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Abstract

Translation rule extraction is a fundamental
problem in machine translation, especially for
linguistically syntax-basedystems that need
parse trees from either or both sides of the bi-
text. The current dominant practice only uses
1-best trees, which adversely affects the rule
set quality due to parsing errors. So we pro-
pose a novel approach which extracts rules
from a packed foresthat compactly encodes
exponentially many parses. Experiments show
that this method improves translation quality
by over 1 BLEU point on a state-of-the-art
tree-to-string system, and is 0.5 points better
than (and twice as fast as) extracting on 30-
best parses. When combined with our previous
work on forest-based decoding, it achieves a
2.5 BLEU points improvement over the base-
line, and even outperforms the hierarchical
system of Hiero by 0.7 points.
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source target examples (partial)

tree-to-tree
tree-to-string
string-to-tree

Ding and Palmer (2005)
Liu et al. (2006); Huang et al. (2006)
Galley et al. (2006)

string-to-string Chiang (2005)

Table 1: A classification of syntax-based MT. The first
three usdinguistic syntaxwhile the last one onljormal
syntax Our experiments cover the second type using a
packed forest in place of the tree for rule-extraction.

handling non-local reorderings, and have achieved
promising translation resulfs.

However, these systems suffer from a major limi-
tation, that the rule extractor only uses 1-best parse
tree(s), which adversely affects the rule set quality
due to parsing errors. To make things worse, mod-
ern statistical parsers are often trained on domains
quite different from those used in MT. By contrast,
formally syntax-basechodels (Chiang, 2005) do not
rely on parse trees, yet usually perform better than

Automatic extraction of translation rules is a fundathese linguistically sophisticated counterparts.
mental problem in statistical machine translation, es- To alleviate this problem, an obvious idea is to
pecially for many syntax-based models where trangxtract rules fronk-best parses instead. However, a
lation rules directly encode linguistic knowledge k-best list, with its limited scope, has too few vari-
Typically, these models extract rules using parsations and too many redundancies (Huang, 2008).
trees fromboth or either side(s) of the bitext. The This situation worsens with longer sentences as the
former case, with trees on both sides, is often calleaumber of possible parses grows exponentially with
tree-to-treemodels; while the latter case, with treeghe sentence length and:eest list will only capture

on either source or target side, include btribe-

a tiny fraction of the whole space. In addition, many

to-string and string-to-tree models (see Table 1). subtrees are repeated across different parses, so it is

Leveraging from structural and linguistic informa-

'For example, in recent NIST Evaluations, some of these

tion from parse trees, these models are believgghgels (Galley et al., 2006: Quirk et al., 2005: Liu et al., 2006)
to be better than their phrase-based counterpartsrimked among top 10. See http://www.nist.gov/speech/tests/mt/.
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1= (@) Bush yu Shalong juxing le hutan

— |} 1-best parser
NP x3:VPB , (b) IP
T — 21 3 With z9
. . /\
21:NPB CIC 29:NPB NP VPB
vl — 7 e
NPB CC NPB VV AS NPB
Figure 1: Example translation rutg. The Chinese con- oo I | I r
junctionyli “and” is translated into English prep. “with”. BUISh yu' Srelong jlxing _le huitan
l\ Tll} ) :)\/\ -

-

also inefficient to extract rules separately from each:) ' P with\ -
of these very similar trees (or from the cross-product N VIRE NPB

of k S|.m|Iar tree-pairs in tree-to-tree models). BusH VW AS NPB Stalong
We instead propose a novel approach that ex- | | |

tracts rules fronpacked forestgSection 3), which juxing le huitan

compactly encodes many more alternatives than ro | rs |

best lists. Experiments (Section 5) show that forest-

based extraction improves BLEU score by over {d) Bush — held pg with ~yppg

point on a state-of-the-art tree-to-string system (Liu [ [

et al., 2006; Mi et al., 2008), which is also 0.5 huitan Stalong

points better than (and twice as fast as) extracting ry | rs |

on 30-best parses. When combined with our prévie)  Bysh  held a meeting with Sharon

ous orthogonal work on forest-based decoding (Mi

et al., 2008), _the forest-forest approach achie\{es . NPBBUsH) = Bush

2.5 BLEU points improvement over the baseline, | ., vpg(vv(juxing AS(e) =1:NPB) — heldz,

and even outperforms the hierarchical system of Hi-| ;, NPB(Shalong) — Sharon

ero, one of the best-performing systems to date. s NPB(huitan) — a meeting
Besides tree-to-string systems, our method is also

applicable to other paradigms such as the string-téigure 2: Example derivation of tree-to-string translafio

tree models (Galley et al., 2006) where the rules aMith rules used. Each shaded region denotes a tree frag-

in the reverse order, and easily generalizable to pai?%em that is pattern-matched with the rule being applied.

of forests in tree-to-tree models.

(1) Bush yu Shalongjuxingle  huitan

2 Tree-based Trandation Bush and/withSharon hold past. meeting

We review in this section the tree-based approach to “Bush held a meetingwith Sharon”
machine translation (Liu et al., 2006; Huang et al.,

2006), and its rule extraction algorithm (Galley et Figure 2 shows how this process works. The Chi-

al., 2004; Galley et al., 2006) nese sentence (a) is first parsed into a parse tree (b),
K ’ K ' which will be converted into an English string in 5
2.1 Treeto-String System steps. First, at the root node, we apply rejeshown

Current tree-based systems perform translation I Figure 1, which translates the Chinese coordina-

two separate steps: parsing and decoding. The inpﬁ'ﬂn construction (... and ..") into an English prepo-

string is first parsed by a parser into a 1-best treé't'f)nal phrase. Then, from step (c) we continue ap-
éﬂylng rules to untranslated Chinese subtrees, until

string by applying a set of tree-to-string transformalVe 9€t the complete English translation in te).

tion rules. For example, consider the following ex- ?We swap the 1-best and 2-best parses of the example sen-

ample translating from Chinese to English: tence from our earlier paper (Mi et al., 2008), since the current
1-best parse is easier to illustrate the rule extraction algorithm.
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P (minimal) rules extracted

“Bush .. Sharon” IP (NP(z1:NPB z5:CC x3:NPB) 24:VPB)
. — X1 Ty T T3
NP VPB .
) _ i _ CC (yl) — with
Bush LI with Sharon “held .. meeting” NPB (BUSH) _, Bush
B 7 .
NPB (Shalon Sharon
NPB CC  NPB W  AS NPB (Srelong —
“Bush”  ‘with”  “Sharon”  ‘held>  ‘held  “ameeting’ VPB (VV(juxing) AS(le) x;:NPB)
A I I . | | - — heldx,
Bulsh ya_ - Sralong jiing le _huitan NPB (huitan) — a meeting
: I
| - - P ==
Bush held a~  meeting with Sharon

Figure 3: Tree-based rule extraction (Galley et al., 20B4ch non-leaf node in the tree is annotated with its target
span (below the node), wharedenotes a gap, and non-faithful spans are crossed out. Bbdamdes aradmissible,
with contiguous and faithful spans. The first two rules cafideenposed” to form rule in Figure 1.

P extra (minimal) rules extracted
0,6 IP (z1:NPB 22:VP) — 71 72

“Bush .. Sharon”

VP (x1:PP .%'QZVPB) — T2 X1
PP (x1:P z2:NPB)— z1 29

P (yl) — with

—
NPBy, 1 CGCi2 P12 NPB;, 3 VW34 ASys NPBs, 6

“Bush” “with” “with” “Sharon” “held™ “hela” “a meeting”

1 v T | I
BusHh yu Shalong  juxing  _le huitan

| - S s g

| Tt~ oz TEm T Tseo T

I == F T T T =T T~

| "44’ ”/, ’/:<\\~ \\\\
Bush held a- meeting with Sharon

Figure 4: Forest-based rule extraction. Solid hyperedgegspond to the 1-best tree in Figure 3, while dashed hyper-
edges denote the alternative parse interpretings a preposition in Figure 5.

More formally, a (tree-to-stringyandation rule minals. Each variable;, € X occursexactly oncen
(Galley et al., 2004; Huang et al., 2006) is a tupléhs(r) andexactly oncen rhs(r). For example, for
(lhs(r), rhs(r), ¢(r)), wherelhs(r) is the source- ruler; in Figure 1,
side tree fragment, whose internal nodes are la-

beled by nonterminal symbols (like NP and VP), Ihs(r;) = IP (NP@; CCYU) z2) x3),
and whose frontier nodes are labeled by source- rhs(ry) = 1 x3 with a9,
language words (likeyl”) or variables from a set é(r1) = {x1:NPB, z2: NPB, z3: VPB}.

X = {x1,xz9,...}; rhs(r) is the target-side string
expressed in target-language words (like “with”) and’hese rules are being used in the reverse direction of
variables; and(r) is a mapping from’ to nonter- the string-to-tree transducers in Galley et al. (2004).

208



2.2 Treeto-String Rule Extraction IPo .6
A

We now briefly explain the algorithm of Galley etal.  Npp, , VP, 6
(2004) that can extract these translation rules froma _~_ -
word-aligned bitext with source-side parses. BusH PP 3 VPBs ¢

. . . . - /\
Consider the example in Figure 3. The basic idea Pis NPBys jAUx’mg e hatan

is to decompose the source (Chinese) parse into a se- : -
ries of tree fragments, each of which will form a rule yu Shalong
with its corresponding English translation. However,
not every fragmentation can be used for rule extra¢igure 5: An alternative parse of the Chinese sentence,
tion, since it may or may not respect the alignmenf/th YU as a preposition instead of a conjunction; com-
; mon parts shared with 1-best parse in Fig. 3 are elided.
and reordering between the two languages. So we
say a fragmentation iwell-formed with respect to
an alignment if the root node of every tree fragmenin the figure), which serve as potential cut-points for
corresponds to eontiguous span on the target side; rule extractior’®
the intuition is that there is a “translational equiva- With the admissible set computed, rule extraction
lence” between the subtree rooted at the node aiglas simple as a depth-first traversal from the root:
the corresponding target span. For example, in Figve “cut” the tree at all admissible nodes to form tree
ure 3, each node is annotated with its correspondirfgagments and extract a rule for each fragment, with
English span, where the NP node maps to a nowariables matching the admissible descendant nodes.
contiguous one “Bush with Sharon”. For example, the tree in Figure 3 is cut into 6 pieces,
More formally, we need a precise formulationeach of which corresponds to a rule on the right.
to handle the cases of one-to-many, many-to-one, These extracted rules are callednimal rules
and many-to-many alignment links. Given a sourcewhich can be glued together to fomomposed rules
target sentence pais, 7) with alignmenta, the (tar-  with larger tree fragments (e.g; in Fig. 1) (Galley
get)span of nodev is the set of target words alignedet al., 2006). Our experiments use composed rules.
to leaf nodesyield(v) under node:
3 Forest-based Rule Extraction
span(v) £ {7 € 7| Joj € yield(v), (0;,7;) € a}.
We now extend tree-based extraction algorithm from
For example, in Figure 3, every node in the parse trae previous section to work with a packed forest
is annotated with its corresponding span below thl%presenting exponentially many parse trees.
node, where most nodes have contiguous spans ex-

cept for the NP node which maps to a gapped phrasel Packed Forest
“Bush L with Sharon”. But contiguity alone is not Informally, a packed parse forest, dorest in

enough to er_13L_Jre WeII—forme(_Jlness, since there m'ggﬁort, is a compact representation of all the deriva-
be words within the span aligned to source Wordg, g (i o parse trees) for a given sentence under
uncove_red by the node_. So we also ‘?‘e‘f'”_e a SPparn, context-free grammar (Earley, 1970; Billot and
tol befaithful to nodez_; if every _word in it isonly Lang, 1989). For example, consider again the Chi-
aligned to nodes dominated byi.e.: nese sentence in Example (1) above, which has
(at least) two readings depending on the part-of-
speech of the worgll: it can be either a conjunction
For example, sibling nodes VV and AS in the tredCC “and”) as shown in Figure 3, or a preposition
have non-faithful spans (crossed out in the FigurefP “with”) as shown in Figure 5, with only PP and
because they both map to “held”, thagither of VPB swapped from the English word order.
them can be translated to “held” alone. In this case;———— )

Admissible set (Wang et al., 2007) is also known as “fron-

a larger tree fragment rooted at VPB has to bﬁ!er set” (Galley et al., 2004). For simplicity of presentation, we

extracted. Nodes with non-empty, contiguoasd  assume every target word is aligned to at least one source word:
faithful spans form thadmissible set (shaded nodes see Galley et al. (2006) for handling unaligned target words.

V1 € s, (04, 7)) € a = 05 € yield(v).
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These two parse trees can be represented aAlgorithm 1 Forest-based Rule Extraction.
single forest by sharing common subtrees such as Input: forestF, target sentence, and alignment
NPBy ; and VPB; ¢, as shown in Figure 4. Such a  Output: minimal rule seiR o
forest has a structure of flypergraph(Huang and % admset «— ADMISSIBLE(F,7,a) > admissible set
Chiang, 2005), where items like §R are called 2 for eachu € admset do

N T open — O > queue of active fragments
nodes whose indices denote the source span, an(i: f(i eache € BS(v) do q > incoming hype?edges

combinations like 5: front — tails(e) \ admset > initial frontier

6: open.append({e}, front))
e1: IPo,6 — NPBy 3 VP36 7: while open # @ do
8: (frag, front) < open.pop() © active fragment
we callhyperedgesWe denotéiead(e) andtails(e) o if front = @ then
to be the consequent and antecedant items of hypeo: generate a rule using fragmenfrag
edgee, respectively. For example, 11: ‘R.append()
12: else > incomplete: further expand
head(e1) = IPg 6, tails(e1) = {NPBy 3,VP3¢}. 13 u < front.pop() > a frontier node
14: for eache € BS(u) do
. / :
We also denotdS(v) to be the set oincoming hy-  1° front” « front U (tails(e) \ admset)

peredges of nodev, being different ways of deriving & open.append(frag U {e}, front"))

it. For example, in Figure 4BS(IPy ) = {e1,e2}.

3.2 Forest-based Rule Extraction Algorithm in this section like in Figures 3 and 4). So this frag-

o _ ment, frag; = {e2}, is now complete and we can
Like in tree-based extraction, we extract rules fro”éxtract arule

a packed foresk’ in two steps:

. . IP (z1:NPB x2:VP .
(1) admissible set computation (where to cut), and (1 22:VP) = w1 s

(2) fragmentation (how to cut). However, following the other hyperedge

It turns out that the exact formulation developed IPo,6 — NPo,5 VPB3 6

for admissible set in the tree-based case can be ap- _

plied to a forest without any change. The fragmen?ill leave the new fragmenfrag, = {e1} incom-
tation step, however, becomes much more involvef€tewith one n_on-adm|55|ble nqde NB. We then
since we now face a choice of multiple parse hype@row frag, at this node by choosing hyperedge
edges at each node. In other words, it becontes
deterministichow to “cut” a forest into tree frag-
ments, which is analogous to the non-deterministic ) )
pattern-match in forest-based decoding (Mi et al@"d spinoff anew fragmetitags = {e1, es}, which

2008). For example there are two parse hyperedg@s_now complete since all its four I_eaf nodes are ad-
¢, andes at the root node in Figure 4. When we fol-Mmissible. We then extract a rule with four variables:

low one of them to grow a fragment, there again will | p (NP(z1:NPB 25:CC 23:NPB) z,:VPB)
be multiple choices at each of its tail nodes. Like in

tree-based case, a fragment is said tactraplete

if all its leaf nodes are admissible. Otherwise, anin- This procedure is formalized by a breadth-first
complete fragment can grow at any non-admissiblgearch (BFS) in Pseudocode 1. The basic idea is to
frontier nodev, where following each parse hyper-visit each frontier node, and keep a queuepen
edge aw will split off a new fragment. For example, of actively growing fragments rooted at We keep
following e at the root node will immediately lead expanding incomplete fragments framen, and ex-

us to two admissible node NPBy ; and VP; ¢ tracta rule if a complete fragment is found (line 10).
(we will highlight admissible nodes by gray shade&ach fragment is associated witlfrantier (variable

NPy 3 — NPBy 1 CCi 2 NPB; 3,

— X1 T4T2X3.
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front in the Pseudocode), being the subset of norwhere«(-) and 3(-) denote the outside and inside
admissible leaf nodes (recall that expansion stops ptobabilities of tree nodes, respectively. For example
admissible nodes). So each initial fragment alongn Figure 4,

hyperedgee is associated with an initial frontier

(line 5), front = tails(e) \ admset. af({ez, es}) = a(lPog) - Ple2) - Ples)

A fragment is complete if its frontier is empty - B(NPBy, 1)3(CCy,2)3(NPB;, 3) 3(VPB3 6).
(line 9), otherwise we pop one frontier podeto Now the fractional count of rule is simply
expand, spin off new fragments by following hyper-
edges of:, and update the frontier (lines 14-16), un- _af(lhs(r))
til all active fragments are complete angen queue (r) = afB(TOP)

is empty (line 7).
I A s?nél(el pars)e tree can also be viewed as a tri \yyhere TOP denotes the root node of the forest.
Like in the M-step in EM algorithm, we now

ial forest, where each node has only one incomin ) o L
. xtend the maximum likelihood estimation to frac-
hyperedge. So the Galley et al. (2004) algorithm fof, " -
: fional counts for three conditional probabilities re-
tree-based rule extraction (Sec. 2.2) can be consid- . . . . .
. : arding a rule, which will be used in the experi-
ered a special case of our algorithm, where the quete

: ) . ents:
open always contains one single active fragment.

3)

c(r)
3.3 Fractional Countsand Rule Probabilities P(r [ ths(r)) = > riths(rr)—thsr) €07) (4)
In tree-based extraction, for each sentence pair, each
rule extracted naturally has a count of one, which  p(r | rhs(r)) = o(r) —. )
will be used in maximum-likelihood estimation of Zr/:rhs(r’):rhs(r) c(r’)
rule probabilities. However, a forest is an implicit P(r |root(lhs(r)))
collection of many more trees, each of which, when o(r) (6)

enumerated, has its own probability accumulated = -

from of the parse hyperedges involved. In other 2 v sroot(ihs (")) =root(ths(r)) (1)

words, gforgst can be viewed as a virtual weighted  pqated Work

k-best list with a hugé. So a rule extracted from a

non 1-best parse, i.e., using non 1-best hyperedgddie concept ofpacked foreshas been previously

should be penalized accordingly and should haveused in translation rule extraction, for example in

fractional countinstead of a unit one, similar to the rule composition (Galley et al., 2006) and tree bina-

E-step in EM algorithms. rization (Wang et al., 2007). However, both of these
Inspired by the parsing literature on pruningefforts only use 1-best parses, with the second one

(Charniak and Johnson, 2005; Huang, 2008) we p@acking differenbinarizationsof the same tree in a

nalize a rule- by the posterior probability of its tree forest. Nevertheless we suspect that their extraction

fragmentfrag = Ihs(r). This posterior probability, algorithm is in principle similar to ours, although

notateda3(frag), can be computed in an Inside-they do not provide details of forest-based fragmen-

Outside fashion as the product of three parts: the odgition (Algorithm 1) which we think is non-trivial.

side probability of its root node, the probabilities of The forest conceptis also used in machine transla-

parse hyperedges involved in the fragment, and tt®n decoding, for example to characterize the search

inside probabilities of its leaf nodes, space of decoding with integrated language models
(Huang and Chiang, 2007). The firdirect appli-
af(frag) =a(root(frag)) cation of parse forest in translation is our previous
H P(e) work (Mi et al., 2008) which translates a packed for-

est from a parser; it is also the base system in our

¢ € frag (2) experiments (see below). This work, on the other
H B(v) hand, is in the orthogonal direction, where we uti-
v € yield(frag) lize forests in rule extraction instead of decoding.
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Our experiments will use both default 1-best decod-
ing and forest-based decoding. As we will see in the
next section, the best result comes when we combine
the merits of both, i.e., using forests in both rule ex-p
traction and decoding.

There is also a parallel work on extracting rulesa
from k-best parses an#l-best alignments (Venu- 3
gopal et al., 2008), but both their experiments and
our own below confirm that extraction ok-best
parses is neither efficient nor effective.

SCO

5 Experiments

5.1 System

0.254
0.252
0.250
0.248
0.246

0.244 - . -
0242 - 1-best forest extract}on — |
k-best extraction ----x---
0.240 ' ' ' ' '
0 1 2 4 5 6

average extracting time (secs/1000 sentences)

Our experiments are on Chinese-to-English transcore: forest-based vs.1-best and 30-best.

Figure 6: Comparison of extraction time and BLEU

lation based on a tree-to-string system similar t
(Huang et al., 2006; Liu et al., 2006). Given a 1-

best treel’, the decoder searches for the best derivar
tion d* among the set of all possible derivatioR's

d* = arg max Aolog P(d | T') + A1 log P (7(d))
€

rules from... | extraction decoding BLEU
1-besttrees| 0.24 1.74 0.2430
30-best trees  5.56 3.31 0.2488
forest:p.=8 2.36 3.40 0.2533

| Pharaoh - - 0.2297

+ Aold| + As|7(d)|

Table 2: Results with different rule extraction methods.

Extraction and decoding columns are running times in

(7)
. . secs per 1000 sentences and per sentence, respectively.
where the first two terms are translation and lan- P P P y

guage model probabilities;(d) is the target string
(English sentence) for derivatiah and the last two ~ We use the Chinese parser of Xiong et al. (2005)
terms are derivation and translation length penaltiesy parse the source side of the bitext. Following
respectively. The conditional probabilify(d | 7) Huang (2008), we also modify this parser to out-
decomposes into the product of rule probabilities: put a packed forest for each sentence, which can
be pruned by the marginal probability-based inside-
Pd|T)= HP(T). outside algorithm (Charniak and Johnson, 2005;
red Huang, 2008). We will first report results trained
on a small-scaled dataset with detailed analysis, and
then scale to a larger one, where we also combine the
technique of forest-based decoding (Mi et al., 2008).

(8)

EachP(r) is in turn a product of five probabilities:

P(r) =P(r | lhs(r))™ - P(r | rhs(r))™
-P(r | root(lhs(r)) Ao
Puex(ths(r) | rhs(r)*
- Prex(rhs(r) | lhs(r)))‘

5.2 Resultsand Analysison Small Data

To test the effect of forest-based rule extraction, we
parse the training set into parse forests and use three
levels of pruning thresholdg, = 2,5, 8.

where the first three are conditional probabilities Figure 6 plots the extraction speed and transla-
based on fractional counts of rules defined in Sedion quality of forest-based extraction with various
tion 3.3, and the last two are lexical probabilitiespruning thresholds, compared to 1-best and 30-best
These parametery; ... Ag are tuned by minimum baselines. Using more than one parse tree apparently
error rate training (Och, 2003) on the dev sets. Wenproves the BLEU score, but at the cost of much
refer readers to Mi et al. (2008) for details of theslower extraction, since each of the thprees has to
decoding algorithm. be processed individually although they share many

(9)

7
8
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rules from ...| total # | on dev | new rules used extract.\ decoding| 1-best tree forest:p;=10
1-best trees| 440k 90k - 1-best trees 0.2560 0.2674
30-best trees 1.2M | 130k 8.71% 30-best trees 0.2634 0.2767
forest:p.=8 | 3.3M | 188k 16.3% forest:p.=5 0.2679 0.2816

Table 3: Statistics of rules extracted from small data. ThJe Hiero ‘ 0.2738 ‘

last column shows the ratio afewrules introduced by
non 1-best parses being used in 1-best derivations.

Table 4: BLEU score results trained on large data.

during both rule extraction and decoding phases.

comhm;)n sub';]reei. Forestkc_axtract:jon, %y contrast,gnce the data scale is larger than the small data, we
much faster thanks to pac INg and proauces ConSlgra t4rced to use harsher pruning thresholds, with
tently better BLEU scores. With pruning thresholdp

pe = 8, forest-based extraction achieves a (case in-

sensitive) BLEU score of 0.2533, which is an abble 4. With both tree-based and forest-based decod-

solute improvement of 1.0% points over the 1-best a5 extracted from forests significantly outper-
baseline, and is statistically significant using th?orm those extracted from 1-best tregs< 0.01)
sign-testof Collins et al. (2005) ¢ < 0.01). This 10 ol result with both forest-based extraction
IS also_0.5 points better than (and twice as fast ag)nd forest-based decoding reaches a BLEU score of
ex;[ractlng on 30'9952'9”?6; TgesehBIr_]ELlJ sco;e r8.'2816, outperforming that of Hiero (Chiang, 2005),
sults are summarized in Table 2, which also s OWSne of the best performing systems to date. These re-

that decoding with forest-exiracied rules Is less thaéhlts confirm that our novel forest-based rule extrac-

twice as slow as V\{lth 1-best rules, and only fraction | approach is a promising direction for syntax-
ally slower than with 30-best rules.

) _ ) based machine translation.
We also investigate the question of how often

rules extracted from non 1-best parses are used By Conclusion and Future Work
the decoder. Table 3 shows the numbers of rules

extracted from 1-best, 30-best and forest-based et this paper, we have presented a novel approach
tractions, and the numbers that survive after filtedhat extracts translation rules from a packed forest
ing on the dev set. Basically in the forest-based cagdcoding exponentially many trees, rather than from
we can use about twice as many rules as in the 1-best ork-best parses. Experiments on a state-of-
best case, or about 1.5 times of 30-best extractiof)€-art tree-to-string system show that this method
But the real question is, are these extra rules reall{Proves BLEU score significantly, with reasonable
useful in generating the final (1-best) translationgXtraction speed. When combined with our previ-
The last row shows that 16.3% of the rules useB8US work on forest-based decoding, the final result
in 1-best derivations are indeealy extracted from is even better than the hierarchical system Hiero.
non 1-best parses in the forests. Note that this isfPr future work we would like to apply this ap-
stronger condition than changing the distribution oProach to other types of syntax-based translation
rules by considering more parses; here we introdu&yStems, namely the string-to-tree systems (Galley
newrules never seen on any 1-best parses. etal., 2006) and tree-to-tree systems.

= 5 for extraction angh; = 10 for decoding.
The final BLEU score results are shown in Ta-
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