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Abstract

Translation rule extraction is a fundamental
problem in machine translation, especially for
linguistically syntax-basedsystems that need
parse trees from either or both sides of the bi-
text. The current dominant practice only uses
1-best trees, which adversely affects the rule
set quality due to parsing errors. So we pro-
pose a novel approach which extracts rules
from a packed forestthat compactly encodes
exponentially many parses. Experiments show
that this method improves translation quality
by over 1 BLEU point on a state-of-the-art
tree-to-string system, and is 0.5 points better
than (and twice as fast as) extracting on 30-
best parses. When combined with our previous
work on forest-based decoding, it achieves a
2.5 BLEU points improvement over the base-
line, and even outperforms the hierarchical
system of Hiero by 0.7 points.

1 Introduction

Automatic extraction of translation rules is a funda-
mental problem in statistical machine translation, es-
pecially for many syntax-based models where trans-
lation rules directly encode linguistic knowledge.
Typically, these models extract rules using parse
trees fromboth or either side(s) of the bitext. The
former case, with trees on both sides, is often called
tree-to-treemodels; while the latter case, with trees
on either source or target side, include bothtree-
to-string and string-to-treemodels (see Table 1).
Leveraging from structural and linguistic informa-
tion from parse trees, these models are believed
to be better than their phrase-based counterparts in

source target examples (partial)
tree-to-tree Ding and Palmer (2005)

tree-to-string Liu et al. (2006); Huang et al. (2006)

string-to-tree Galley et al. (2006)

string-to-string Chiang (2005)

Table 1: A classification of syntax-based MT. The first
three uselinguistic syntax, while the last one onlyformal
syntax. Our experiments cover the second type using a
packed forest in place of the tree for rule-extraction.

handling non-local reorderings, and have achieved
promising translation results.1

However, these systems suffer from a major limi-
tation, that the rule extractor only uses 1-best parse
tree(s), which adversely affects the rule set quality
due to parsing errors. To make things worse, mod-
ern statistical parsers are often trained on domains
quite different from those used in MT. By contrast,
formally syntax-basedmodels (Chiang, 2005) do not
rely on parse trees, yet usually perform better than
these linguistically sophisticated counterparts.

To alleviate this problem, an obvious idea is to
extract rules fromk-best parses instead. However, a
k-best list, with its limited scope, has too few vari-
ations and too many redundancies (Huang, 2008).
This situation worsens with longer sentences as the
number of possible parses grows exponentially with
the sentence length and ak-best list will only capture
a tiny fraction of the whole space. In addition, many
subtrees are repeated across different parses, so it is

1For example, in recent NIST Evaluations, some of these
models (Galley et al., 2006; Quirk et al., 2005; Liu et al., 2006)
ranked among top 10. See http://www.nist.gov/speech/tests/mt/.
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IP

NP

x1:NPB CC

yǔ

x2:NPB

x3:VPB
→ x1 x3 with x2

Figure 1: Example translation ruler1. The Chinese con-
junctionyǔ “and” is translated into English prep. “with”.

also inefficient to extract rules separately from each
of these very similar trees (or from the cross-product
of k2 similar tree-pairs in tree-to-tree models).

We instead propose a novel approach that ex-
tracts rules frompacked forests(Section 3), which
compactly encodes many more alternatives thank-
best lists. Experiments (Section 5) show that forest-
based extraction improves BLEU score by over 1
point on a state-of-the-art tree-to-string system (Liu
et al., 2006; Mi et al., 2008), which is also 0.5
points better than (and twice as fast as) extracting
on 30-best parses. When combined with our previ-
ous orthogonal work on forest-based decoding (Mi
et al., 2008), the forest-forest approach achieves a
2.5 BLEU points improvement over the baseline,
and even outperforms the hierarchical system of Hi-
ero, one of the best-performing systems to date.

Besides tree-to-string systems, our method is also
applicable to other paradigms such as the string-to-
tree models (Galley et al., 2006) where the rules are
in the reverse order, and easily generalizable to pairs
of forests in tree-to-tree models.

2 Tree-based Translation

We review in this section the tree-based approach to
machine translation (Liu et al., 2006; Huang et al.,
2006), and its rule extraction algorithm (Galley et
al., 2004; Galley et al., 2006).

2.1 Tree-to-String System

Current tree-based systems perform translation in
two separate steps: parsing and decoding. The input
string is first parsed by a parser into a 1-best tree,
which will then be converted to a target language
string by applying a set of tree-to-string transforma-
tion rules. For example, consider the following ex-
ample translating from Chinese to English:

(a) Bùsh́ı yǔ Sh̄alóng jǔx́ıng le hùıtán

⇓ 1-best parser
(b) IP

NP

NPB

Bùsh́ı

CC

yǔ

NPB

Sh̄alóng

VPB

VV

jǔx́ıng

AS

le

NPB

hùıtán

r1⇓

(c) NPB

Bùsh́ı

VPB

VV

jǔx́ıng

AS

le

NPB

hùıtán

with NPB

Sh̄alóng

r2 ⇓ r3 ⇓

(d) Bush held NPB

hùıtán

with NPB

Sh̄alóng

r4 ⇓ r5 ⇓
(e) Bush held a meeting with Sharon

r2 NPB(Bùsh́ı)→ Bush
r3 VPB(VV(jǔx́ıng) AS(le) x1:NPB)→ heldx1

r4 NPB(Sh̄alóng)→ Sharon
r5 NPB(hùıtán)→ a meeting

Figure 2: Example derivation of tree-to-string translation,
with rules used. Each shaded region denotes a tree frag-
ment that is pattern-matched with the rule being applied.

(1) Bùsh́ı
Bush

yǔ
and/with

Sh̄alóng
Sharon1

jǔx́ıng
hold

le
past.

hùıtán
meeting2

“Bush held a meeting2 with Sharon1”

Figure 2 shows how this process works. The Chi-
nese sentence (a) is first parsed into a parse tree (b),
which will be converted into an English string in 5
steps. First, at the root node, we apply ruler1 shown
in Figure 1, which translates the Chinese coordina-
tion construction (“... and ...”) into an English prepo-
sitional phrase. Then, from step (c) we continue ap-
plying rules to untranslated Chinese subtrees, until
we get the complete English translation in (e).2

2We swap the 1-best and 2-best parses of the example sen-
tence from our earlier paper (Mi et al., 2008), since the current
1-best parse is easier to illustrate the rule extraction algorithm.
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IP
“Bush .. Sharon”

NP
“Bush⊔ with Sharon”

NPB
“Bush”

Bùsh́ı

CC
“with”

yǔ

NPB
“Sharon”

Sh̄alóng

VPB
“held .. meeting”

VV
“held”

jǔx́ıng

AS
“held”

le

NPB
“a meeting”

hùıtán

(minimal) rules extracted
IP (NP(x1:NPBx2:CCx3:NPB)x4:VPB)

→ x1 x4 x2 x3

CC (yǔ)→ with
NPB (Bùsh́ı)→ Bush

NPB (Sh̄alóng)→ Sharon

VPB (VV( jǔx́ıng) AS(le) x1:NPB)
→ heldx1

NPB (hùıtán)→ a meeting

Bush held a meeting with Sharon

Figure 3: Tree-based rule extraction (Galley et al., 2004).Each non-leaf node in the tree is annotated with its target
span (below the node), where⊔ denotes a gap, and non-faithful spans are crossed out. Shadowed nodes areadmissible,
with contiguous and faithful spans. The first two rules can be“composed” to form ruler1 in Figure 1.

IP0, 6

“Bush .. Sharon”
e2

NP0, 3

“Bush⊔ with Sharon”

e3

NPB0, 1

“Bush”

Bùsh́ı

CC1, 2

“with”

yǔ

VP1, 6

“held .. Sharon”

PP1, 3

“with Sharon”

P1, 2

“with”

NPB2, 3

“Sharon”

Sh̄alóng

VPB3, 6

“held .. meeting”

VV3, 4

“held”

jǔx́ıng

AS4, 5

“held”

le

NPB5, 6

“a meeting”

hùıtán

e1

extra (minimal) rules extracted
IP (x1:NPB x2:VP)→ x1 x2

VP (x1:PP x2:VPB)→ x2 x1

PP (x1:P x2:NPB)→ x1 x2

P (yǔ)→ with

Bush held a meeting with Sharon

Figure 4: Forest-based rule extraction. Solid hyperedges correspond to the 1-best tree in Figure 3, while dashed hyper-
edges denote the alternative parse interpretingyǔ as a preposition in Figure 5.

More formally, a (tree-to-string)translation rule
(Galley et al., 2004; Huang et al., 2006) is a tuple
〈lhs(r), rhs(r), φ(r)〉, where lhs(r) is the source-
side tree fragment, whose internal nodes are la-
beled by nonterminal symbols (like NP and VP),
and whose frontier nodes are labeled by source-
language words (like “yǔ”) or variables from a set
X = {x1, x2, . . .}; rhs(r) is the target-side string
expressed in target-language words (like “with”) and
variables; andφ(r) is a mapping fromX to nonter-

minals. Each variablexi ∈ X occursexactly oncein
lhs(r) andexactly oncein rhs(r). For example, for
rule r1 in Figure 1,

lhs(r1) = IP ( NP(x1 CC(yǔ) x2) x3),
rhs(r1) = x1 x3 with x2,

φ(r1) = {x1: NPB, x2: NPB, x3: VPB}.

These rules are being used in the reverse direction of
the string-to-tree transducers in Galley et al. (2004).
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2.2 Tree-to-String Rule Extraction

We now briefly explain the algorithm of Galley et al.
(2004) that can extract these translation rules from a
word-aligned bitext with source-side parses.

Consider the example in Figure 3. The basic idea
is to decompose the source (Chinese) parse into a se-
ries of tree fragments, each of which will form a rule
with its corresponding English translation. However,
not every fragmentation can be used for rule extrac-
tion, since it may or may not respect the alignment
and reordering between the two languages. So we
say a fragmentation iswell-formed with respect to
an alignment if the root node of every tree fragment
corresponds to acontiguous span on the target side;
the intuition is that there is a “translational equiva-
lence” between the subtree rooted at the node and
the corresponding target span. For example, in Fig-
ure 3, each node is annotated with its corresponding
English span, where the NP node maps to a non-
contiguous one “Bush⊔ with Sharon”.

More formally, we need a precise formulation
to handle the cases of one-to-many, many-to-one,
and many-to-many alignment links. Given a source-
target sentence pair(σ, τ) with alignmenta, the (tar-
get)span of nodev is the set of target words aligned
to leaf nodesyield(v) under nodev:

span(v) , {τi ∈ τ | ∃σj ∈ yield(v), (σj , τi) ∈ a}.

For example, in Figure 3, every node in the parse tree
is annotated with its corresponding span below the
node, where most nodes have contiguous spans ex-
cept for the NP node which maps to a gapped phrase
“Bush ⊔ with Sharon”. But contiguity alone is not
enough to ensure well-formedness, since there might
be words within the span aligned to source words
uncovered by the node. So we also define a spans

to be faithful to nodev if every word in it isonly
aligned to nodes dominated byv, i.e.:

∀τi ∈ s, (σj , τi) ∈ a⇒ σj ∈ yield(v).

For example, sibling nodes VV and AS in the tree
have non-faithful spans (crossed out in the Figure),
because they both map to “held”, thusneither of
them can be translated to “held” alone. In this case,
a larger tree fragment rooted at VPB has to be
extracted. Nodes with non-empty, contiguous,and
faithful spans form theadmissible set (shaded nodes

IP0,6

NPB0,1

Bùsh́ı

VP1,6

PP1,3

P1,2

yǔ

NPB2,3

Sh̄alóng

VPB3,6

jǔx́ıng le hùıtán

Figure 5: An alternative parse of the Chinese sentence,
with yǔ as a preposition instead of a conjunction; com-
mon parts shared with 1-best parse in Fig. 3 are elided.

in the figure), which serve as potential cut-points for
rule extraction.3

With the admissible set computed, rule extraction
is as simple as a depth-first traversal from the root:
we “cut” the tree at all admissible nodes to form tree
fragments and extract a rule for each fragment, with
variables matching the admissible descendant nodes.
For example, the tree in Figure 3 is cut into 6 pieces,
each of which corresponds to a rule on the right.

These extracted rules are calledminimal rules,
which can be glued together to formcomposed rules
with larger tree fragments (e.g.r1 in Fig. 1) (Galley
et al., 2006). Our experiments use composed rules.

3 Forest-based Rule Extraction

We now extend tree-based extraction algorithm from
the previous section to work with a packed forest
representing exponentially many parse trees.

3.1 Packed Forest

Informally, a packed parse forest, orforest in
short, is a compact representation of all the deriva-
tions (i.e., parse trees) for a given sentence under
a context-free grammar (Earley, 1970; Billot and
Lang, 1989). For example, consider again the Chi-
nese sentence in Example (1) above, which has
(at least) two readings depending on the part-of-
speech of the wordyǔ: it can be either a conjunction
(CC “and”) as shown in Figure 3, or a preposition
(P “with”) as shown in Figure 5, with only PP and
VPB swapped from the English word order.

3Admissible set (Wang et al., 2007) is also known as “fron-
tier set” (Galley et al., 2004). For simplicity of presentation, we
assume every target word is aligned to at least one source word;
see Galley et al. (2006) for handling unaligned target words.
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These two parse trees can be represented as a
single forest by sharing common subtrees such as
NPB0, 1 and VPB3, 6, as shown in Figure 4. Such a
forest has a structure of ahypergraph(Huang and
Chiang, 2005), where items like NP0, 3 are called
nodes, whose indices denote the source span, and
combinations like

e1 : IP0, 6 → NPB0, 3 VP3, 6

we callhyperedges. We denotehead(e) andtails(e)
to be the consequent and antecedant items of hyper-
edgee, respectively. For example,

head(e1) = IP0, 6, tails(e1) = {NPB0, 3, VP3, 6}.

We also denoteBS (v) to be the set ofincoming hy-
peredges of nodev, being different ways of deriving
it. For example, in Figure 4,BS (IP0, 6) = {e1, e2}.

3.2 Forest-based Rule Extraction Algorithm

Like in tree-based extraction, we extract rules from
a packed forestF in two steps:

(1) admissible set computation (where to cut), and

(2) fragmentation (how to cut).

It turns out that the exact formulation developed
for admissible set in the tree-based case can be ap-
plied to a forest without any change. The fragmen-
tation step, however, becomes much more involved
since we now face a choice of multiple parse hyper-
edges at each node. In other words, it becomesnon-
deterministichow to “cut” a forest into tree frag-
ments, which is analogous to the non-deterministic
pattern-match in forest-based decoding (Mi et al.,
2008). For example there are two parse hyperedges
e1 ande2 at the root node in Figure 4. When we fol-
low one of them to grow a fragment, there again will
be multiple choices at each of its tail nodes. Like in
tree-based case, a fragment is said to becomplete
if all its leaf nodes are admissible. Otherwise, an in-
complete fragment can grow at any non-admissible
frontier nodev, where following each parse hyper-
edge atv will split off a new fragment. For example,
following e2 at the root node will immediately lead
us to two admissible nodes,NPB0, 1 and VP1, 6

(we will highlight admissible nodes by gray shades

Algorithm 1 Forest-based Rule Extraction.
Input: forestF , target sentenceτ , and alignmenta
Output: minimal rule setR

1: admset ← ADMISSIBLE(F, τ, a) ⊲ admissible set
2: for eachv ∈ admset do
3: open ← ∅ ⊲ queue of active fragments
4: for eache ∈ BS (v) do ⊲ incoming hyperedges
5: front ← tails(e) \ admset ⊲ initial frontier
6: open.append(〈{e}, front〉)

7: while open 6= ∅ do
8: 〈frag , front〉 ← open.pop() ⊲ active fragment
9: if front = ∅ then

10: generate a ruler using fragmentfrag
11: R.append(r)
12: else ⊲ incomplete: further expand
13: u← front .pop() ⊲ a frontier node
14: for eache ∈ BS (u) do
15: front ′ ← front ∪ (tails(e) \ admset)
16: open.append(〈frag ∪ {e}, front ′〉)

in this section like in Figures 3 and 4). So this frag-
ment, frag1 = {e2}, is now complete and we can
extract a rule,

IP (x1:NPB x2:VP)→ x1 x2.

However, following the other hyperedgee1

IP0, 6 → NP0, 3 VPB3, 6

will leave the new fragmentfrag2 = {e1} incom-
pletewith one non-admissible node NP0, 3. We then
grow frag2 at this node by choosing hyperedgee3

NP0, 3 → NPB0, 1 CC1, 2 NPB2, 3 ,

and spin off a new fragmentfrag3 = {e1, e3}, which
is now complete since all its four leaf nodes are ad-
missible. We then extract a rule with four variables:

IP (NP(x1:NPBx2:CCx3:NPB)x4:VPB)
→ x1 x4 x2 x3.

This procedure is formalized by a breadth-first
search (BFS) in Pseudocode 1. The basic idea is to
visit each frontier nodev, and keep a queueopen
of actively growing fragments rooted atv. We keep
expanding incomplete fragments fromopen, and ex-
tract a rule if a complete fragment is found (line 10).
Each fragment is associated with afrontier (variable
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front in the Pseudocode), being the subset of non-
admissible leaf nodes (recall that expansion stops at
admissible nodes). So each initial fragment along
hyperedgee is associated with an initial frontier
(line 5), front = tails(e) \ admset .

A fragment is complete if its frontier is empty
(line 9), otherwise we pop one frontier nodeu to
expand, spin off new fragments by following hyper-
edges ofu, and update the frontier (lines 14-16), un-
til all active fragments are complete andopen queue
is empty (line 7).

A single parse tree can also be viewed as a triv-
ial forest, where each node has only one incoming
hyperedge. So the Galley et al. (2004) algorithm for
tree-based rule extraction (Sec. 2.2) can be consid-
ered a special case of our algorithm, where the queue
open always contains one single active fragment.

3.3 Fractional Counts and Rule Probabilities

In tree-based extraction, for each sentence pair, each
rule extracted naturally has a count of one, which
will be used in maximum-likelihood estimation of
rule probabilities. However, a forest is an implicit
collection of many more trees, each of which, when
enumerated, has its own probability accumulated
from of the parse hyperedges involved. In other
words, a forest can be viewed as a virtual weighted
k-best list with a hugek. So a rule extracted from a
non 1-best parse, i.e., using non 1-best hyperedges,
should be penalized accordingly and should have a
fractional countinstead of a unit one, similar to the
E-step in EM algorithms.

Inspired by the parsing literature on pruning
(Charniak and Johnson, 2005; Huang, 2008) we pe-
nalize a ruler by the posterior probability of its tree
fragmentfrag = lhs(r). This posterior probability,
notatedαβ(frag), can be computed in an Inside-
Outside fashion as the product of three parts: the out-
side probability of its root node, the probabilities of
parse hyperedges involved in the fragment, and the
inside probabilities of its leaf nodes,

αβ(frag) =α(root(frag))

·
∏

e ∈ frag

P(e)

·
∏

v ∈ yield(frag)

β(v)

(2)

whereα(·) andβ(·) denote the outside and inside
probabilities of tree nodes, respectively. For example
in Figure 4,

αβ({e2, e3}) = α(IP0, 6) · P(e2) · P(e3)

· β(NPB0, 1)β(CC1, 2)β(NPB2, 3)β(VPB3, 6).

Now the fractional count of ruler is simply

c(r) =
αβ(lhs(r))

αβ(TOP)
(3)

where TOP denotes the root node of the forest.
Like in the M-step in EM algorithm, we now

extend the maximum likelihood estimation to frac-
tional counts for three conditional probabilities re-
garding a rule, which will be used in the experi-
ments:

P(r | lhs(r)) =
c(r)∑

r′:lhs(r′)=lhs(r) c(r′)
, (4)

P(r | rhs(r)) =
c(r)∑

r′:rhs(r′)=rhs(r) c(r′)
, (5)

P(r |root(lhs(r)))

=
c(r)∑

r′:root(lhs(r′))=root(lhs(r)) c(r′)
.

(6)

4 Related Work

The concept ofpacked foresthas been previously
used in translation rule extraction, for example in
rule composition (Galley et al., 2006) and tree bina-
rization (Wang et al., 2007). However, both of these
efforts only use 1-best parses, with the second one
packing differentbinarizationsof the same tree in a
forest. Nevertheless we suspect that their extraction
algorithm is in principle similar to ours, although
they do not provide details of forest-based fragmen-
tation (Algorithm 1) which we think is non-trivial.

The forest concept is also used in machine transla-
tion decoding, for example to characterize the search
space of decoding with integrated language models
(Huang and Chiang, 2007). The firstdirect appli-
cation of parse forest in translation is our previous
work (Mi et al., 2008) which translates a packed for-
est from a parser; it is also the base system in our
experiments (see below). This work, on the other
hand, is in the orthogonal direction, where we uti-
lize forests in rule extraction instead of decoding.
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Our experiments will use both default 1-best decod-
ing and forest-based decoding. As we will see in the
next section, the best result comes when we combine
the merits of both, i.e., using forests in both rule ex-
traction and decoding.

There is also a parallel work on extracting rules
from k-best parses andk-best alignments (Venu-
gopal et al., 2008), but both their experiments and
our own below confirm that extraction onk-best
parses is neither efficient nor effective.

5 Experiments

5.1 System

Our experiments are on Chinese-to-English trans-
lation based on a tree-to-string system similar to
(Huang et al., 2006; Liu et al., 2006). Given a 1-
best treeT , the decoder searches for the best deriva-
tion d∗ among the set of all possible derivationsD:

d∗ = arg max
d∈D

λ0 log P(d | T ) + λ1 log Plm(τ(d))

+ λ2|d|+ λ3|τ(d)|

(7)

where the first two terms are translation and lan-
guage model probabilities,τ(d) is the target string
(English sentence) for derivationd, and the last two
terms are derivation and translation length penalties,
respectively. The conditional probabilityP(d | T )
decomposes into the product of rule probabilities:

P(d | T ) =
∏

r∈d

P(r). (8)

EachP(r) is in turn a product of five probabilities:

P(r) =P(r | lhs(r))λ4 · P(r | rhs(r))λ5

· P(r | root(lhs(r)))λ6

· Plex(lhs(r) | rhs(r))
λ7

· Plex(rhs(r) | lhs(r))
λ8

(9)

where the first three are conditional probabilities
based on fractional counts of rules defined in Sec-
tion 3.3, and the last two are lexical probabilities.
These parametersλ1 . . . λ8 are tuned by minimum
error rate training (Och, 2003) on the dev sets. We
refer readers to Mi et al. (2008) for details of the
decoding algorithm.
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Figure 6: Comparison of extraction time and BLEU
score: forest-based vs.1-best and 30-best.

rules from... extraction decoding BLEU
1-best trees 0.24 1.74 0.2430
30-best trees 5.56 3.31 0.2488
forest:pe=8 2.36 3.40 0.2533

Pharaoh - - 0.2297

Table 2: Results with different rule extraction methods.
Extraction and decoding columns are running times in
secs per 1000 sentences and per sentence, respectively.

We use the Chinese parser of Xiong et al. (2005)
to parse the source side of the bitext. Following
Huang (2008), we also modify this parser to out-
put a packed forest for each sentence, which can
be pruned by the marginal probability-based inside-
outside algorithm (Charniak and Johnson, 2005;
Huang, 2008). We will first report results trained
on a small-scaled dataset with detailed analysis, and
then scale to a larger one, where we also combine the
technique of forest-based decoding (Mi et al., 2008).

5.2 Results and Analysis on Small Data

To test the effect of forest-based rule extraction, we
parse the training set into parse forests and use three
levels of pruning thresholds:pe = 2, 5, 8.

Figure 6 plots the extraction speed and transla-
tion quality of forest-based extraction with various
pruning thresholds, compared to 1-best and 30-best
baselines. Using more than one parse tree apparently
improves the BLEU score, but at the cost of much
slower extraction, since each of the top-k trees has to
be processed individually although they share many
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rules from ... total # on dev new rules used
1-best trees 440k 90k -
30-best trees 1.2M 130k 8.71%
forest:pe=8 3.3M 188k 16.3%

Table 3: Statistics of rules extracted from small data. The
last column shows the ratio ofnew rules introduced by
non 1-best parses being used in 1-best derivations.

common subtrees. Forest extraction, by contrast, is
much faster thanks to packing and produces consis-
tently better BLEU scores. With pruning threshold
pe = 8, forest-based extraction achieves a (case in-
sensitive) BLEU score of 0.2533, which is an ab-
solute improvement of 1.0% points over the 1-best
baseline, and is statistically significant using the
sign-testof Collins et al. (2005) (p < 0.01). This
is also 0.5 points better than (and twice as fast as)
extracting on 30-best parses. These BLEU score re-
sults are summarized in Table 2, which also shows
that decoding with forest-extracted rules is less than
twice as slow as with 1-best rules, and only fraction-
ally slower than with 30-best rules.

We also investigate the question of how often
rules extracted from non 1-best parses are used by
the decoder. Table 3 shows the numbers of rules
extracted from 1-best, 30-best and forest-based ex-
tractions, and the numbers that survive after filter-
ing on the dev set. Basically in the forest-based case
we can use about twice as many rules as in the 1-
best case, or about 1.5 times of 30-best extraction.
But the real question is, are these extra rules really
useful in generating the final (1-best) translation?
The last row shows that 16.3% of the rules used
in 1-best derivations are indeedonly extracted from
non 1-best parses in the forests. Note that this is a
stronger condition than changing the distribution of
rules by considering more parses; here we introduce
newrules never seen on any 1-best parses.

5.3 Final Results on Large Data

We also conduct experiments on a larger training
dataset, FBIS, which contains 239K sentence pairs
with about 6.9M/8.9M words in Chinese/English,
respectively. We also use a bigger trigram model
trained on the first 1/3 of the Xinhua portion of Gi-
gaword corpus. To integrate with forest-based de-
coding, we use both 1-best trees and packed forests

extract.\ decoding 1-best tree forest:pd=10
1-best trees 0.2560 0.2674
30-best trees 0.2634 0.2767
forest:pe=5 0.2679 0.2816

Hiero 0.2738

Table 4: BLEU score results trained on large data.

during both rule extraction and decoding phases.
Since the data scale is larger than the small data, we
are forced to use harsher pruning thresholds, with
pe = 5 for extraction andpd = 10 for decoding.

The final BLEU score results are shown in Ta-
ble 4. With both tree-based and forest-based decod-
ing, rules extracted from forests significantly outper-
form those extracted from 1-best trees (p < 0.01).
The final result with both forest-based extraction
and forest-based decoding reaches a BLEU score of
0.2816, outperforming that of Hiero (Chiang, 2005),
one of the best performing systems to date. These re-
sults confirm that our novel forest-based rule extrac-
tion approach is a promising direction for syntax-
based machine translation.

6 Conclusion and Future Work

In this paper, we have presented a novel approach
that extracts translation rules from a packed forest
encoding exponentially many trees, rather than from
1-best ork-best parses. Experiments on a state-of-
the-art tree-to-string system show that this method
improves BLEU score significantly, with reasonable
extraction speed. When combined with our previ-
ous work on forest-based decoding, the final result
is even better than the hierarchical system Hiero.
For future work we would like to apply this ap-
proach to other types of syntax-based translation
systems, namely the string-to-tree systems (Galley
et al., 2006) and tree-to-tree systems.
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