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Abstract

Language comprehension, as with all other
cases of the extraction of meaningful struc-
ture from perceptual input, takes places un-
der noisy conditions. If human language
comprehension is a rational process in the
sense of making use of all available infor-
mation sources, then we might expect uncer-
tainty at the level of word-level input to af-
fect sentence-level comprehension. However,
nearly all contemporary models of sentence
comprehension assunaean input—that is,
that the input to the sentence-level com-
prehension mechanism is a perfectly-formed,
completely certain sequence of input tokens
(words). This article presents a simple model
of rational human sentence comprehension
under noisy input, and uses the model to in-
vestigate some outstanding problems in the
psycholinguistic literature for theories of ra-
tional human sentence comprehension. We
argue that by explicitly accounting for input-
level noise in sentence processing, our model
provides solutions for these outstanding prob-
lems and broadens the scope of theories of hu-
man sentence comprehension as rational prob-
abilistic inference.

*Part of this work has benefited from presentation at the

1 Introduction

Considering the adversity of the conditions under
which linguistic communication takes place in ev-
eryday life—ambiguity of the signal, environmental
competition for our attention, speaker error, and so
forth—it is perhaps remarkable that we are as suc-
cessful at it as we are. Perhaps the leading expla-
nation of this success is that (a) the linguistic sig-
nal is redundant, and (b) diverse information sources
are generally available that can help us obtain infer
the intended message (or something close enough)
when comprehending an utterance (Tanenhaus et al.,
1995; Altmann and Kamide, 1999; Genzel and Char-
niak, 2002, 2003; Aylett and Turk, 2004; Keller,
2004; Levy and Jaeger, 2007). Given the difficulty
of this task coupled with the availability of redun-
dancy and useful information sources, it would seem
rational for all available information to be used to
its fullest in sentence comprehension. This idea is
either implicit or explicit in several interactivist the-
ories of probabilistic language comprehension (Ju-
rafsky, 1996; Hale, 2001; Narayanan and Jurafsky,
2002; Levy, 2008). However, these theories have
implicitly assumed a partitioning of interactivity that
distinguishes thewvord as a fundamental level of
linguistic information processing: word recognition
an evidential process whose output is nonethe-
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(Fodor, 1983). On the other hand, it is also possible
that this partition has been a theoretical convenience
but that, in fact, evidence at the sub-word level plays arg max Pe (T'|w) U]
an important role in sentence processing, and that
sentence-level information can in turn affect word?ut agenerativegrammar directly defines the joint
recognition. If the latter is the case, then the quedlistribution P(T, w) rather than the conditional
tion arises of how we might model this type of infor-distribution. In this case, Bayes’ rule is used to find
mation flow, and what consequences it might havi'e posterior:
for our understanding of human language compre-
hension. This article employs the well-understood P(T,w)
formalisms of probabilistic context-free grammars Pa(T|w) = W (I
(PCFGs) and weighted finite-state automata (wkF-

: . x P(T,w) (1
SAs) to propose a novel yet simple noisy-channel
probabilistic model of sentence comprehension un- |f the input string is unknown, the problem

der circumstances where there is uncertainty abodhanges. Suppose we have some noisy evidénce
word-level representations. Section 2 introduces thigat determines a probability distribution over input

model. We use this new model to invest.igate Watrings P(w]|I). We can still use Bayes’ rule to ob-
outstanding problems for the theory of rational sengjin the posterior:

tence comprehension: one involvirgobal infer-
ence—the beliefs that a human comprehender ar-

rives at regarding the meaning of a sentence after p,(7|r) = P(T.1) (IV)
reading itin its entirety (Section 3)—and one involv- P(I)

ing incremental inference-the beliefs that a com- o ZP(I’T7W)P(W\T)P(T) (V)
prehender forms and updates moment by moment w

while reading each part of it (Section 4). The com-. . . : . .
mon challenge posed by each of these problems ITékeW'se’ It we are focused on _mferrlng which
. words were seen given an uncertain input, we have
an apparent failure on the part of the comprehender
to use information made available in one part of a
sentence to rule out an interpretation of another part Pe(w|I) o ZP([\Ta w)P(w|T)P(T) (V1)
of the sentence that is inconsistent with this informa- T
tion. In each case, we will see that the introduction _
of uncertainty into the input representation, coupled-1 Uncertainty for a Known Input
with noisy-channel inference, provides a unified soThis paper considers situations such as controlled
lution within a theory of rational comprehension. psycholinguistic experiments where we (the re-
searchers) know the sentene&* presented to a
] comprehender, but do not know the specific input
2 Sentence comprehension under that the comprehender obtains. In this case, if we
uncertain input are, for example, interested in the expected infer-
ences of a rational comprehender about what word
The use of generative probabilistic grammars fostring she was exposed to, the probability distribu-
parsing is well understood (e.g., Charniak, 199%jon of interest is
Coallins, 1999). The problem of using a probabilistic
grammarG to find the “best parseT for a known

input stringw is formulated a%s P(wlw™) = /Pc(w|l,w*)PT(I|w*)dI vy
I
By assumption,G is defined such that its complete pro- wherePc is the probability diStribl_'ltion .used by the
ductionsT completely specify the string, such thatw/|T) is comprehender to process perceived input, &hd

non-zero for only one value of. is the “true” probability distribution over the inputs
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that might actually be perceived given the true ser
tence. Since the comprehender does not obseive

we must have conditional independence between

andw* given I. We can then apply Bayes’ rule to
(VII) to obtain

« [ PcI|w)Pc(w) . Figure 1: The Levenshtein-distance kernel for multi-
P(wlw )_/1 Po(I) Pr(Ifw")dI word string edits. K;p(w*) is shown for¥ =
(viiry  {cat,sat,d, w* = (acatsat and\ = 1. State O

Po(I|w)Pr(I|lw*) is the start state, and State 3 is the lone (zero-cost)
= Po(w) / (] dl final state.
1 c(I)
(1X)
x Po(w)Q(w, w) (X)

o . . andn the (zero-cost) final state. We add two types
where()(w, w") is proportional to the integral term of arcs to this automaton: (a) substitution/deletion

in Equation (IX). The ter.mPC(vs_/) corresp_onds arcs(i — 1,w') — i,i € 1,...,n, each with cost

to the comprehender’s prior beliefs; the mtegrakLD(w w'), for all ' € ¥ U {e}: and (b) in-
. . . (2] ) ]

term is the effect of_lnput _uncertalnty. If COM- <o rion loop arcgj,w') — j, j € 0,...,n, each

prehenders model noise rationally, then we shou ith costA LD (e, w'), for all w’ € $.2 The result-

have Po(I|lw) = Pr(I|lw), and thusQ(w,w") " '

becomes a symmetric, non-negative functionwof

and w*; hence the effect of input ur_lcertainty Canacceptingw islog Q(w, w*). This kernel allows for
be modeled by &ernel functionon input string yhe hossibility of wordsubstitutiongrepresented by
pairs. (_Slml_lar cor_1c|u3|on§ result when the POSt& e transition arcs with labels that are neithemor
rior distribution of interest is over SUucturds) It =y \qrq deletions(represented by the transition arcs
is an open question which kernel functions mlghSvith e labels), and even woridsertions(represented

best model the inferences made in human senten8§ the loop arcs). The unnormalized probability of

comprehension. Most obviously the kernel func—each type of operation is exponential in the Leven-

tion should account for noise (environmental, Pelintein distance of the change induced by the oper-

ceptual, and attentional) introduced into the Signa&tion. The termh is a free parameter, with smaller
en route to the neural stage of abstract Sentenge es corresponding to noisier input. Figure 1 gives

processing. In addition, this kernel_functlon m'g,htan example of the Levenshtein-distance kernel for a
also be a natural means of accounting for modelln&mple vocabulary and senterte

error such as disfluencies (Johnson and Charniak,
2004), word/phrase swaps, and even well-formed ut-
terances that the speaker did not intend. For pur-

poses of this paper, we limit ourselves to a simple 2For purposes of computing the Levenshtein distance be-

kernel based on the Levenshtein distah@®(w, w’)  tween words, the epsilon labelis considered to be a zero-

between words and constructed in the form of &ngth letter string.

weighted finite-state automaton (Mohri, 1997). 3Th§ Levenshtein-distance kernel can be seen Fo be sym-
metric in w,w* as follows. Any path acceptingv in the

WFSA generated fronw™ involves the following non-zero-

cost transitions: insertions}’ ;, deletionSw{?”j, and substi-

Suppose that the input word string* consists of tutions (w — w’)7_,. For each such patf, there will be

words w;_,,. We define the Levenshtein-distanceexactly one pathP’ in the wFSA generated fromw that ac-

. . . ceptsw* with insertionsw? ., deletionsw! ;, and substitu-
kernel as follows. Start with a weighted flnlte-statqioﬁs (' — w)S .. Due %&fhe symmetr;'df the Levenshtein

automaton in the log semiring over the vocabularyjistance, the path® and P’ will have identical costs. There-
> with states0...n, state 0O being the start statefore the kernel is indeed symmetric.

ing WFSAK 1 p(w*) defines a function ovex such
that the summed weight of paths through the wFSA

2.2 The Levenshtein-distance kernel
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2.3 Efficient computation of posterior beliefs gave affirmative responses significantly more often

The problem of finding structures or strings Withfor sehntenc(;ashof;ype (1a),in V‘k']hid; the.sr:Jbstrtigg
high posterior probability given a particular input™an hunted the deeppears, than for either (1b) or

string w* is quite similar to the problem faced in c).

the parsing of speech, where the acoustic inptt 1y 3 while the man hunted the deer ran into
a parser can be represented as a lattice of possible the woods. (BRDENPATH)
word sequences, and the edges of the lattice have  \while the man hunted the pheasant the

weights determined by a model of acoustic realiza-
tion of words, P(I|w) (Collins et al., 2004; Hall
and Johnson, 2003, 2004). The two major differ-
ences between lattice parsing and our problem are
(a) we have integrated out the expected effect dfhis result was interpreted by Christianson et al.
noise, which is thus implicit in our choice of kernel;(2001) and Ferreira et al. (2002) as reflecting (i)
and (b) the loops in the Levenshtein-distance kernghe fact that there is a syntactic garden path in
mean that the input to parsing is no longer a lattic§1a)—after reading the first six words of the sen-
This latter difference means that some of the techence, the preferred interpretation of the substring
niques applicable to string parsing and lattice parshe man hunted the deés as a simple clause in-
ing — notably the computation of inside probabilitiesdicating that the deer was hunted by the man—and
— are no longer possible using exact methods. @) that readers were not always successful at revis-

deer ran into the woods. RRNSITIVE)
While the man hunted, the deer ran into
the woods. (OMMA)

return to this difference in Sections 3 and 4. ing away this interpretation when they saw the dis-
_ ambiguating verlran, which signals thathe deer
3 Global inference is actually the subject of the main clause, and that

Funtedmust therefore be intransitive. Furthermore

One clear prediction of the uncertain-input model o and crucially), for (1a) participants also responded

(VI~(X) is that under appropriate CIrCumStancesaffirmatively most of the time to questions of the

the prior expectations;(w) of the comprehen- type Did the deer run into the woodsThis result

de_r S.hO.UId in principle be able to override the IIn'is a puzzle for existing models of sentence compre-
guistic input actually presented, so that a sentence

e ) ension because no grammatical analysis exists of
is interpreted as meaning—and perhaps eken

. . . any substring of (1a) for whicthe deeris both the
ing—something other than it actually meant or was, , : .

N Object ofhuntedand the subject ofan. In fact, no
At one level, it is totally clear that comprehender

do this on a regular basis: the ability to do this%tﬁirgjflfg?dd has yet been proposed to account for

is required for someone to act as a copy editor— - .
. . . : The uncertain-input model gives us a means of
that is, to notice and (crucially) correct mistakes .
. accounting for these results, because there are near
on the printed page. In many cases, these types

of correction happen at a level that may be beIovve'ghbors of (1a) for which theris a global gram-

) . . mtat|cal analysis in which eithéhe deeror a coref-

consciousness—thus we sometimes miss a typo bu 7 . .

) ) . . erent NP is in fact the object of the subordinate-

interpret the sentences as it was intended, or ignor . . .
clause verthunted In particular, inserting the word

the disfluency of a speaker. What has not been pr%- .
) . : I either before or aftethe deercreates such a near
viously proposed in a formal model, however, is thaj

this can happerven when an input is a completely
grammatical sentenceHere, we argue that an ef- (o a.  While the man hunted the deer it ran

fect demonstrated by Christianson et al. (2001) (see into the woods.
also Ferreira et al., 2002) is an example of expec- b. While the man hunted it the deer ran
tations overriding input. When presented sentences into the woods.

of the forms in (1) using methods that did not per-
mit rereading, and asked questions of the tiji@ We formalize this intuition within our model by us-
the man hunt the deer®xperimental participants ing the wFSA representation of the Levenshtein-
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ROOT  — S PUNCT. 0.0 Brown corpus’ Lexical rewrite probabilities were

S — SBAR S 6.3 determined using relative-frequency estimation over
S — SBARPUNCTS 4.6 the entire parsed Brown corpus. For each of the sen-
PUNCTS—,S 0.0 tence sets like (1) used in Experiments 1a, 1b, and 2
S — NP VP 0.1 of Christianson et al. (2001) that have complete lex-
SBAR  —INS 0.0 ical coverage in the parsed Brown corpus (22 sets
NP — DT NN 1.9 in total), a noisy-input wFSA was constructed us-
NP — NNS 4.4 ing K1 p, permitting all words occurring more than
NP — NNP 3.3 2500 times in the parsed Brown corpus as possi-
NP — DT NNS 4.5 ble edit/insertion targes. Figure 3 shows the av-
NP — PRP 1.3 erage proportion of parse trees among the 100 best
NP — NN 3.1 parses in the intersection between this PCFG and the
VP — VBD RB 9.7 WFSA for each sentence for which an interpretation
VP — VBD PP 2.2 is available such thahe deeror a coreferent NP is
VP — VBD NP 1.2 the direct object ohunted® The Levenshtein dis-
VP — VBD RP 8.3 tance penalty is a free parameter in the model, but
VP — VBD 2.0 the results are consistent for a wide range\nfn-

VP — VBD JJ 3.4 terpretations of type (2) are more prevalent both in
PP — IN NP 0.0 terms of number mass for (1a) than for either (1b)

_ _ _ or (1c). Furthermore, across 9 noise values for 22
Figure 2: The PCFG used in the global-inferencgenience sets, there were never more interpretations
study of Section 3. Rule weights given as negativgs yyne (2) for ®MMA sentences than for the cor-
log-probabilities in bits. responding GRDENPATH sentences, and in only

one case were there more such interpretations for

. - a TRANSITIVE sentence than for the corresponding
distance kernel. A probabilistic context-free gramgarpeENPATH sentence.
mar (PCFG) representing the comprehender’s gram-
matical knOW|edge can be intersected with tha&_ Incremental Comprehension and error
WFSA using well-understood techniques, generating  jdentification
a new weighted CFG (Bar-Hillel et al., 1964; Neder-
hof and Satta, 2003). This intersection thus repréA/e begin taking up the role of input uncertainty for
sents the unnormalized posterig (7', w|w*). Be- incremental comprehension by posing a question:
cause there are loops in the wFSA generated by th% . .
Levenshtein-distance kernel, exact normalization of ~Counts of these rules ‘were obtained using

. tgrep2 /Tregex tree-matching patterns (Rohde,
the posterior is not tractable (though see Nedefoos; Levy and Andrew, 2006), available online at
hof and Satta, 2003; Chl, 1999; Smith and JOhrhttp;//idiom,ucsd.edu/”rlevy/papers/
son, 2007 for possible approaches to approximagmnip2008/tregex_patterns - We have also in-
ing the normalization constant). We can, howevey’estlgated the use of broad-coyerage PCFGs estimated using

the lazyi-best algorithm of Huang and Chian standard treebank-based techniques, but found that thpusom
use " g . g . Ytational cost of inference with treebank-sized grammars wa
(2005; Algorithm 3) to obtain the word-string/parse-prohibitive.

tree pairs with highest posterior probability. *The word-frequency cutoff was introduced for computa-
tional speed; we have obtained qualitatively similar resswith
lower word-frequency cutoffs.

3.1 Experimental Verification ®We took a parse tree to satisfy this criterion if the NP
the deerappeared either as the matrix-clause subject or the

To test our account of the rational noisy-channel ineémbedded-clause object, and a pronoun appeared in the other

terpretation of sentences such as (1), we definedpglsition. In a finer-grained grammatical model, numberdgen
! agreement would be enforced between such a pronoun and the

small PCFG using the phrasal rules listed in Figurp in the posterior, so that the probability mass for thesseza
2, with rule probabilities estimated from the parsedvould be concentrated on cases where the pronoitin is
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formation about what was missed. However, mo-

tor error can account only for short, isolated regres-
= sions, and about one-sixth of regressions are part of
— GardenPath a longer series back into the sentence, into a much

-1 = = Comma
"+ Transiive earlier part of the text which has already been read.
We propose that these regressive saccades might be
the best choicavhen the most recent observed in-
put significantly changes the comprehender’s beliefs
about the earlier parts of the sentenck make the
0 5 10 15 20 discussion more concrete, we turn to another recent
Levenshtein edit distance penalty (bits) result in the psycholinguistic literature that has been
argued to be problematic for rational theories of sen-

Figure 3: Results for 100-best global inference, agnce comprehension.

a function of the Levenshtein distance penaltgin It has been shown (Tabor et al., 2004) that sen-
bits). tences such as (3) below induce considerable pro-

cessing difficulty at the wortbssedas measured in
word-by-word reading times:
what is the optimal way to read a sentence on a page
(Legge et al., 1997)? Presumably, the goal of read3) ~ The coach smiled at the player tossed a fris-
ing is to find a good compromise between scanning bee. (LOCALLY COHERENT)

the contents of the sentence as quickly as possibée S .
. . . oth intuition and controlled experiments reveal that
while achieving an accurate understanding of th

, . . Lo ﬁﬂs difficulty seems due at least in part to the cat-
sentence’s meaning. To a first approximation, hu- v ambiauity of the word d which |
mans solve this problem by reading each sentence fyoY ambigulty ot the wordosse ch 1s oc

casionally used as a participial verb but is much

a document from beginning to end, regardless of thé .
g g g ore frequently used as a simple-past verb. Al-

actual layout; whether this general solution is bes . o .

. g thoughtossedn (3) is actually a participial verb in-

understood in terms of optimality or rather as para—r ducin reduced relative cl ah plaver
sitic on spoken language comprehension is an opér? ucing a reduced relative clause ( ¢ playe

. . . i, hence its recipient), most native English speakers

question beyond the immediate scope of the preseit . :

ind it extremely difficult not to interpretiossedas a

paper. However, about 10-15% of eye movementsin . : .

. . main verb andhe playeras its agent—far more dif-

reading are regressive (Rayner, 1998), and we mz?

. ' ; |¥:ult than for corresponding sentences in which the
usefully refine our question to whenegressiveeye

movement might be a good decision. In traditionafmlcal participial verb is morphologically distinct

. : rom the simple past form ((4a), (4c); cthrew) or
models of sentence comprehension, the optimal alnn- which the relative cl i« unreduced and th
swer would certainly be “never”, since past Observaélearl CmarEede a4be c4<':1:use S unreduced a us
tions are known with certainty. But once uncertainty y ((4b), (4c)).

about the past is accounted for, it is clear that ther@) a. The coach smiled at the player thrown a

10 15 20 25

5
|

# Misleading parses in top 100

0
|

may in principle be situations in which regressive frisbee. (LOCALLY INCOHERENT)

saccades may be the best choice. . b. The coach smiled at the player who was
What are these situations? One possible answer tossed a frisbee.

would be: when the uncertainty (e.g., measured by c. The coach smiled at the player who was

entropy) about an earlier part of the sentence is high. thrown a frisbee.

There are some cases in which this is probably the

correct answer: many regressive eye movements arbe puzzle here for rational approaches to sentence
very small and the consensus in the eye-movemeobmprehension is that the preceding top-down con-
literature is that they represent corrections for motdext provided byl he coach smiled at. should com-
error at the saccadic level. That is, the eyes ovepletely rule out the possibility of seeing a main
shoot the intended target and regress to obtain imerb immediately afteplayer, hence a rational com-
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prehender should not be distracted by the part-of-
speech ambiguity.

P guit P(wy 5)) (X1
4.1 An uncertain-input solution We use the subscriptin§), j) to illustrate that this

) ) o interval is “closed” through to include the beginning
The solution we pursue to this puzzle lies in the facts the string, but “open” at positiofi—that is, it in-

that (3) has many near-neighbor sentences in whichy,jes 41| material before positigibut does not in-
the wordtossedis in fact a simple-past tense Verb'clude anything at that position or beyond. Let us

Several possibilities are listed below in (5): then define the posterior distribution after seeing all
input up through and including woridas P; (wjg_;))-

©) a The coactwho smiled at the player We define the EIS induced by reading a wardas

tossed a frisbee.

b. The coach smiledsthe player tossed a follows:
frisbee.

c.  The coach smilednd the player tossed D (P;(wjo )| Pi—1(wp ) (X1
a frisbee. P; (w)

d. The coach smiled at the playarho = Y P(w) 10gm (Xt
tossed a frishee. wefwp. ot

e. The coach smiled at the playdrat
tossed a frisbee.

f. The coach smiled at the playemd
tossed a frisbee.

where D(q||p) is the Kullback-Leibler divergence,
or relative entropy, fronp to ¢, a natural way of
guantifying the distance between probability distri-
butions (Cover and Thomas, 1991) which has also
The basic intuition we follow is that simple-pastP€€n argued for previously in modeling attention and
verbtosseds much more probable where it appearSUrPrise in both visual and linguistic cognition (ltti
in any of (5a)-(5f) than participialossedis in (3). and Baldi, 2005; Levy, 2008).

Therefore, seeing this word causes the comprehep— Experimental Verification

der to shift her probability distribution about the ear- i o

lier part of the sentence away from (3), where it ha@S in Section 3, we use a small probabilistic gram-

been peaked, toward its near neighbors such as tg-bar cpvering the relevant structures in the problem
examples in (5). This change in beliefs about th o;naln ;[:osr;;i)resegt thehcoanpreher?dgrZ'knowledkge,
past is treated as an error identification signal (EIS ind aw ased on the Levenshtein-distance ker-

In reading, a sensible response to an EIS would I to rgpresent noisy input. We are interested in
a slowdown or a regressive saccade; in spoken la ng;’:lsrlngt E{Ee EIS;[] the V\(ortd4$sed||r1 (?g_versus
guage comprehension, a sensible response would & at the wordhrown in (4a). In this case,

to allocate more working memory resources to thi'€ intervakuy ;) contains all the material that could
comprehension task possibly have come before the wdmksed/thrown

but does not contain material at or after the position
introduced by the word itself. Loops in the prob-
abilistic grammar and the Levenshtein-distance ker-
We quantify our proposed error identification sig-nel pose a challenge, however, to evaluating the EIS,
nal as follows. Consider the probability distributionbecause the normalization constant of the resulting
over the input up to, but not including, a positign grammar/input intersection is essential to evaluat-
in a sentencev: ing Equation (XIII). To circumvent this problem,
we eliminate loops from the kernel by allowing only

"This preceding context sharply distinguishes (3) fromone insertion per inter-word spatgSee Section 5
better-known, traditional garden-path sentences sucfihas for a possible alternative).
horse raced past the barn felh which preceding contextcan- ____ ~
not be used to correctly disambiguate the part of speecheof th  ®Technically, this involves the following transformatiofi o
ambiguous verlpaced a Levenshtein-distance wFSA. First, eliminate all loopsarc

4.2 Quantifying the Error Identification Signal
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ROOT — S 0.00

S — S-base CC S-base 7.3

S — S-base 0.01 3

S-base = — NP-base VP 0 o | o A

NP — NP-base RC 4.1

NP — NP-base 0.5 2 o

NP — NP-base PP 2.0 .

NP-base — DTNN 4.7 S

NP-base — DTN 1.9 st—_ 0@ @ v

NP-base — DTJJN 3.8 0 1 2 3 4 5 6 7

NP-base — PRP 1.0 Levenshtein edit distance penalty (bits)

NP-base — NNP 3.1

VP/NP — VNP 4.0 Figure 5: The Error Identification Signal (EIS) for

VP/NP -V 0.1 . o
(3) and (4a), as a function of the Levenshtein dis-

VP — VPP 2.0 tance penalty (in bits)

VP — VNP 0.7

VP —V 2.9

RC — WP SINP 0.5 being a zero-cost final staleBecause the intersec-

RC _’ VP-pa_lss/ NP 2.0 tion between this “cut” wFSA and the probabilistic

RC — WP FinCop VP-pass/NP 4.9 grammar is loop-free, it can be renormalized, and

PP —INNP 0 the EIS can be calculated without difficulty. All the

S/NP — VP 0.7 computations in this section were carried out using

SINP — NP-base VP/NP 13 the OpenFST library (Allauzen et al., 2007).

VP-pass/NRP— VBN NP 2.2 . .

VP-pass/NP VBN 0.4 Figure 5 shows the average magnitude of the EIS

for sentences (3) versus (4a) at the critical word po-
Figure 4: The grammar used for the incrementafsition tossed/thrown Once again, the Levenshtein-

inference experiment of Section 4. Rule weightélistance penalty\ is a free parameter in the model,

the eight sentence pairs in Experiment 1 of Tabor
et al. with complete lexical and syntactic coverage
Figure 4 shows the (finite-state) probabilisticfor the grammar of Figure 4. For values diwhere
grammar used for the study, with rule probabilitieghe EIS is non-negligible, it is consistently larger at
once again determined from the parsed Brown cothe critical word {ossedin (3), thrown in (4a)) in
pus using relative frequency estimation. To calcuthe COHERENT condition than in theNCOHERENT
late the distribution over strings after exposure teondition. Across a range of eight noise levels, 67%
the i-th word in the sentence, we “cut” the inputof sentence pairs had a higher EIS in t®@HERENT
WFSA such that all transitions and arcs after stateondition than in theNCOHERENT condition. Fur-
2i+2 were removed and replaced with a sequence tiiermore, the cases where tihecOHERENT condi-
statesj = 2i + 3, ..., m, with zero-cost transitions tion had a larger EIS occurred only for noise levels
(j—1,w') — jforallw’ € XU{e}, and each new below 1.1 and above 3.6, and the maximum such EIS
was quite small, at 0.067. Overall, the model's be-
Next, map every staté onto a state pair in a new WFSA havior is consistent with the experimental results of
(24, 2i + 1), with all incoming arcs in being incoming int®i,  Tapor et al. (2004), and can be explained through the

all outgoing arcs from being outgoing fron2i + 1, and new . .. . .
transition arcg2i, w') — 2i + 1 for eachw’ € X U {¢} with  INtUition described at the end of Section 4.1.

cost LD(e,w"). Finally, add initial state O to the new wFSA

with transition arcs to state 1 for all’ € 3 U {e} with cost °The number of states added had little effect on results, so
LD(e,w'). A final statei in the old wFSA corresponds to a long as at least as many states were added as words remained in
final state2i + 1 in the new wFSA. the sentence.
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5 Conclusion size grammars is another area for technical improve-
ment.

In this paper we have outlined a simple model of ra- Finally, we note that the model here could poten-

tional sentence comprehension under uncertain ifially find practical application in grammar correc-

put and explored some of the consequences for oufon. Although the noisy channel has been in use for

standing problems in the psycholinguistic literaturemany years in spelling correction, our model could

The model proposed here will require further empe used more generally for grammar corrections, in-

pirical investigation in order to distinguish it from cluding insertions, deletions, and (with new noise

other proposals that have been made in the litefunctions) potentially changes in word order.

ature, but if our proposal turns out to be correct

it has important consequences for both the theofgeferences

of language processing and cognition more genefjlauzen, C., Riley, M., Schalkwyk, J., Skut, W.,

ally. Most notably, it furthers the case for ratio- and Mohri, M. (2007). OpenFst: A general

nality in sentence processing; and it eliminates one and efficient weighted finite-state transducer library.

of the longest-standing modularity hypotheses im- In Proceedings of the Ninth International Confer-

plicit in work on the cognitive science of language: €"C€ on Implementation and Application of Au-

a partition between systems of word recognition °mata. (CIAA 2007) volume 4783 of Lecture

. .. Notes in Computer Sciencpages 11-23. Springer.
and sentence comprehension (Fodor, 1983). Unlike hitp://www.opentst.org

the pessimistic picture originally painted by Fodorajimann, G. T. and Kamide, Y. (1999). Incremental in-
however, the interactivist picture resulting from our terpretation at verbs: restricting the domain of subse-
model’s joint inference over possible word strings quent referenceCognition 73(3):247-264.
and structures points to many rich details that stifylett, M. and Turk, A. (2004). The Smooth Sig-
need to be filled in. These include questions such as"a Redundancy Hypothesis: A functional explanation
what kernel functions best account for human com- 0" rélationships between redundancy, prosodic promi-
, . R N nence, and duration in spontaneous spetahguage
prehenders’ modeling of noise in linguistic input, and Speechi7(1):31-56.
and what kinds of algorithms might allow represenggy_iliel, Y., Perles, M., and Shamir, E. (1964). On for-
tations with uncertain input to be computed incre- mal properties of simple phrase structure grammars. In
mentally. Language and Information: Selected Essays on their

The present work could also be extended in sev- Theory and ApplicationAddison-Wesley.
eral more technical directions. Perhaps most notabfd!amiak, E. (1997). Statistical parsing with a context-
. o free grammar and word statistics. Rroceedings of
is the probllem. of t_he normalization constant for the AAAI, pages 598-603.
posterior distribution over word strings and strucch;, z. (1999). Statistical properties of probabilistic
tures; this problem was circumvented viddest  context-free grammars.Computational Linguistics
approach in Section 3 and by removing loops from 25(1):131-160.
the Levenshtein-distance kernel in Section 4. Wehristianson, K., Hollingworth, A., Halliwell, J. F., and
believe, however, that a more satisfactory solution Ferreira, F. (2001). Thematic roles assigned along the

may exist via sampling from the posterior distribu- 92rden path linger. Cognitive Psychology42:368-

tion over trees and strings. This may be possibleomns:, C., Carpenter, B., and Penn, G. (2004). Head-

either by estimating normalizing constants for the griven parsing for word lattices. IRroceedings of
posterior grammar using iterative weight propaga- ACL
tion and using them to obtain proper production rul€ollins, M. (1999). Head-Driven Statistical Models for
probabilities (Chi, 1999; Smith and Johnson, 2007), Natural Language ParsingPhD thesis, University of
or by using reversible-jump Markov-chain Monte Pennsylvania. _
Carlo (MCMC) techniques to sample from the pos_Cover, T.and Thomas, J. (199Bements of Information

. . . ._ Theory John Wiley.
terior (Green, 1995), and estimating the normallzI':erreira, F., Ferraro, V., and Bailey, K. G. D. (2002).
ing constant with annealing-based techniques (Gel- Good-enough representations in language comprehen-
man and Meng, 1998) or nested sampling (Skilling, sion. Current Directions in Psychological Science
2004). Scaling the model up for use with treebank- 11:11-15.
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