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Abstract

Although Machine Translation (MT) is a very
active research field which is receiving an in-
creasing amount of attention from the research
community, the results that current MT sys-
tems are capable of producing are still quite
far away from perfection. Because of this,
and in order to build systems that yield correct
translations, human knowledge must be inte-
grated into the translation process, which will
be carried out in our case in an Interactive-
Predictive (IP) framework. In this paper, we
show that considering Mouse Actions as a sig-
nificant information source for the underly-
ing system improves the productivity of the
human translator involved. In addition, we
also show that the initial translations that the
MT system provides can be quickly improved
by an expert by only performing additional
Mouse Actions. In this work, we will be using
word graphs as an efficient interface between
a phrase-based MT system and the IP engine.

1 Introduction

Information technology advances in modern society
have led to the need of more efficient methods of
translation. It is important to remark that current
MT systems are not able to produce ready-to-use
texts (Kay, 1997; Hutchins, 1999; Arnold, 2003).
Indeed, MT systems are usually limited to specific
semantic domains and the translations provided re-

quire human post-editing in order to achieve a cor-
rect high-quality translation.

A way of taking advantage of MT systems is to
combine them with the knowledge of a human trans-
lator, constituting the so-called Computer-Assisted
Translation (CAT) paradigm. CAT offers different
approaches in order to benefit from the synergy be-
tween humans and MT systems.

An important contribution to interactive CAT
technology was carried out around the TransType
(TT) project (Langlais et al., 2002; Foster et al.,
2002; Foster, 2002; Och et al., 2003). This project
entailed an interesting focus shift in which interac-
tion directly aimed at the production of the target
text, rather than at the disambiguation of the source
text, as in former interactive systems. The idea
proposed was to embed data driven MT techniques
within the interactive translation environment.

Following these TT ideas, (Barrachina and oth-
ers, 2008) propose the usage of fully-fledged statis-
tical MT (SMT) systems to produce full target sen-
tence hypotheses, or portions thereof, which can be
partially or completely accepted and amended by a
human translator. Each partial correct text segment
is then used by the SMT system as additional infor-
mation to achieve further, hopefully improved sug-
gestions. In this paper, we also focus on the inter-
active and predictive, statistical MT (IMT) approach
to CAT. The IMT paradigm fits well within theIn-
teractive Pattern Recognition framework introduced
in (Vidal and others, 2007).
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p) ( )
(ŝh) To switch on:

ITER-1

(p) To
(sl) switch on:
(k) power
(ŝh) on the printer:

ITER-2

(p) To power on the printer:
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) To power on the printer:

Figure 1: IMT session to translate a Spanish sentence into English. Non-validated hypotheses are displayed in italics,
whereas accepted prefixes are printed in normal font.

Figure 1 illustrates a typical IMT session. Ini-
tially, the user is given an input sentencex to be
translated. The referencey provided is the trans-
lation that the user would like to achieve at the end
of the IMT session. At iteration0, the user does not
supply any correct text prefix to the system, for this
reasonp is shown as empty. Therefore, the IMT sys-
tem has to provide an initial complete translationsh,
as it were a conventional SMT system. At the next
iteration, the user validates a prefixp as correct by
positioning the cursor in a certain position ofsh. In
this case, after the words “To print a”. Implicitly, he
is also marking the rest of the sentence, the suffixsl,
as potentially incorrect. Next, he introduces a new
word k, which is assumed to be different from the
first wordsl1

in the suffixsl which was not validated,
k 6= sl1

. This being done, the system suggests a new
suffix hypothesiŝsh, subject tôsh1

= k. Again, the
user validates a new prefix, introduces a new word
and so forth. The process continues until the whole
sentence is correct that is validated introducing the
special word “#”.

As the reader could devise from the IMT session
described above, IMT aims at reducing the effort
and increasing the productivity of translators, while
preserving high-quality translation. For instance, in
Figure 1, only three interactions were necessary in
order to achieve the reference translation.

In this paper, we will show how Mouse Actions
performed by the human expert can be taken advan-
tage of in order to further reduce this effort.

2 Statistical interactive-predictive MT

In this section we will briefly describe the statistical
framework of IMT. IMT can be seen as an evolution
of the SMT framework, which has proved to be an
efficient framework for building state-of-the-art MT
systems with little human effort, whenever adequate
corpora are available (Hutchings and Somers, 1992).
The fundamental equation of the statistical approach
to MT is

ŷ = argmax
y

Pr(y |x) (1)

= argmax
y

Pr(x |y)Pr(y) (2)

wherePr(x |y) is thetranslation model modelling
the correlation between source and target sentence
andPr(y) is the language model representing the
well-formedness of the candidate translationy.

In practise, the direct modelling of the posterior
probability Pr(y|x) has been widely adopted. To
this purpose, different authors (Papineni et al., 1998;
Och and Ney, 2002) propose the use of the so-called
log-linear models, where the decision rule is given
by the expression

ŷ = argmax
y

M∑

m=1

λmhm(x,y) (3)

wherehm(x,y) is a score function representing an
important feature for the translation ofx into y, M

is the number of models (or features) andλm are the
weights of the log-linear combination.

486



One of the most popular instantiations of log-
linear models is that including phrase-based (PB)
models (Zens et al., 2002; Koehn et al., 2003).
Phrase-based models allow to capture contextual in-
formation to learn translations for whole phrases in-
stead of single words. The basic idea of phrase-
based translation is to segment the source sentence
into phrases, then to translate each source phrase
into a target phrase, and finally to reorder the trans-
lated target phrases in order to compose the tar-
get sentence. Phrase-based models were employed
throughout this work.

In log-linear models, the maximisation problem
stated in Eq. 3 is solved by means of the beam search
algorithm1 which was initially introduced in (Low-
erre, 1976) for its application in the field of speech
recognition. The beam search algorithm attempts to
generate partial solutions, calledhypotheses, until
a complete sentence is found; these hypotheses are
stored in a stack and ordered by theirscore. Such a
score is given by the log-linear combination of fea-
ture functions.

However, Eq. 1 needs to be modified according to
the IMT scenario in order to take into account part
of the target sentence that is already translated, that
is p andk

ŝh = argmax
sh

Pr(sh|x,p, k) (4)

where the maximisation problem is defined over the
suffix sh. This allows us to rewrite Eq. 4, by decom-
posing the right side appropriately and eliminating
constant terms, achieving the equivalent criterion

ŝh = argmax
sh

Pr(p, k, sh|x). (5)

An example of the intuition behind these variables
can be seen in Figure 1.

Note that, since(p k sh) = y, Eq. 5 is very simi-
lar to Eq. 1. The main difference is that the argmax
search is now performed over the set of suffixessh

that complete(p k) instead of complete sentences
(y in Eq. 1). This implies that we can use the same
models if the search procedures are adequately mod-
ified (Barrachina and others, 2008).

1Also known as stack decoding algorithm.

3 Phrase-based IMT

The phrase-based approach presented above can be
easily adapted for its use in an IMT scenario. The
most important modification is to rely on a word
graph that represents possible translations of the
given source sentence. The use of word graphs
in IMT has been studied in (Barrachina and oth-
ers, 2008) in combination with two different trans-
lation techniques, namely, the Alignment Templates
technique (Och et al., 1999; Och and Ney, 2004),
and the Stochastic Finite State Transducers tech-
nique (Casacuberta and Vidal, 2007).

3.1 Generation of word graphs

A word graph is a weighted directed acyclic graph,
in which each node represents a partial translation
hypothesis and each edge is labelled with a word of
the target sentence and is weighted according to the
scores given by an SMT model (see (Ueffing et al.,
2002) for more details). In (Och et al., 2003), the
use of a word graph is proposed as interface between
an alignment-template SMT model and the IMT en-
gine. Analogously, in this work we will be using
a word graph built during the search procedure per-
formed on a PB SMT model.

During the search process performed by the above
mentioned beam search algorithm, it is possible to
create asegment graph. In such a graph, each node
represents a state of the SMT model, and each edge
a weighted transition between states labelled with a
sequence of target words. Whenever a hypothesis is
extended, we add a new edge connecting the state
of that hypothesis with the state of the extended hy-
pothesis. The new edge is labelled with the sequence
of target words that has been incorporated to the ex-
tended hypothesis and is weighted appropriately by
means of the score given by the SMT model.

Once the segment graph is generated, it can be
easily converted into a word graph by the introduc-
tion of artificial states for the words that compose
the target phrases associated to the edges.

3.2 IMT using word graphs

During the process of IMT for a given source sen-
tence, the system makes use of the word graph gen-
erated for that sentence in order to complete the pre-
fixes accepted by the human translator. Specifically,
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SOURCE (x): Para encender la impresora:
REFERENCE (y): To power on the printer:

ITER-0
(p) ( )
(ŝh) To switch on:

ITER-1
(p) To
(sl) |switch on:
(ŝh) power on the printer:

ITER-2

(p) To power on the printer:
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) To power on the printer:

Figure 2: Example of non-explicit positioning MA which solves an error of a missing word. In this case, the system
produces the correct suffixsh immediately after the user validates a prefixp, implicitly indicating that we wants the
suffix to be changed, without need of any further action. InITER-1 , character| indicates the position where a MA
was performed,sl is the suffix which was rejected by that MA, andŝh is the new suffix that the system suggests after
observing thatsl is to be considered incorrect. Character # is a special character introduced by the user to indicate that
the hypothesis is to be accepted.

the system finds the best path in the word graph as-
sociated with a given prefix so that it is able to com-
plete the target sentence, being capable of providing
several completion suggestions for each prefix.

A common problem in IMT arises when the user
sets a prefix which cannot be found in the word
graph, since in such a situation the system is un-
able to find a path through the word graph and pro-
vide an appropriate suffix. The common procedure
to face this problem is to perform a tolerant search
in the word graph. This tolerant search uses the well
known concept of Levenshtein distance in order to
obtain the most similar string for the given prefix
(see (Och et al., 2003) for more details).

4 Enriching user–machine interaction

Although the IMT paradigm has proved to offer in-
teresting benefits to potential users, one aspect that
has not been reconsidered as of yet is the user–
machine interface. Hence, in traditional IMT the
system only received feedback whenever the user
typed in a new word. In this work, we show how
to enrich user–machine interaction by introducing
Mouse Actions (MA) as an additional information
source for the system. By doing so, we will consider
two types of MAs, i.e.non-explicit (or positioning)
MAs andinteraction-explicit MAs.

4.1 Non-explicit positioning MAs

Before typing in a new word in order to correct a hy-
pothesis, the user needs to position the cursor in the
place where he wants to type such a word. In this
work, we will assume that this is done by perform-
ing a MA, although the same idea presented can also
be applied when this is done by some other means.
It is important to point out that, by doing so, the user
is already providing some very useful information to
the system: he is validating a prefix up to the posi-
tion where he positioned the cursor, and, in addition,
he is signalling that whatever word is located after
the cursor is to be considered incorrect. Hence, the
system can already capture this fact and provide a
new translation hypothesis, in which the prefix re-
mains unchanged and the suffix is replaced by a new
one in which the first word is different to the first
word of the previous suffix. We are aware that this
does not mean that the new suffix will be correct, but
given that we know that the first word in the previ-
ous suffix was incorrect, the worst thing which can
happen is that the the first word of the new suffix is
incorrect as well. However, if the new suffix hap-
pens to be correct, the user will happily find that he
does not need to correct that word any more.

An example of such behaviour can be seen in
Figure 2. In this example, the SMT system first
provides a translation which the user does not
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like. Hence, he positions the cursor before word
“postscript”, with the purpose of typing in “lists”.
By doing so, he is validating the prefix “To print
a”, and signalling that he wants “postscript” to be
replaced. Before typing in anything, the system re-
alises that he is going to change the word located
after the cursor, and replaces the suffix by another
one, which is the one the user had in mind in the
first place. Finally, the user only has to accept the
final translation.

We are naming this kind of MAnon-explicit be-
cause it does not require any additional action from
the user: he has already performed a MA in order to
position the cursor at the place he wants, and we are
taking advantage of this fact to suggest a new suffix
hypothesis.

Since the user needs to position the cursor before
typing in a new word, it is important to point out
that any improvement achieved by introducing non-
explicit MAs does not require any further effort from
the user, and hence is considered to have no cost.

Hence, we are now considering two different situ-
ations: the first one, the traditional IMT framework,
in which the system needs to find a suffix according
to Eq. 5, and a new one, in which the system needs
to find a suffix in which the first word does not need
to be a givenk, but needs to bedifferent to a given
sl1. This constraint can be expressed by the follow-
ing equation:

ŝh = argmax
sh:sh1

6=sl1

Pr(p, sh|x, sl) (6)

wheresl is the suffix generated in the previous iter-
ation, already discarded by the user, andsl1

is the
first word insl. k is omitted in this formula because
the user did not type any word at all.

4.2 Interaction-explicit MAs

If the system is efficient and provides suggestions
which are good enough, one could easily picture a
situation in which the expert would ask the system
to replace a given suffix, without typing in any word.
We will be modelling this as another kind of MA,
interaction-explicit MA, since the user needs to in-
dicateexplicitly that he wants a given suffix to be
replaced, in contrast to the non-explicit positioning
MA. However, if the underlying MT engine provid-
ing the suffixes is powerful enough, the user would

quickly realise that performing a MA is less costly
that introducing a whole new word, and would take
advantage of this fact by systematically clicking be-
fore introducing any new word. In this case, as
well, we assume that the user clicks before an in-
correct word, hence demanding a new suffix whose
first word is different, but by doing so he is adopting
a more participative and interactive attitude, which
was not demanded in the case of non-explicit posi-
tioning MAs. An example of such an explicit MA
correcting an error can be seen in Figure 3

In this case, however, there is a cost associated to
this kind of MAs, since the user does need to per-
form additional actions, which may or may not be
beneficial. It is very possible that, even after asking
for several new hypothesis, the user will even though
need to introduce the word he had in mind, hence
wasting the additional MAs he had performed.

If we allow the user to performn MAs before in-
troducing a word, this problem can be formalised in
an analogous way as in the case of non-explicit MAs
as follows:

ŝh= argmax
sh:sh1

6=si

l1
∀i∈{1..n}

Pr(p, sh|x, s1

l , s
2

l , . . . , s
n

l ) (7)

where si

l1
is the first word of thei-th suffix dis-

carded ands1

l
, s2

l
, . . . , sn

l
is the set of alln suffixes

discarded.
Note that this kind of MA could also be imple-

mented with some other kind of interface, e.g. by
typing some special key such asF1 or Tab. How-
ever, the experimental results would not differ, and
in our user interface we found it more intuitive to
implement it as a MA.

5 Experimental setup

5.1 System evaluation

Automatic evaluation of results is a difficult problem
in MT. In fact, it has evolved to a research field with
own identity. This is due to the fact that, given an
input sentence, a large amount of correctand differ-
ent output sentences may exist. Hence, there is no
sentence which can be considered ground truth, as is
the case in speech or text recognition. By extension,
this problem is also applicable to IMT.

In this paper, we will be reporting our results as
measured byWord Stroke Ratio (WSR) (Barrachina
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SOURCE (x): Seleccione el tipo de instalación.
REFERENCE (y): Select the type of installation.

ITER-0
(p) ( )
(ŝh) Select the installation wizard.

ITER-1
(p) Select the
(sl) |installation wizard.
(ŝh) install script.

ITER-2
(p) Select the
(k) type
(ŝh) installation wizard.

ITER-3
(p) Select the type
(sl) |installation wizard.
(ŝh) of installation.

ITER-4

(p) Select the type of installation.
(sl) ( )
(k) (#)
(ŝh) ( )

FINAL (p ≡ y) Select the type of installation.

Figure 3: Example of explicit interactive MA which correctsan erroneous suffix. In this case, a non-explicit MA is
performed inITER-1 with no success. Hence, the user introduces word “type” in ITER-2 , which leaves the cursor
position located immediately after word “type”. In this situation the user would not need to perform a MA to re-
position the cursor and continue typing in order to further correct the remaining errors. However, since he has learnt
the potential benefit of MAs, he performs an interaction-explicit MA in order to ask for a new suffix hypothesis, which
happens to correct the error.

and others, 2008), which is computed as the quotient
between the number of word-strokes a user would
need to perform in order to achieve the translation
he has in mind and the total number of words in
the sentence. In this context, a word-stroke is in-
terpreted as a single action, in which the user types
a complete word, and is assumed to have constant
cost. Moreover, each word-stroke also takes into ac-
count the cost incurred by the user when reading the
new suffix provided by the system.

In the present work, we decided to use WSR in-
stead ofKey Stroke Ratio (KSR), which is used in
other works on IMT such as (Och et al., 2003). The
reason for this is that KSR is clearly an optimistic
measure, since in such a scenario the user is often
overwhelmed by receiving a great amount of trans-
lation options, as much as one per key stroke, and
it is not taken into account the time the user would
need to read all those hypotheses.

In addition, and because we are also introducing
MAs as a new action, we will also present results in
terms ofMouse Action Ratio (MAR), which is the
quotient between the amount of explicit MAs per-

formed and the number of words of the final trans-
lation. Hence, the purpose is to elicit the number of
times the user needed to request a new translation
(i.e. performed a MA), on a per word basis.

Lastly, we will also present results in terms of
uMAR (useful MAR), which indicates the amount
of MAs which wereuseful, i.e. the MAs that actu-
ally produced a change in the first word of the suffix
and such word was accepted. Formally, uMAR is
defined as follows:

uMAR =
MAC − n ·WSC

MAC
(8)

where MAC stands for “Mouse Action Count”,
WSC for “Word Stroke Count” andn is the max-
imum amount of MAs allowed before the user types
in a word. Note thatMAC−n ·WSC is the amount
of MAs that were useful sinceWSC is the amount
of word-strokes the user performed even though he
had already performedn MAs.

Since we will only use single-reference WSR and
MAR, the results presented here are clearly pes-
simistic. In fact, it is relatively common to have the
underlying SMT system provide a perfectly correct
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Table 1: Characteristics of Europarl for each of the sub-
corpora. OoV stands for “Out of Vocabulary” words,
Dev. for Development, K for thousands of elements and
M for millions of elements.

De En Es En Fr En

T
ra

in
in

g Sentences 751K 731K 688K
Run. words15.3M16.1M15.7M15.2M15.6M13.8M
Avg. len. 20.3 21.4 21.5 20.8 22.7 20.1
Voc. 195K 66K 103K 64K 80K 62K

D
ev

.

Sentences 2000 2000 2000
Run. words 55K 59K 61K 59K 67K 59K
Avg. len. 27.6 29.3 30.3 29.3 33.6 29.3
OoV 432 125 208 127 144 138

Te
st

Sentences 2000 2000 2000
Run. words 54K 58K 60K 58K 66K 58K
Avg. len. 27.1 29.0 30.2 29.0 33.1 29.3
OoV 377 127 207 125 139 133

translation, which is ”corrected” by the IMT proce-
dure into another equivalent translation, increasing
WSR and MAR significantly by doing so.

5.2 Corpora

Our experiments were carried out on the Eu-
roparl (Koehn, 2005) corpus, which is a corpus
widely used in SMT and that has been used in sev-
eral MT evaluation campaigns. Moreover, we per-
formed our experiments on the partition established
for the Workshop on Statistical Machine Translation
of the NAACL 2006 (Koehn and Monz, 2006). The
Europarl corpus (Koehn, 2005) is built from the pro-
ceedings of the European Parliament. Here, we will
focus on the German–English, Spanish–English and
French–English tasks, since these were the language
pairs selected for the cited workshop. The corpus is
divided into three separate sets: one for training, one
for development, and one for test. The characteris-
tics of the corpus can be seen in Table 1.

5.3 Experimental results

As a first step, we built a SMT system for each of
the language pairs cited in the previous subsection.
This was done by means of the Moses toolkit (Koehn
and others, 2007), which is a complete system for
building Phrase-Based SMT models. This toolkit in-
volves the estimation from the training set of four
different translation models, which are in turn com-

Table 2: WSR improvement when considering non-
explicit MAs. “rel.” indicates the relative improvement.
All results are given in %.

pair baseline non-explicit rel.
Es–En 63.0±0.9 59.2±0.9 6.0±1.4
En–Es 63.8±0.9 60.5±1.0 5.2±1.6
De–En 71.6±0.8 69.0±0.9 3.6±1.3
En–De 75.9±0.8 73.5±0.9 3.2±1.2
Fr–En 62.9±0.9 59.2±1.0 5.9±1.6
En–Fr 63.4±0.9 60.0±0.9 5.4±1.4

bined in a log-linear fashion by adjusting a weight
for each of them by means of the MERT (Och, 2003)
procedure, optimising the BLEU (Papineni et al.,
2002) score obtained on the development partition.

This being done, word graphs were generated
for the IMT system. For this purpose, we used a
multi-stack phrase-based decoder which will be dis-
tributed in the near future together with the Thot
toolkit (Ortiz-Mart́ınez et al., 2005). We discarded
the use of the Moses decoder because preliminary
experiments performed with it revealed that the de-
coder by (Ortiz-Mart́ınez et al., 2005) performs
clearly better when used to generate word graphs
for use in IMT. In addition, we performed an ex-
perimental comparison in regular SMT with the Eu-
roparl corpus, and found that the performance dif-
ference was negligible. The decoder was set to
only consider monotonic translation, since in real
IMT scenarios considering non-monotonic transla-
tion leads to excessive waiting time for the user.

Finally, the word graphs obtained were used
within the IMT procedure to produce the reference
translation contained in the test set, measuring WSR
and MAR. The results of such a setup can be seen in
Table 2. As a baseline system, we report the tradi-
tional IMT framework, in which no MA is taken into
account. Then, we introduced non-explicit MAs, ob-
taining an average improvement in WSR of about
3.2% (4.9% relative). The table also shows the
confidence intervals at a confidence level of 95%.
These intervals were computed following the boot-
strap technique described in (Koehn, 2004). Since
the confidence intervals do not overlap, it can be
stated that the improvements obtained are statisti-
cally significant.
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Figure 4: WSR improvement when considering one to five maximumMAs. All figures are given in %. The left
column lists WSR improvement versus MAR degradation, and theright column lists WSR improvement versus uMAR.
Confidence intervals at 95% confidence level following (Koehn, 2004).

Once the non-explicit MAs were considered and
introduced into the system, we analysed the effect
of performing up to a maximum of 5 explicit MAs.
Here, we modelled the user in such a way that, in
case a given word is considered incorrect, he will
always ask for another translation hypothesis until

he has asked for as many different suffixes as MAs
considered. The results of this setup can be seen in
Figure 4. This yielded a further average improve-
ment in WSR of about 16% (25% relative improve-
ment) when considering a maximum of 5 explicit
MAs. However, relative improvement in WSR and
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uMAR increase drop significantly when increasing
the maximum allowed amount of explicit MAs from
1 to 5. For this reason, it is difficult to imagine that
a user would perform more than two or three MAs
before actually typing in a new word. Nevertheless,
just by asking twice for a new suffix before typing
in the word he has in mind, the user might be saving
about 15% of word-strokes.

Although the results in Figure 4 are only
for the translation direction “foreign”→English,
the experiments in the opposite direction (i.e.
English→“foreign”) were also performed. How-
ever, the results were very similar to the ones dis-
played here. Because of this, and for clarity pur-
poses, we decided to omit them and only display the
direction “foreign”→English.

6 Conclusions and future work

In this paper, we have considered new input sources
for IMT. By considering Mouse Actions, we have
shown that a significant benefit can be obtained, in
terms of word-stroke reduction, both when consid-
ering only non-explicit MAs and when considering
MAs as a way of offering the user several suffix hy-
potheses. In addition, we have applied these ideas
on a state-of-the-art SMT baseline, such as phrase-
based models. To achieve this, we have first ob-
tained a word graph for each sentence which is to be
translated. Experiments were carried out on a refer-
ence corpus in SMT.

Note that there are other systems (Esteban and
others, 2004) that, for a given prefix, provide n-
best lists of suffixes. However, the functionality of
our system is slightly (but fundamentally) different,
since the suggestions are demanded to be different
in their first word, which implies that the n-best list
is scanned deeper, going directly to those hypothe-
ses that may be of interest to the user. In addition,
this can be done “on demand”, which implies that
the system’s response is faster and that the user is
not confronted with a large list of hypotheses, which
often results overwhelming.

As future work, we are planning on performing a
human evaluation that assesses the appropriateness
of the improvements described.
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