A Discriminative Candidate Generator for String Transformations

Naoaki Okazaki'

okazaki@is.s.u-tokyo.ac.jp

Sophia Ananiadou?

sophia.ananiadou@manchester.ac.uk

Graduate School of Information
Science and Technology
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113-8656, Japan

Abstract

String transformation, which maps a source
string s into its desirable form t*, is related
to various applications including stemming,
lemmatization, and spelling correction. The
essential and important step for string trans-
formation is to generate candidates to which
the given string s is likely to be transformed.
This paper presents a discriminative approach
for generating candidate strings. We use sub-
string substitution rules as features and score
them using an L;-regularized logistic regres-
sion model. We also propose a procedure to
generate negative instances that affect the de-
cision boundary of the model. The advantage
of this approach is that candidate strings can
be enumerated by an efficient algorithm be-
cause the processes of string transformation
are tractable in the model. We demonstrate
the remarkable performance of the proposed
method in normalizing inflected words and
spelling variations.

1 Introduction

String transformation maps a source string s into its
destination string ¢t*. In the broad sense, string trans-
formation can include labeling tasks such as part-
of-speech tagging and shallow parsing (Brill, 1995).
However, this study addresses string transformation
in its narrow sense, in which a part of a source string
is rewritten with a substring. Typical applications of
this task include stemming, lemmatization, spelling
correction (Brill and Moore, 2000; Wilbur et al.,
2006; Carlson and Fette, 2007), OCR error correc-
tion (Kolak and Resnik, 2002), approximate string
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matching (Navarro, 2001), and duplicate record de-
tection (Bilenko and Mooney, 2003).

Recent studies have formalized the task in the dis-
criminative framework (Ahmad and Kondrak, 2005;
Li et al., 2006; Chen et al., 2007),

t* = argmax P(t|s).
tegen(s)

)

Here, the candidate generator gen(s) enumerates
candidates of destination (correct) strings, and the
scorer P(t|s) denotes the conditional probability of
the string ¢ for the given s. The scorer was modeled
by a noisy-channel model (Shannon, 1948; Brill and
Moore, 2000; Ahmad and Kondrak, 2005) and max-
imum entropy framework (Berger et al., 1996; Li et
al., 2006; Chen et al., 2007).

The candidate generator gen(s) also affects the
accuracy of the string transformation. Previous stud-
ies of spelling correction mostly defined gen(s),

gen(s) = {t | dist(s,t) < d}. (2)

Here, the function dist(s,¢) denotes the weighted
Levenshtein distance (Levenshtein, 1966) between
strings s and ¢. Furthermore, the threshold § requires
the distance between the source string s and a can-
didate string ¢ to be less than §.

The choice of dist(s,t) and § involves a tradeoff
between the precision, recall, and training/tagging
speed of the scorer. A less restrictive design of these
factors broadens the search space, but it also in-
creases the number of confusing candidates, amount
of feature space, and computational cost for the
scorer. Moreover, the choice is highly dependent on
the target task. It might be sufficient for a spelling
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correction program to gather candidates from known
words, but a stemmer must handle unseen words ap-
propriately. The number of candidates can be huge
when we consider transformations from and to un-
seen strings.

This paper addresses these challenges by explor-
ing the discriminative training of candidate genera-
tors. More specifically, we build a binary classifier
that, when given a source string s, decides whether
a candidate ¢ should be included in the candidate set
or not. This approach appears straightforward, but it
must resolve two practical issues. First, the task of
the classifier is not only to make a binary decision
for the two strings s and ¢, but also to enumerate a
set of positive strings for the string s,

gen(s) = {t | predict(s,t) = 1}. 3)
In other words, an efficient algorithm is necessary
to find a set of strings with which the classifier
predict(s, t) yields positive labels for the string s.

Another issue arises when we prepare a training
set. A discriminative model requires a training set
in which each instance (pair of strings) is annotated
with a positive or negative label. Even though some
existing resources (e.g., inflection table and query
log) are available for positive instances, such re-
sources rarely contain negative instances. Therefore,
we must generate negative instances that are effec-
tive for discriminative training.

To address the first issue, we design features that
express transformations from a source string s to its
destination string ¢. Feature selection and weight-
ing are performed using an L;-regularized logistic
regression model, which can find a sparse solution
to the classification model. We also present an al-
gorithm that utilizes the feature weights to enumer-
ate candidates of destination strings efficiently. We
deal with the second issue by generating negative
instances from unlabeled instances. We describe a
procedure to choose negative instances that affect
the decision boundary of the classifier.

This paper is organized as follows. Section 2 for-
malizes the task of the candidate generator as a bi-
nary classification modeled by logistic regression.
Features for the classifier are designed using the
rules of substring substitution. Therefore, we can
obtain, efficiently, candidates of destination strings
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and negative instances for training. Section 3 re-
ports the remarkable performance of the proposed
method in various applications including lemmati-
zation, spelling normalization, and noun derivation.
We briefly review previous work in Section 4, and
conclude this paper in Section 5.

2 Candidate generator

2.1 Candidate classification model

In this section, we first introduce a binary classifier
that yields a label y € {0, 1} indicating whether a
candidate ¢ should be included in the candidate set
(1) or not (0), given a source string s. We express
the conditional probability P(y|s,t) using a logistic
regression model,

1
PQls ) = T CATF .0

P(0]s,t) = 1 — P(1]s, ?).

“4)
&)

In these equations, F' = { f1, ..., fx'} denotes a vec-
tor of the Boolean feature functions; K is the num-
ber of feature functions; and A = {1, ..., Ak}
presents a weight vector of the feature functions.
We obtain the following decision rule to choose
the most probable label y* for a given pair (s, t),

k

Finally, given a source string s, the generator func-
tion gen(s) is defined to collect all strings to which
the classifier assigns positive labels:

(ATF(s,t) > 0)

v = argmax Plyls, 1) = (otherwise)

y€e{0,1}

(6)

gen(s) = {t| P(1]s,t) > P(0|s,t)}

= {t| ATF(s,t) > 0}. (7)

2.2 Substitution rules as features

The binary classifier can include any arbitrary fea-
ture. This is exemplified by the Levenshtein dis-
tance and distributional similarity (Lee, 1999) be-
tween two strings s and ¢. These features can im-
prove the classification accuracy, but it is unrealistic
to compute these features for every possible string,
as in equation 7. For that reason, we specifically
examine substitution rules, with which the process



S: ~oestrogen$

(1) (o0 0 (o ) oy e,
t: "estrogen:‘b ('~oe', 'ne'), ('"oes', '"es'), ...
S: “anaemia$ (‘a', '"), ('na', 'n'), (‘ae', 'e'),

(2) ) ('ana', 'an'), ('nae', ‘'ne'), ('aem', 'em'),
t: ~anemia$
s: "studies$ ‘ies', 'y'), ('dies’, 'dy'), ('ies$’, 'y$'),

(3)
t: “study$

~~

‘udies', 'udy'), ('dies$', 'dy$'), ...

Figure 1: Generating substitution rules.

of transforming a source string s into its destination
form ¢ is tractable.

In this study, we assume that every string has a
prefix ‘~” and postfix ‘$’, which indicate the head
and tail of a string. A substitution rule r = («, [3)
replaces every occurrence of the substring o in a
source string into the substring 5. Assuming that a
string s can be transformed into another string ¢ with
a single substitution operation, substitution rules ex-
press the different portion between strings s and ¢.

Equation 8 defines a binary feature function with
a substitution rule between two strings s and ¢,

1 (rule 74 can convert s into ¢)
Ju(s,t) =

0 (otherwise)

®)

We allow multiple substitution rules for a given pair
of strings. For instance, substitution rules (‘a’,
), (‘na’, ‘n’), (‘ae’, ‘e’), (‘nae’, ‘ne’), etc.
form feature functions that yield 1 for strings s =
‘“anaemia$’ and { = ‘“anemia$’. Equation
6 produces a decision based on the sum of feature
weights, or scores of substitution rules, representing
the different portions between s and ¢.

Substitution rules for the given two strings s and
t are obtained as follows. Let [ denote the longest
common prefix between strings s and ¢, and r the
longest common postfix. We define ¢, as the sub-
string in s that is not covered by the longest common
prefix [ and postfix r, and define ¢; for ¢ analogously.
In other words, strings s and ¢ are divided into three
regions, lcsr and lc;r, respectively. For strings s =
‘“anaemia$’ and t = ‘“anemia$’ in Figure 1
(2), we obtain ¢, = ‘a’ and ¢; = ©* because | =

«~

3

3

an’and r = ‘emia$’.
Because substrings c¢; and c; express different
portions between strings s and ¢, we obtain the mini-
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mum substitution rule (cs, ¢;), which can convert the
string s into ¢ by replacing substrings cs in s with
¢¢; the minimum substitution rule for the same ex-
ample is (‘a’, ©’). However, replacing letters ‘a’
in ‘“anaemia$’ into empty letters does not pro-
duce the correct string ‘“anemia$’ but ‘"nemi$’.
Furthermore, the rule might be inappropriate for ex-
pressing string transformation because it always re-
moves the letter ‘a’ from every string.

Therefore, we also obtain expanded substitution
rules, which insert postfixes of [ to the head of min-
imum substitution rules, and/or append prefixes of
r to the rules. For example, we find an expanded
substitution rule (‘na’, ‘n’), by inserting a postfix
of | = ‘“an’ to the head of the minimum substitu-
tion rule (‘a’, *’); similarly, we obtain an expanded
substitution rule (‘ae’, ‘e’), by appending a prefix
of r = ‘emia$’ to the tail of the rule (‘a’, ).

Figure 1 displays examples of substitution rules
(the right side) for three pairs of strings (the left
side). Letters in blue, green, and red respectively
represent the longest common prefixes, longest com-
mon postfixes, and different portions. In this study,
we expand substitution rules such that the number of
letters in rules is does not pass a threshold 0.

2.3 Parameter estimation

Given a training set that consists of /N instances,
D = ((s(l),t(l),y(l)), - (S(N)’t(N)’y(N))), we
optimize the feature weights in the logistic regres-
sion model by maximizing the log-likelihood of the
conditional probability distribution,

N
LA = Z log P(y®[s® ).

=1

©))

The partial derivative of the log-likelihood with re-
spect to a feature weight )\ is given as equation 10,

OLA _ f: {ym — past) t(i))}fk(s(i) o
8)\]€ ) )

i=

(10)

The maximum likelihood estimation (MLE) is
known to suffer from overfitting the training set. The

'The number of letters for a substitution rule r = (c, 3) is
defined as the sum of the quantities of letters in « and £, i.e.,
|| + |8|. We determined the threshold 6 = 12 experimentally.



common approach for addressing this issue is to use
the maximum a posteriori (MAP) estimation, intro-
ducing a regularization term of the feature weights
A, i.e., a penalty on large feature weights. In addi-
tion, the generation algorithm of substitution rules
might produce inappropriate rules that transform a
string incorrectly, or overly specific rules that are
used scarcely. Removing unnecessary substitution
rules not only speeds up the classifier but also the
algorithm for candidate generation, as presented in
Section 2.4.

In recent years, L regularization has received in-
creasing attention because it produces a sparse so-
lution of feature weights in which numerous fea-
ture weights are zero (Tibshirani, 1996; Ng, 2004).
Therefore, we regularize the log-likelihood with the
Ly norm of the weight vector A and define the final
form the objective function to be minimized as

Al

ExN=—LA+—. a1
g

Here, o is a parameter to control the effect of L
regularization; the smaller the value we set to o,
the more features the MAP estimation assigns zero
weights to: it removes a number of features from the
model. Equation 11 is minimized using the Orthant-
Wise Limited-memory Quasi-Newton (OW-LQN)
method (Andrew and Gao, 2007) because the second
term of equation 11 is not differentiable at A, = 0.

2.4 Candidate generation

The advantage of our feature design is that we can
enumerate strings to which the classifier is likely to
assign positive labels. We start by observing the nec-
essary condition for ¢ in equation 7,

ATF(s,t) > 0= 3k: fi(s,t) = 1A X > 0.
(12)

The classifier might assign a positive label to strings
s and ¢ when at least one feature function whose
weight is positive can transform s to t.

Let RT be a set of substitution rules to which
MAP estimation has assigned positive feature
weights. Because each feature corresponds to a sub-
stitution rule, we can obtain gen(s) for a given string
s by application of every substitution rule r € R™,

gen(s) = {r(s) | r € RF AATF (s,r(s)) > 0}.
(13)
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Input: s = (s1, ..., s;): an input string s (series of letters)
Input: D: a trie dictionary containing positive features
Output: T": gen(s)

T={}h
U={}s
foreach i € (1,...,|s|) do
F «— D.prefix_search (s,i);
foreach f € F'do
if f ¢ U then
t« f.apply (s);
if classify (s,t) = 1 then
‘ addtto T
end
add fto U,
end
end

AU A W -

ek
W N =S\

o
=

end
15 return T’

Algorithm 1: A pseudo-code for gen(s).

Here, 7(s) presents the string to which the substitu-
tion rule r transforms the source string s. We can
compute gen(s) with a small computational cost if
the MAP estimation with L; regularization reduces
the number of active features.

Algorithm 1 represents a pseudo-code for obtain-
ing gen(s). To search for positive substitution rules
efficiently, the code stores a set of rules in a trie
structure. In line 4, the code obtains a set of positive
substitution rules [’ that can rewrite substrings start-
ing at offset #i in the source string s. For each rule
f € F, we obtain a candidate string ¢ by application
of the substitution rule f to the source string s (line
7). The candidate string ¢ is qualified to be included
in gen(s) when the classifier assigns a positive label
to strings s and ¢ (lines 8 and 9). Lines 6 and 11 pre-
vent the algorithm from repeating evaluation of the
same substitution rule.

2.5 Generating negative instances

The parameter estimation requires a training set D
in which each instance (pair of strings) is annotated
with a positive or negative label. Negative instances
(counter examples) are essential for penalizing in-
appropriate substitution rules, e.g. (‘a’, ). Even
though some existing resources (e.g. verb inflection
table) are available for positive instances, such re-
sources rarely contain negative instances.

A common approach for handling this situation
is to assume that every pair of strings in a resource



Input: D = [(s1,t1), ..., (51, %;)]: positive instances
Input: V' a suffix array of all strings (vocabulary)
Output: D~ : negative instances
Output: R: substitution rules (features)
D~ =1}
R={}
foreach d € D+ do
foreach r € features (d) do
‘ addr to R;
end
end
foreach r € R do
9 S «— V.search (r.src);
10 foreach s € S do
11 t < r.apply (s);
12 if (s,t) ¢ Dt then
13 if t € V then
14 ‘ append (s,t) to D,
15 end
16 end
17 end
18 end
19 return D, R;

RN A W=

Algorithm 2: Generating negative instances.

is a negative instance; however, negative instances
amount to ca. V(V — 1)/2, where V' represents the
total number of strings. Moreover, substitution rules
expressing negative instances are innumerable and
sparse because the different portions are peculiar to
individual negative instances. For instance, the min-
imum substitution rule for unrelated words anaemia
and around is (‘naemia’, ‘round’), but the rule
cannot be too specific to generalize the conditions
for other negative instances.

In this study, we generate negative instances so
that they can penalize inappropriate rules and settle
the decision boundary of the classifier. This strat-
egy is summarized as follows. We consider every
pair of strings as candidates for negative instances.
We obtain substitution rules for the pair using the
same algorithm as that described in Section 2.2 if a
string pair is not included in the dictionary (i.e., not
in positive instances). The pair is used as a nega-
tive instance only when any substitution rule gener-
ated from the pair also exists in the substitution rules
generated from positive instances.

Algorithm 2 presents the pseudo-code that imple-
ments the strategy for generating negative instances
efficiently. First, we presume that we have positive
instances Dt = [(s1,11), .., (1, £;)] and unlabeled
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Table Description # Entries
LRSPL Spelling variants 90,323
LRNOM | Nominalizations (derivations) 14,029
LRAGR | Agreement and inflection 910,854
LRWD Word index (vocabulary) 850,236

Table 1: Excerpt of tables in the SPECIALIST Lexicon.

Data set #+ # - # Rules
Orthography 15,830 33,296 11,098
Derivation 12,988 85,928 5,688
Inflection 113,215 | 124,747 | 32,278

Table 2: Characteristics of datasets.

strings V. For example, positive instance D repre-
sent orthographic variants, and unlabeled strings V'
include all possible words (vocabulary). We insert
the vocabulary into a suffix array, which is used to
locate every occurrence of substrings in V.

The algorithm first generates substitution rules R
only from positive instances DT (lines 3 to 7). For
each substitution rule » € R, we enumerate known
strings .S that contain the source substring r.src (line
9). We apply the substitution rule to each string s €
S and obtain its destination string ¢ (line 11). If the
pair of strings (s, t) is not included in D (line 12),
and if the destination string ¢ is known (line 13), the
substitution rule r might associate incorrect strings
s and ¢, which do not exist in DT. Therefore, we
insert the pair to the negative set D~ (line 14).

3 Evaluation

3.1 Experiments

We evaluated the candidate generator using three
different tasks: normalization of orthographic vari-
ants, noun derivation, and lemmatization. The
datasets for these tasks were obtained from the
UMLS SPECIALIST Lexicon?, a large lexicon that
includes both commonly occurring English words
and biomedical vocabulary. Table 1 displays the list
of tables in the SPECIALIST Lexicon that were used
in our experiments. We prepared three datasets, Or-
thography, Derivation, and Inflection.

The Orthography dataset includes spelling vari-
ants (e.g., color and colour) in the LRSPL table. We

2UMLS SPECIALIST Lexicon:
http://specialist.nlm.nih.gov/



chose entries as positive instances in which spelling
variants are caused by (case-insensitive) alphanu-
meric changes®. The Derivation dataset was built di-
rectly from the LRNOM table, which includes noun
derivations such as abandon — abandonment. The
LRAGR table includes base forms and their inflec-
tional variants of nouns (singular and plural forms),
verbs (infinitive, third singular, past, past participle
forms, etc), and adjectives/adverbs (positive, com-
parative, and superlative forms). For the Inflection
dataset, we extracted the entries in which inflec-
tional forms differ from their base forms?, e. g., study
— studies.

For each dataset, we applied the algorithm de-
scribed in Section 2.5 to generate substitution rules
and negative instances. Table 2 shows the number of
positive instances (# +), negative instances (# -), and
substitution rules (# Rules). We evaluated the per-
formance of the proposed method in two different
goals of the tasks: classification (Section 3.2) and
normalization (Section 3.3).

3.2 Experiment 1: Candidate classification

In this experiment, we measured the performance
of the classification task in which pairs of strings
were assigned with positive or negative labels.
We trained and evaluated the proposed method
by performing ten-fold cross validation on each
dataset’. Eight baseline systems were prepared
for comparison: Levenshtein distance (LD), nor-
malized Levenshtein distance (NLD), Dice coef-
ficient on letter bigrams (DICE) (Adamson and
Boreham, 1974), Longest Common Substring Ra-
tio (LCSR) (Melamed, 1999), Longest Common
Prefix Ratio (PREFIX) (Kondrak, 2005), Porter’s
stemmer (Porter, 1980), Morpha (Minnen et al.,
2001), and CST’s lemmatiser (Dalianis and Jonge-

SLRSPL table includes trivial spelling variants that can be
handled using simple character/string operations. For example,
the table contains spelling variants related to case sensitivity
(e.g., deg and Deg) and symbols (e.g., Feb and Feb.).

“LRAGR table also provides agreement information even
when word forms do not change. For example, the table con-
tains an entry indicating that the first-singular present form of
the verb study is study, which might be readily apparent to En-
glish speakers.

>We determined the regularization parameter o = 5 experi-
mentally. Refer to Figure 2 for the performance change.
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jan, 2006)°.

The five systems LD, NLD, DICE, LCSR, and
PREFIX employ corresponding metrics of string
distance or similarity. Each system assigns a posi-
tive label to a given pair of strings (s, t) if the dis-
tance/similarity of strings s and t is smaller/larger
than the threshold § (refer to equation 2 for distance
metrics). The threshold of each system was chosen
so that the system achieves the best F1 score.

The remaining three systems assign a positive la-
bel only if the system transforms the strings s and
t into the identical string. For example, a pair of
two words studies and study is classified as positive
by Porter’s stemmer, which yields the identical stem
studi for these words. We trained CST’s lemmatiser
for each dataset to obtain flex patterns that are used
for normalizing word inflections.

To examine the performance of the Li-
regularized logistic regression as a discriminative
model, we also built two classifiers based on the
Support Vector Machine (SVM). These SVM
classifiers were implemented by the SVMP"f7 on
a linear kernel®. An SVM classifier employs the
same feature set (substitution rules) as the proposed
method so that we can directly compare the Li-
regularized logistic regression and the linear-kernel
SVM. Another SVM classifier incorporates the five
string metrics; this system can be considered as our
reproduction of the discriminative string similarity
proposed by Bergsma and Kondrak (2007).

Table 3 reports the precision (P), recall (R), and
F1 score (F1) based on the number of correct de-
cisions for positive instances. The proposed method
outperformed the baseline systems, achieving 0.919,
0.888, and 0.984 of F1 scores, respectively. Porter’s
stemmer worked on the Inflection set, but not on
the Orthography set, which is beyond the scope of
the stemming algorithms. CST’s lemmatizer suf-
fered from low recall on the Inflection set because
it removed suffixes of base forms, e.g., (cloning,
clone) — (clone, clo). Morpha and CST’s lemma-

®We used CST’s lemmatiser version 2.13:
http://www.cst.dk/online/lemmatiser/uk/
index.html

7SVM for Multivariate Performance Measures (SVMP¢"):
http://svmlight. joachims.org/svm_perf.html

8We determined the parameter C' = 500 experimentally; it
controls the tradeoff between training error and margin.



System Orthography Derivation Inflection
P R F1 P R F1 P R F1
Levenshtein distance (§ = 1) 319 871 467 | .004 .006 .005 | 484 .679 .565
Levenshtein distance 323 999 488 | 131 1.00 .232 | 479 988 .646
Normalized Levenshtein distance 441 847 580 | .133 990 .235 | .598 770 .673
Dice coefficient (letter bigram) 401 918 558 | .137 984 240 | 476 1.00 .645
LCSR 322 1.00 487 | .156 .841 263 | 476 1.00 .645
PREFIX 418 927 576 | .140 943 244 | 476 1.00 .645
Porter stemmer (Porter, 1980) 084 074 .079 | .197 846 .320 | 926 .839 .881
Morpha (Minnen et al., 2001) .009 .007 .008 | .012 .022 .016 | 979 .836 .902
CST’s lemmatiser (Dalianis et al. 2006) | .119 .008 .016 | .383 .682 491 | .821 .176 .290
Proposed method 941 898 919 | .896 .880 .888 | .985 986 .984
Substitution rules trained with SVM 943 890 916 | .894 .886 .890 | .980 .987 .983
+ LD, NLD, DICE, LCSR, PREFIX 946 906 .926 | .894 .886 .890 | .980 .987 .983

Table 3: Performance of candidate classification

Rank | Src Dst | Weight | Examples
1 | uss us 9.81 | focussing
2 | aev ev 9.56 | mediaeval
3 |aen en 9.53 | ozaena
4 | iae$ ae$ 9.44 | gadoviae
5| nni ni 9.16 | prorennin
6 | nne ne 8.84 | connexus
7 | our or 8.54 | colour
8 | aea ea 8.31 | paean
9 | au eu 8.22 | stomodaeum

10 | ooll ool 7.79 | woollen

Table 4: Feature weights for the Orthography set

tizer were not designed for orthographic variants and
noun derivations.

Levenshtein distance (6 = 1) did not work for
the Derivation set because noun derivations often
append two or more letters (e.g., happy — happi-
ness). No string similarity/distance metrics yielded
satisfactory results. Some metrics obtained the best
F1 scores with extreme thresholds only to classify
every instance as positive. These results imply the
difficulty of the string metrics for the tasks.

The L;-regularized logistic regression was com-
parable to the SVM with linear kernel in this exper-
iment. However, the presented model presents the
advantage that it can reduce the number of active
features (features with non-zero weights assigned);
the L; regularization can remove 74%, 48%, and
82% of substitution rules in each dataset. The
performance improvements by incorporating string
metrics as features were very subtle (less than 0.7%).
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What is worse, the distance/similarity metrics do not
specifically derive destination strings to which the
classifier is likely to assign positive labels. There-
fore, we can no longer use the efficient algorithm
as a candidate generator (in Section 2.4) with these
features.

Table 4 demonstrates the ability of our approach
to obtain effective features; the table shows the top
10 features with high weights assigned for the Or-
thography data. An interesting aspect of the pro-
posed method is that the process of the orthographic
variants is interpretable through the feature weights.

Figure 2 shows plots of the F1 scores (y-axis) for
the Inflection data when we change the number of
active features (x-axis) by controlling the regular-
ization parameter o from 0.001 to 100. The larger
the value we set for o, the better the classifier per-
forms, generally, with more active features. In ex-
treme cases, the number of active features drops to
97 with ¢ = 0.01; nonetheless, the classifier still
achieves 0.961 of the F1 score. The result suggests
that a small set of substitution rules can accommo-
date most cases of inflectional variations.

3.3 Experiment 2: String transformation

The second experiment examined the performance
of the string normalization tasks formalized in equa-
tion 1. In this task, a system was given a string s and
was required to yield either its transformed form ¢*
(s # t*) or the string s itself when the transforma-
tion is unnecessary for s. The conditional probabil-
ity distribution (scorer) in equation 1 was modeled



System Orthography Derivation Inflection XTAG morph 1.5

P R F1 P R F1 P R F1 P R F1
Morpha 078 .012 .021 | .233 016 .029 | 435 .682 .531 | .830 .587 .688
CST’s lemmatiser | .135 .160 .146 | .378 .732 499 | 367 .762 495 | 584 589 .587
Proposed method | .859 .823 .841 | 979 981 .980 | 973 979 .976 | .837 .816 .827

Table 5: Performance of string transformation

T T
Spelling variation

0.985 — *

F1 score

0.965 — *

0.96 I I I I I I
0 1000 2000 3000 4000 5000 6000

7000

Number of active features (with non-zero weights)

Figure 2: Number of active features and performance.

by the maximum entropy framework. Features for
the maximum entropy model consist of: substitution
rules between strings s and ¢, letter bigrams and tri-
grams in s, and letter bigrams and trigrams in .

We prepared four datasets, Orthography, Deriva-
tion, Inflection, and XTAG morphology. Each
dataset is a list of string pairs (s,¢) that indicate
the transformation of the string s into . A source
string s is identical to its destination string ¢ when
string s should not be changed. These instances
correspond to the case where string s has already
been lemmatized. For each string pair (s,t) in LR-
SPL?, LRNOM, and LRAGR tables, we generated
two instances (s, t) and (¢,t). Consequently, a sys-
tem is expected to leave the string ¢t unchanged. We
also used XTAG morphology!? to perform a cross-
domain evaluation of the lemmatizer trained on the
Inflection dataset!'. The entries in XTAG morphol-

“We define that s precedes t in dictionary order.

"X TAG morphology database 1.5:
ftp://ftp.cis.upenn.edu/pub/xtag/morph-1.
5/morph-1.5.tar.gz

""We found that XTAG morphology contains numerous in-
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ogy that also appear in the Inflection dataset were
39,130 out of 317,322 (12.3 %). We evaluated
the proposed method and CST’s lemmatizer by per-
forming ten-fold cross validation.

Table 5 reports the performance based on the
number of correct transformations. The proposed
method again outperformed the baseline systems
with a wide margin. It is noteworthy that the pro-
posed method can accommodate morphological in-
flections in the XTAG morphology corpus with no
manual tuning or adaptation.

Although we introduced no assumptions about
target tasks (e.g. a known vocabulary), the aver-
age number of positive substitution rules relevant
to source strings was as small as 23.9 (in XTAG
morphology data). Therefore, the candidate gen-
erator performed 23.9 substitution operations for a
given string. It applied the decision rules (equa-
tion 7) 21.3 times, and generated 1.67 candidate
strings per source string. The experimental results
described herein demonstrated that the candidate
generator was modeled successfully by the discrim-
inative framework.

4 Related work

The task of string transformation has a long history
in natural language processing and information re-
trieval. As described in Section 1, this task is re-
lated closely to various applications. Therefore, we
specifically examine several prior studies that are
relevant to this paper in terms of technical aspects.
Some researchers have reported the effectiveness
of the discriminative framework of string similarity.
MaCallum et al. (2005) proposed a method to train
the costs of edit operations using Conditional Ran-
dom Fields (CRFs). Bergsma and Kondrak (2007)

correct comparative and superlative adjectives, e.g., unpopular
— unpopularer — unpopularest and refundable — refundabler
— refundablest. Therefore, we removed inflection entries for
comparative and superlative adjectives from the dataset.



presented an alignment-based discriminative string
similarity. They extracted features from substring
pairs that are consistent to a character-based align-
ment of two strings. Aramaki et al. (2008) also used
features that express the different segments of the
two strings. However, these studies are not suited for
a candidate generator because the processes of string
transformations are intractable in their discrimina-
tive models.

Dalianis and Jongejan (2006) presented a lem-
matiser based on suffix rules. Although they pro-
posed a method to obtain suffix rules from a training
data, the method did not use counter-examples (neg-
atives) for reducing incorrect string transformations.
Tsuruoka et al. (2008) proposed a scoring method
for discovering a list of normalization rules for dic-
tionary look-ups. However, their objective was to
transform given strings, so that strings (e.g., studies
and study) referring to the same concept in the dic-
tionary are mapped into the same string (e.g., stud);
in contrast, this study maps strings into their destina-
tion strings that were specified by the training data.

5 Conclusion

We have presented a discriminative approach for
generating candidates for string transformation.
Unlike conventional spelling-correction tasks, this
study did not assume a fixed set of destination
strings (e.g. correct words), but could even generate
unseen candidate strings. We used an L;-regularized
logistic regression model with substring-substitution
features so that candidate strings for a given string
can be enumerated using the efficient algorithm. The
results of experiments described herein showed re-
markable improvements and usefulness of the pro-
posed approach in three tasks: normalization of or-
thographic variants, noun derivation, and lemmati-
zation.

The method presented in this paper allows only
one region of change in string transformation. A
natural extension of this study is to handle mul-
tiple regions of changes for morphologically rich
languages (e.g. German) and to handle changes
at the phrase/term level (e.g., “estrogen receptor”
and “receptor of oestrogen”). Another direction
would be to incorporate the methodologies for semi-
supervised machine learning to accommodate situa-
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tions in which positive instances and/or unlabeled
strings are insufficient.
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