim-

ited space, we skip the rest operations. e updateq(Q, H, x) is also designed to complete
two tasks. First, we remove fror® all the
hypotheses whose corresponding segment has
Now we will explain the functions in Algorithm 1 overlap with segment. Then, we add new
one by one. candidate hypotheses dependingzoim a way

2.4 Description

498

m m updateg as in Algorithm 1. Ify’ is incompatible

DT NN MD NN CD NN with H,., we treaty’ as a negative sample, and search
for a positive samplg in Q with positive(Q, x').
7N //_\ If there exists a hypothesig® for fragmentz’
DT NN MD VB CD NN which is compatible withH,., thenpositive(Q, z")

returnsj® . Otherwisepositive(Q,z) returns the
candidate hypothesis which is compatible wiih
and has the highest operation scoré)in

Then we update the weight vectar with 7 and
y’. At the end, we update the candid&peby using
the new weightsw.

’ the studentH WiIH take four course%

Figure 4: Step 3

Algorithm 2 Parameter Optimization

1. w <« O;

2: for (roundr = 0; r < R; r++) do In order to improve the performance, we URer-

3. load graphG, (V, E), gold standardd,; ceptron with marginin the training (Krauth and

4: initiate H andQ); Mézard, 1987). The margin is proportional to the

5. repeat loss of the hypothesis. Furthermore, we use aver-
6 (2, y') « argmax, ,cq score(y); aged weights (Collins, 2002; Freund and Schapire,
7 if (4 is compatible withH,) then 1999) in Algorithm 1.

8 updateH andQ;

o else 4 LTAG Dependency Parsing

10: g « positive(Q, z');

E Zzzln;g?v(::,’y/y)) We apply the new algorithm to LTAG dependency

13- updateQ with w: parsing on an LTAG Treebank (Shen et al., 2008)
14- end if extracted from Penn Treebank (Marcus et al., 1994)

, : o and Proposition Bank (Palmer et al., 2005). Penn
15: until (Q = ¢)) _

Treebank was previously used to train and evalu-
ate various dependency parsers (Yamada and Mat-
sumoto, 2003; McDonald et al., 2005). In these
similar to theinitg (H) function. For each seg- works, Magerman’s rules are used to pick the head
ment, we maintain the topcandidates for each at each level according to the syntactic labels in a
segment. local context.

16: end for

The dependency relation encoded in the LTAG
Treebank reveals deeper information for the follow-

In the previous section, we described an algorithr‘fﬂg two reasons. First, the LTAG architecture itself
for graph-based incremental construction for a giveffveals deeper dependency. Furthermore, the PTB
weight vectorw. In Algorithm 2, we present a Per- Was reconciled with the Propbank in the LTAG Tree-
ceptron like algorithm to obtain the weight vectorP@nk extraction (Shen et al., 2008).
for the training data. We are especially interested in the two types of
For each given training samplé-,, H,), where structures in the LTAG Treebank, predicate adjunc-
H, is the gold standard hidden structure of graption and predicate coordination. They are used to
G,, we first initiate cutl’, hypothesedZ” and can- encode dependency relations which are unavailable
didate queu&) by callinginity andinitg asin Al- in other approaches. On the other hand, these struc-
gorithm 1. tures turn out to be a big problem for the general rep-
Then we use the gold standafd. to guide the resentation of dependency relations, including ad-
search. We select candidate, y’) which has the junction and coordination. We will show that the
highest operation score @. If 3/ is compatible with algorithm proposed here provides a nice solution for
H,, we updated and) by calling updatey and this problem.

3 Parameter Optimization

499

attach

resist

ttach attach
attac
n [rearing] [saluting
attach
d
coordinatio

Figure 5: Predicate Adjunction)) o
Figure 6: Predicate Coordination

4.1 Representation of the LTAG Treebank

In the LTAG Treebank (Shen et al., 2008), each word
is associated with a spinal template, which repre-
sents the projection from the lexical item to the root.
Templates are linked together to forndarivation
tree. The topology of the derivation tree shows a Figure 7: Non-projective Adjunction

type of dependency relation, which we chITAG

dependency here.

There are three types of operations in the LTAGhis coord-structure attaches tesist It is shown
Treebank, which are attachment, adjunction, and c@ (Shen et al., 2008) that coord-structures could en-
ordination. Attachment is used to represent bothode the ambiguity of argument sharing, which can
substitution and sister adjunction in the traditionabe non-projective also.

LTAG. So it is similar to the dependency relation in
other approaches. 4.2 Incremental Construction

The LTAG dependency can be a non-projectivéVe build LTAG derivation trees incrementally. A
relation thanks to the operation of adjunction. Irhypothesis of a fragment is represented with a par-
the LTAG Treebank, raising verbs and passive ECMal derivation tree. When the fragment hypotheses
verbs are represented as auxiliary trees to be adftwo nearby fragments combine, the partial deriva-
joined. In addition, adjunction is used to handlgion trees are combined into one.
many cases of discontinuous arguments in Prop- It is trivial to combine two partial derivation trees
bank. For example, in the following sentencewith attachment. We simply attach the root of one
ARG1 of saysin Propbank is discontinuous, whichtree to some node on the other tree whichissbleto
is First Union now has packages for seven customehis root node. Adjunction is similar to attachment,
groups except that an adjoined subtree maimble from

. . the other side of the derivation tree. For example, in
e First Union, he says, now has packages for

sentence
seven customer groups.

e The stock of UAL Corp. continued to be

In the LTAG Treebank, the subtree fbe saysad- pounded amid signs that British Airways ...

joins onto the node dfiag which is the root of the

derivation tree, as shown in Figure 5. _continuedadjoins ontopounded andamid attaches
Another special aspect of the LTAG Treebank ig, continuedfrom the other side of the derivation

the representation of predicate coordination. Figurgaee poundedis betweencontinuedand amid), as
6 is the representation of the following sentence. ghown in Figure 7.

The predicate coordination is decomposed into a
set of operations to meet the need for incremen-
tal processing. Suppose a coordinated structure at-
The coordination betweerearing and salutingis taches to the parent node on the left side. We build
represented explicitly with a coord-structure, andhis structure incrementally by attaching the first

e | couldn't resist rearing up on my soggy loafers
and saluting.

500

resist o hypothesis trees on the left and right context respec-
attach conjoin tively. Letz be a node. We use.p to represent the
]

attalcrhe‘aring\ Saiing POS tag of node;, andx.w to represent the lexical
m item of nodez.
attach Table 1 show the features used in LTAG depen-

dency parsing. There are seven classes of features.
The first three classes of features are those defined
on only one operand, on both operands, and on the
siblings respectively. If gold standard POS tags are
used as input, we define features on the POS tags in
the context. If level-1 dependency is used, we define
features on the root node of the hypothesis partial
derivation trees in the neighborhood.

Half check and full check features are designed
for grammatical check. For example, in Figure 9,
nodes attaches onto node from left. Then nothing
can attach onte from the right side. The children of
the right side ofs are fixed, so we use the half check
features to check the completeness of the children
of the right half fors. Furthermore, we notice that
conjunct to the parent and conjoining other conall the rightmost descendants ofand the leftmost
juncts to first one. In this way, we do not need talescendants of. at each level become unavailable
force the coordination to be built before the attachfor any further operation. So their children are fixed
ment. Either can be executed first. A sample igfter this operation. All these nodes are in the form
shown in Figure 8. of my1. 1 0or s;1.1. We use full check features to
check the children from both sides for these nodes.

In the discussion above, we ignored adjunction
In this section, we will describe the features used iand conjunction. We need to slightly refine the con-
LTAG dependency parsing. An operation is repreditions of checking. Due to the limit of space, we
sented by a 4-tuple skip these cases.

Figure 8: Conjunction

Figure 9: Representation of nodes

4.3 Features

® O0p = (typ€7diT7P03left7P05right)7 5 Experiments

wheretype € {attach,adjoin,conjoin} anddir
is used to represent the direction of the operatioVVe use the same data set as in (Shen and Joshi,
posie 1 and pos,;qn: are the POS tags of the two2005). We use Sec. 2-21 of the LTAG Treebank for
operands. training, Sec. 22 for feature selection, and Sec. 23
Features are defined on POS tags and lexical iterfy test. Table 2 shows the comparison of different
of the nodes in the context. In order to represent theodels. Beam size is set to five in our experiments.
features, we use: for the main-node of the oper- With level-O dependency, our system achieves an ac-
ation, s for the sub-nodem,. for the parent of the curacy of 90.3% at the speed of 4.25 sentences a sec-
main-nodejn;..m; for the children ofm, ands;..s; ond on a Xeon 3G Hz processor with JDK 1.5. With
for the children ofs, as shown in Figure 9. The in- level-1 dependency, the parser achieves 90.5% at
dex always starts from the side where the operatioh59 sentences a second. Level-1 dependency does
takes place. We use the Gorn addresses to represgat provide much improvement due to the fact that
the nodes in the subtrees rootedrarands. level-0 features provide most of the useful informa-
Furthermore, we usé, andr;, to represent the tion for this specific application.
nodes in the left and right context of the flat sen- It is interesting to compare our system with other
tence. We usé; andh,. to represent the head of thedependency parsers. The accuracy on LTAG depen-

501

category

description

templates

one operand

Features defined on only one operand. For ¢
templatetp, [type, dir, tp] is used as a feature.

ath.p), (m.w), (m.p, m.w), (s.p),
(s.w), (s.p, s.w)

two operands

Features defined on both operands. For each

efm.w), (s.w), (m.w, s.w)

platetp, [op, tp] is used as a feature. In addition,
[op] is also used as a feature.
Features defined on the children of thém;.p),
main nodes. For each templatép,
lop, tp], [op,m.w,tp], [op,m,.p,tp] and
[op, m,.p, m.w, tp] are used as features.

In the case that gold standard POS tags are ységlp), (I1.p),
as input, features are defined on the POS tags(&f.p, [1.p),
the context. For each template [op, tp] is used| (r1.p,r2.p)

as a feature.

In the case that level-1 dependency is employeth;.p), (h,.p)
features are defined on the trees in the context.

For each templaté, [op, tp] is used as a feature.

siblings (m1.p, ma.p),

(ml-p7 mo.p, .., mlp)

POS context (r1.p), (r2.p),

(l1p7 Tl'p)1

tree context

half check Supposesy, ..., si are all the children of which | (s.p, s1.p, s2.p, .., S§.p),
are betweers andm in the flat sentence. Faqr(m.p,s.p, s1.p, s2.p, .., Sg.-p)
each templatep, [tp] is used as a feature. and (s.w, s.p, $1.p, $2.P, .-, Sk-D),
(s.w,m.p, 8.p, $1.p, $2.D, -, Sk.-D)
if s.wisaverb
full check Let x1, z2, .., z be the children ofz, andx, | (z.p,x1.p, x2.p, .., xk.D),
the parent ofc. For anyx = my.1. 1 Ors11.1, | (2p.p, 2.0, 21.p, x2.p, .., T.p) @nd
templatetp, [tp(z)] is used as a feature. (x.w, z.p, x1.p, T2.P, .., T.P),
(x.w, Tp.p, XD, T1.D, T2.D, -, Tf- D)
if x.wis a verb
Table 1: Features defined on the context of operation
\ model | accuracy%) lead to non-projective dependencies, and the depen-
Shen and Joshi, 2006 89.3 dencies defined on predicate adjunction are linguis-
level-0 dependency 90.3 tically more motivated, as shown in the examples in
level-1 dependency 905 Figure 5 and 7. The explicit representation of predi-

cate coordination also provides deeper relations. For

Table 2: Experiments on Sec. 23 of the LTAG Treebankexamp|e’ in Figure 6, the LTAG dependency con-
tainsresist — rearing andresist — saluting,
while the Magerman’s dependency only contains

dency is comparable to the numbers of the previzesist — rearing. The explicit representation of

ous best systems on dependency extracted from PPredicate coordination will help to solve for the de-

with Magerman’s rules, for example, 90.3% in (Yafendencies for shared arguments.

mada and Matsumoto, 2003) and 90.9% in (McDon-]]

ald et al., 2005). However, their experiments are off DIScussion

the PTB, while ours is on the LTAG corpus. In our approach, each fragment in the graph is asso-

It should be noted that it is more difficult to learnciated with a hidden structure, which means that we
LTAG dependencies. Theoretically, the LTAG de-cannot reduce it to a labelling task. Therefore, the
pendencies reveal deeper relations. Adjunction camoblem of interest to us is different from previous

502

work on graphical models, such as CRF (Lafferty eReferences

al., 2001) and MMMN (Taskar et al., 2003). A. Ageno and H. Rodrguez. 2001. Probabilistic mod-
McAllester et al. (2004) introduced Case-Factor elling of island-driven parsing. Imternational Work-

Diagram (CFD) to transform a graph based con- shop on Parsing Technologies

struction problem to a labeling problem. HoweverE- Chamiak. 2000. A maximum-entropy-inspired parser.

adjunction, prediction coordination, and long dis- '" Proceedings of the 1st Meeting of the North Ameri-

tance dependencies in LTAG dependency parsing can Chapter of the Association for Computational Lin-

o e . guistics
make it difficult to implement. Our approach Pro-m. Collins and B. Roark. 2004. Incremental parsing with

vides a novel alternative to CFD. the perceptron algorithm. IRroceedings of the 42nd
Our learning algorithm stems from Perceptron Annual Meeting of the Association for Computational

training in (Collins, 2002). Variants of this method ~Linguistics (ACL) _ o

have been successfully used in many NLP tasks IiIM' Collins. 1999. Head-Driven Statistical Models for

shallow processing (Daumé Il and Marcu, 2005), Efa;lgr?rl]é‘jcgﬁizge Parsing Ph.D. thesis, University

parsing (Collins and Roark, 2004; Shen and Joshjy collins. *2002. Discriminative training methods for
2005) and word alignment (Moore, 2005). Theoret- hjgden markov models: Theory and experiments with
ical justification for those algorithms can be applied perceptron algorithms. IProceedings of the 2002
to our training algorithm in a similar way. Conference of Empirical Methods in Natural Lan-

In our algorithm, dependency is defined on com-, 9uage Processing
licated hi?iden StI’UCtFL)JI’ES ins)t/ead of on a ara i|1_| Daumeé Ill and D. Marcu. 2005. Learning as search
P grapn. optimization: Approximate large margin methods for

Thus long distance dependency in & graph becomesgirciyred prediction. IProceedings of the 22nd In-
local in hidden structures, which is desirable from ternational Conference on Machine Learning
linguistic considerations. Y. Freund and R. E. Schapire. 1999. Large margin clas-

The search strategy of our bidirectional depen- sification using the perceptron algorithmMachine
dency parser is similar to that of the bidirectionalM Learning 37(3):277-296.

. i . Johnson. 1998. PCFG Models of Linguistic Tree
CFG parser in (Satta and Stock, 1994; Ageno an Representations€Computational Linguistic24(4).

Rodrguez, 2001; Kay, 1989). A unique contribu k joshi and Y. Schabes. 1997. Tree-adjoining
tion of this paper is that selection of path and deci- grammars. In G. Rozenberg and A. Salomaa, editors,
sions about action are trained simultaneously with Handbook of Formal Languagesolume 3, pages 69
discriminative learning. In this way, we can employ —124. Springer-Verlag.

context information more effectively. M. Kay. 1989. Head-driven parsing. Froceedings of
Workshop on Parsing Technologies

] W. Krauth and M. Mézard. 1987. Learning algorithms

7 Conclusion with optimal stability in neural networksJournal of
Physics A20:745-752.

In this paper, we introduced bidirectional incremend. Lafferty, A. McCallum, and F. Pereira. 2001. Condi-
posed a novel algorithm for graph-based incremen- (&tion and labeling sequence data. Rroceedings of

. . . . the 18th International Conference on Machine Learn-
tal construction, and applied this algorithm to LTAG ing
dependency parsing, revealing deep relations, whigh p marcus, B. Santorini, and M. A. Marcinkiewicz.
are unavailable in other approaches and difficult to 1994. Building a large annotated corpus of En-
learn. We evaluated the parser on an LTAG Tree- glish: The Penn Treebaniomputational Linguistigs
bank. Experimental results showed significant im- 19(2):313-330. _
mental construction can be applied to other structure factor diagrams for structured probabilistic modeling.

. . . In UAI 2004

learning problems of high computational complex-

.) i R. McDonald, K. Crammer, and F. Pereira. 2005. Online
ity, for example, such as machine translation and se- large-margin training of dependency parsers Pto-

mantic parsing. ceedings of the 43th Annual Meeting of the Association
for Computational Linguistics (ACL)

503

R. Moore. 2005. A discriminative framework for bilin-
gual word alignment. IiProceedings of Human Lan-
guage Technology Conference and Conference on Em-
pirical Methods in Natural Language Processing

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic
roles. Computational Linguistigs31(1).

G. Satta and O. Stock. 1994. Bi-Directional Context-
Free Grammar Parsing for Natural Language Process-
ing. Artificial Intelligence 69(1-2).

L. Shen and A. K. Joshi. 2005. Incremental LTAG Pars-
ing. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in
Natural Language Processing

L. Shen, G. Satta, and A. K. Joshi. 2007. Guided Learn-
ing for Bidirectional Sequence Classification. Rro-
ceedings of the 45th Annual Meeting of the Association
for Computational Linguistics (ACL)

L. Shen, L. Champollion, and A. K. Joshi. 2008. LTAG-
spinal and the Treebank: a new resource for incremen-
tal, dependency and semantic parsihgnguage Re-
sources and Evaluatiod2(1):1-19.

L. Shen. 2006.Statistical LTAG Parsing Ph.D. thesis,
University of Pennsylvania.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin
markov networks. IrProceedings of the 17th Annual
Conference Neural Information Processing Systems

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with Support Vector Machines. In
IWPT 2003

504

