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Abstract 

This paper presents a new hypothesis alignment method 

for combining outputs of multiple machine translation 

(MT) systems. An indirect hidden Markov model 

(IHMM) is proposed to address the synonym matching 

and word ordering issues in hypothesis alignment.  

Unlike traditional HMMs whose parameters are trained 

via maximum likelihood estimation (MLE), the 

parameters of the IHMM are estimated indirectly from a 

variety of sources including word semantic similarity, 

word surface similarity, and a distance-based distortion 

penalty. The IHMM-based method significantly 

outperforms the state-of-the-art TER-based alignment 

model in our experiments on NIST benchmark 

datasets.  Our combined SMT system using the 

proposed method achieved the best Chinese-to-English 

translation result in the constrained training track of the 

2008 NIST Open MT Evaluation. 

1 Introduction
*
 

System combination has been applied successfully 

to various machine translation tasks. Recently, 

confusion-network-based system combination 

algorithms have been developed to combine 

outputs of multiple machine translation (MT) 

systems to form a consensus output (Bangalore, et 

al. 2001, Matusov et al., 2006, Rosti et al., 2007, 

Sim et al., 2007). A confusion network comprises a 

sequence of sets of alternative words, possibly 

including null’s, with associated scores. The 

consensus output is then derived by selecting one 

word from each set of alternatives, to produce the 

sequence with the best overall score, which could 

be assigned in various ways such as by voting, by 

                                                           
* Mei Yang performed this work when she was an intern with 

Microsoft Research. 

using posterior probability estimates, or by using a 

combination of these measures and other features. 

Constructing a confusion network requires 

choosing one of the hypotheses as the backbone 

(also called “skeleton” in the literature), and other 

hypotheses are aligned to it at the word level. High 

quality hypothesis alignment is crucial to the 

performance of the resulting system combination. 

However, there are two challenging issues that 

make MT hypothesis alignment difficult. First, 

different hypotheses may use different 

synonymous words to express the same meaning, 

and these synonyms need to be aligned to each 

other. Second, correct translations may have 

different word orderings in different hypotheses 

and these words need to be properly reordered in 

hypothesis alignment.  

In this paper, we propose an indirect hidden 

Markov model (IHMM) for MT hypothesis 

alignment. The HMM provides a way to model 

both synonym matching and word ordering. Unlike 

traditional HMMs whose parameters are trained 

via maximum likelihood estimation (MLE), the 

parameters of the IHMM are estimated indirectly 

from a variety of sources including word semantic 

similarity, word surface similarity, and a distance-

based distortion penalty, without using large 

amount of training data. Our combined SMT 

system using the proposed method gave the best 

result on the Chinese-to-English test in the 

constrained training track of the 2008 NIST Open 

MT Evaluation (MT08). 

2 Confusion-network-based MT system 

combination 

The current state-of-the-art is confusion-network-

based MT system combination as described by 
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Rosti and colleagues (Rosti et al., 2007a, Rosti et 

al., 2007b). The major steps are illustrated in 

Figure 1. In Fig. 1 (a), hypotheses from different 

MT systems are first collected. Then in Fig. 1 (b), 

one of the hypotheses is selected as the backbone 

for hypothesis alignment. This is usually done by a 

sentence-level minimum Bayes risk (MBR) 

method which selects a hypothesis that has the 

minimum average distance compared to all 

hypotheses. The backbone determines the word 

order of the combined output. Then as illustrated in 

Fig. 1 (c), all other hypotheses are aligned to the 

backbone. Note that in Fig. 1 (c) the symbol ε 

denotes a null word, which is inserted by the 

alignment normalization algorithm described in 

section 3.4. Fig. 1 (c) also illustrates the handling 

of synonym alignment (e.g., aligning “car” to 

“sedan”), and word re-ordering of the hypothesis. 

Then in Fig. 1 (d), a confusion network is 

constructed based on the aligned hypotheses, 

which consists of a sequence of sets in which each 

word is aligned to a list of alternative words 

(including null) in the same set. Then, a set of 

global and local features are used to decode the 

confusion network.  

  
E1 he have good car argmin ( , )B

E E

E TER E E
 

 
E E

 

E2 he has nice sedan 

E3 it a nice car 
       e.g., EB = E1 E4 a sedan he has 

(a)  hypothesis set                    (b) backbone selection 

 
EB he have ε good car      he  have   ε   good   car 

       he   has    ε   nice    sedan 

       it     ε       a   nice    car   

E4 a  ε  sedan  he   has      he   has    a     ε       sedan 

(c)  hypothesis alignment        (d) confusion network 
 

Figure 1: Confusion-network-based MT system 

combination.  

3 Indirect-HMM-based Hypothesis 

Alignment  

In confusion-network-based system combination 

for SMT, a major difficulty is aligning hypotheses 

to the backbone. One possible statistical model for 

word alignment is the HMM, which has been 

widely used for bilingual word alignment (Vogel et 

al., 1996, Och and Ney, 2003). In this paper, we 

propose an indirect-HMM method for monolingual 

hypothesis alignment. 

 

3.1 IHMM for hypothesis alignment  

 

Let 1 1( ,..., )I

Ie e e denote the backbone, 

1 1( ,..., )J

Je e e    a hypothesis to be aligned to
1

Ie , 

and 1 1( ,..., )J

Ja a a  the alignment that specifies 

the position of the backbone word aligned to each 

hypothesis word. We treat each word in the 

backbone as an HMM state and the words in the 

hypothesis as the observation sequence. We use a 

first-order HMM, assuming that the emission 

probability ( | )
jj ap e e  depends only on the 

backbone word, and the transition probability 

1( | , )j jp a a I  depends only on the position of the 

last state and the length of the backbone. Treating 

the alignment as hidden variable, the conditional 

probability that the hypothesis is generated by the 

backbone is given by  

 

 

1

1 1 1
1

( | ) ( | , ) ( | )
j

J

J
J I

j j j a
ja

p e e p a a I p e e


  
   (1) 

  

As in HMM-based bilingual word alignment 

(Och and Ney, 2003), we also associate a null with 

each backbone word to allow generating 

hypothesis words that do not align to any backbone 

word.  

In HMM-based hypothesis alignment, emission 

probabilities model the similarity between a 

backbone word and a hypothesis word, and will be 

referred to as the similarity model. The transition 

probabilities model word reordering, and will be 

called the distortion model. 
 

3.2 Estimation of the similarity model 

 

The similarity model, which specifies the emission 

probabilities of the HMM, models the similarity 

between a backbone word and a hypothesis word. 

Since both words are in the same language, the 

similarity model can be derived based on both 

semantic similarity and surface similarity, and the 

overall similarity model is a linear interpolation of 

the two: 

 

( | ) ( | ) (1 ) ( | )j i sem j i sur j ip e e p e e p e e          (2) 
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where ( | )sem j ip e e  and ( | )sur j ip e e  reflect the 

semantic and surface similarity between je  and  

ie , respectively, and α is the interpolation factor. 

Since the semantic similarity between two 

target words is source-dependent, the semantic 

similarity model is derived by using the source 

word sequence as a hidden layer: 

 

0

( | )

( | ) ( | , )

sem j i

K

k i j k i
k

p e e

p f e p e f e





 

0

( | ) ( | )
K

k i j k
k

p f e p e f


     (3) 

 

where 1 1( ,..., )K

Kf f f  is the source sentence. 

Moreover, in order to handle the case that two 

target words are synonyms but neither of them has 

counter-part in the source sentence, a null is 

introduced on the source side, which is represented 

by f0. The last step in (3) assumes that first ei 

generates all source words including null. Then ej’ 

is generated by all source words including null.  

In the common SMT scenario where a large 

amount of bilingual parallel data is available, we 

can estimate the translation probabilities from a 

source word to a target word and vice versa via 

conventional bilingual word alignment. Then both 

( | )k ip f e  and ( | )j kp e f  in (3) can be derived:  

 

2( | ) ( | )j k s t j kp e f p e f   

 

where 2 ( | )s t j kp e f  is the translation model from 

the source-to-target word alignment model, and 

( | )k ip f e  , which enforces the sum-to-1 constraint 

over all words in the source sentence, takes the 

following form, 

 

2

2
0

( | )
( | )

( | )

t s k i
k i K

t s k i
k

p f e
p f e

p f e





 

 

where 2 ( | )t s k ip f e  is the translation model from 

the  target-to-source word alignment model. In our 

method, 2 ( | )t s ip null e  for all target words is 

simply a constant pnull, whose value is optimized 

on held-out data
 1
.  

The surface similarity model can be estimated 

in several ways. A very simple model could be 

based on exact match: the surface similarity model, 

( | )sur j ip e e , would take the value 1.0 if e’= e, and 

0 otherwise
2

. However, a smoothed surface 

similarity model is used in our method. If the target 

language uses alphabetic orthography, as English 

does, we treat words as letter sequences and the 

similarity measure can be the length of the longest 

matched prefix (LMP) or the length of the longest 

common subsequence (LCS) between them. Then, 

this raw similarity measure is transformed to a 

surface similarity score between 0 and 1 through 

an exponential mapping,  

 

 ( | ) exp ( , ) 1sur j i j ip e e s e e          (4) 

 

where ( , )j is e e  is computed as 

 

( , )
( , )

max(| |,| |)

j i

j i

j i

M e e
s e e

e e


 


 

 

and ( , )j iM e e  is the raw similarity measure of ej’ 

ei, which is the length of the LMP or LCS of ej’ 

and ei. and ρ is a smoothing factor that 

characterizes the mapping, Thus as ρ approaches 

infinity, ( | )sur j ip e e  backs off to the exact match 

model. We found the smoothed similarity model of 

(4) yields slightly better results than the exact 

match model. Both LMP- and LCS- based methods 

achieve similar performance but the computation 

of LMP is faster. Therefore, we only report results 

of the LMP-based smoothed similarity model. 
 

 

3.3 Estimation of the distortion model 

 

The distortion model, which specifies the transition 

probabilities of the HMM, models the first-order 

dependencies of word ordering. In bilingual 

HMM-based word alignment, it is commonly 

assumed that transition probabilities 

                                                           
1  The other direction, 

2 ( | )s t ip e null , is available from the 

source-to-target translation model. 
2 Usually a small back-off value is assigned instead of 0.  
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1( | , )
 j jp a i a i I  depend only on the jump 

distance (i - i')  (Vogel et al., 1996):  

 

1

( )
( | , )

( )
I

l

c i i
p i i I

c l i



 


             (5) 

 

As suggested by Liang et al. (2006), we can 

group the distortion parameters {c(d)}, d= i - i', 

into a few buckets. In our implementation, 11 

buckets are used for c(≤-4),  c(-3), ... c(0), ..., c(5), 

c(≥6). The probability mass for transitions with 

jump distance larger than 6 and less than -4 is 

uniformly divided. By doing this, only a handful of 

c(d) parameters need to be estimated. Although it 

is possible to estimate them using the EM 

algorithm on a small development set, we found 

that a particularly simple model, described below, 

works surprisingly well in our experiments.  

Since both the backbone and the hypothesis are 

in the same language, It seems intuitive that the 

distortion model should favor monotonic 

alignment and only allow non-monotonic 

alignment with a certain penalty. This leads us to 

use a distortion model of the following form, 

where K is a tuning factor optimized on held-out 

data. 

 

   1 1c d d


   , d= –4, …, 6   (6) 

 

As shown in Fig. 2, the value of distortion score 

peaks at d=1, i.e., the monotonic alignment, and 

decays for non-monotonic alignments depending 

on how far it diverges from the monotonic 

alignment. 

 
Figure 2, the distance-based distortion parameters 

computed according to (6), where K=2. 

 

Following Och and Ney (2003), we use a fixed 

value p0 for the probability of jumping to a null 

state, which can be optimized on held-out data, and 

the overall distortion model becomes 

 

0

0

              if     state
( | , )

(1 ) ( | , )  otherwise

p i null
p i i I

p p i i I


  

 
  

 

3.4 Alignment normalization 

 

Given an HMM, the Viterbi alignment algorithm 

can be applied to find the best alignment between 

the backbone and the hypothesis, 

 

1

1 1
1

ˆ argmax ( | , ) ( | )
jJ

J
J

j j j a
a j

a p a a I p e e


 
    (7) 

 

However, the alignment produced by the 

algorithm cannot be used directly to build a 

confusion network. There are two reasons for this. 

First, the alignment produced may contain 1-N 

mappings between the backbone and the 

hypothesis whereas 1-1 mappings are required in 

order to build a confusion network. Second, if 

hypothesis words are aligned to a null in the 

backbone or vice versa, we need to insert actual 

nulls into the right places in the hypothesis and the 

backbone, respectively. Therefore, we need to 

normalize the alignment produced by Viterbi 

search. 
 

EB … e2  ε2   …   

   …    ε      e2        ε     ε      … 

           e1'    e2'    e3'   e4'    

Eh e1'    e2'    e3'   e4'  

(a) hypothesis words are aligned to the backbone null  

 

EB e1  ε1  e2  ε2  e3  ε3    

   …    e1     e2        e3      … 

           e2'    ε      e1'   

Eh e1'    e2'    …  

(b) a backbone word is aligned to no hypothesis word 

 

Figure 3: illustration of alignment normalization 

 

First, whenever more than one hypothesis 

words are aligned to one backbone word, we keep 

the link which gives the highest occupation 

probability computed via the forward-backward 

algorithm. The other hypothesis words originally 

 -4                     1                      6  

 1.0 

 0.0 

   c(d) 

  d 
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aligned to the backbone word will be aligned to the 

null associated with that backbone word. 

Second, for the hypothesis words that are 

aligned to a particular null on the backbone side, a 

set of nulls are inserted around that backbone word 

associated with the null such that no links cross 

each other. As illustrated in Fig. 3 (a), if a 

hypothesis word e2’ is aligned to the backbone 

word e2, a null is inserted in front of the backbone 

word e2 linked to the hypothesis word e1’ that 

comes before e2’. Nulls are also inserted for other 

hypothesis words such as e3’ and e4’ after the 

backbone word e2. If there is no hypothesis word 

aligned to that backbone word, all nulls are 

inserted after that backbone word .
3
 

For a backbone word that is aligned to no 

hypothesis word, a null is inserted on the 

hypothesis side, right after the hypothesis word 

which is aligned to the immediately preceding 

backbone word. An example is shown in Fig. 3 (b). 

4 Related work 

The two main hypothesis alignment methods for 

system combination in the previous literature are 

GIZA++ and TER-based methods. Matusov et al. 

(2006) proposed using GIZA++ to align words 

between different MT hypotheses, where all 

hypotheses of the test corpus are collected to create 

hypothesis pairs for GIZA++ training. This 

approach uses the conventional HMM model 

bootstrapped from IBM Model-1 as implemented 

in GIZA++, and heuristically combines results 

from aligning in both directions. System 

combination based on this approach gives an 

improvement over the best single system. 

However, the number of hypothesis pairs for 

training is limited by the size of the test corpus. 

Also, MT hypotheses from the same source 

sentence are correlated with each other and these 

hypothesis pairs are not i.i.d. data samples. 

Therefore, GIZA++ training on such a data set may 

be unreliable.  

Bangalore et al. (2001) used a multiple string-

matching algorithm based on Levenshtein edit 

distance, and later Sim et al. (2007) and Rosti et al. 

(2007) extended it to a TER-based method for 

hypothesis alignment. TER (Snover et al., 2006) 

                                                           
3  This only happens if no hypothesis word is aligned to a 

backbone word but some hypothesis words are aligned to the 

null associated with that backbone word. 

measures the minimum number of edits, including 

substitution, insertion, deletion, and shift of blocks 

of words, that are needed to modify a hypothesis so 

that it exactly matches the other hypothesis. The 

best alignment is the one that gives the minimum 

number of translation edits. TER-based confusion 

network construction and system combination has 

demonstrated superior performance on various 

large-scale MT tasks (Rosti. et al, 2007). However, 

when searching for the optimal alignment, the 

TER-based method uses a strict surface hard match 

for counting edits. Therefore, it is not able to 

handle synonym matching well. Moreover, 

although TER-based alignment allows phrase 

shifts to accommodate the non-monotonic word 

ordering, all non-monotonic shifts are penalized 

equally no matter how short or how long the move 

is, and this penalty is set to be the same as that for 

substitution, deletion, and insertion edits. 

Therefore, its modeling of non-monotonic word 

ordering is very coarse-grained.  

In contrast to the GIZA++-based method, our 

IHMM-based method has a similarity model 

estimated using bilingual word alignment HMMs 

that are trained on a large amount of bi-text data. 

Moreover, the surface similarity information is 

explicitly incorporated in our model, while it is 

only used implicitly via parameter initialization for 

IBM Model-1 training by Matusov et al. (2006). 

On the other hand, the TER-based alignment 

model is similar to a coarse-grained, non-

normalized version of our IHMM, in which the 

similarity model assigns no penalty to an exact 

surface match and a fixed penalty to all 

substitutions, insertions, and deletions, and the 

distortion model simply assigns no penalty to a 

monotonic jump, and a fixed penalty to all other 

jumps, equal to the non-exact-match penalty in the 

similarity model. 

There have been other hypothesis alignment 

methods. Karakos, et al. (2008) proposed an ITG-

based method for hypothesis alignment, Rosti et al. 

(2008) proposed an incremental alignment method, 

and a heuristic-based matching algorithm was 

proposed by Jayaraman and Lavie (2005).  

5 Evaluation 

In this section, we evaluate our IHMM-based 

hypothesis alignment method on the Chinese-to-

English (C2E) test in the constrained training track 
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of the 2008 NIST Open MT Evaluation (NIST, 

2008). We compare to the TER-based method used 

by Rosti et al. (2007). In the following 

experiments, the NIST BLEU score is used as the 

evaluation metric (Papineni et al., 2002), which is 

reported as a percentage in the following sections.  
 

5.1 Implementation details 
 

In our implementation, the backbone is selected 

with MBR. Only the top hypothesis from each 

single system is considered as a backbone. A 

uniform posteriori probability is assigned to all 

hypotheses. TER is used as loss function in the 

MBR computation.  

Similar to (Rosti et al., 2007), each word in the 

confusion network is associated with a word 

posterior probability. Given a system S, each of its 

hypotheses is assigned with a rank-based score of 

1/(1+r)
η
, where r is the rank of the hypothesis, and 

η is a rank smoothing parameter. The system 

specific rank-based score of a word w for a given 

system S is the sum of all the rank-based scores of 

the hypotheses in system S that contain the word w 

at the given position (after hypothesis alignment). 

This score is then normalized by the sum of the 

scores of all the alternative words at the same 

position and from the same system S to generate 

the system specific word posterior. Then, the total 

word posterior of w over all systems is a sum of 

these system specific posteriors weighted by 

system weights. 

Beside the word posteriors, we use language 

model scores and a word count as features for 

confusion network decoding. 

Therefore, for an M-way system combination 

that uses N LMs, a total of M+N+1 decoding 

parameters, including M-1 system weights, one 

rank smoothing factor, N language model weights, 

and one weight for the word count feature, are 

optimized using Powell’s method (Brent, 1973) to 

maximize BLEU score on a development set
4
 . 

Two language models are used in our 

experiments. One is a trigram model estimated 

from the English side of the parallel training data, 

and the other is a 5-gram model trained on the 

English GigaWord corpus from LDC using the 

MSRLM toolkit (Nguyen et al, 2007). 

                                                           
4 The parameters of IHMM are not tuned by maximum-BLEU 

training. 

In order to reduce the fluctuation of BLEU 

scores caused by the inconsistent translation output 

length, an unsupervised length adaptation method 

has been devised. We compute an expected length 

ratio between the MT output and the source 

sentences on the development set after maximum- 

BLEU training. Then during test, we adapt the 

length of the translation output by adjusting the 

weight of the word count feature such that the 

expected output/source length ratio is met. In our 

experiments, we apply length adaptation to the 

system combination output at the level of the 

whole test corpus. 
 

5.2  Development and test data  
 

The development (dev) set used for system 

combination parameter training contains 1002 

sentences sampled from the previous NIST MT 

Chinese-to-English test sets: 35% from MT04, 

55% from MT05, and 10% from MT06-newswire. 

The test set is the MT08 Chinese-to-English 

“current” test set, which includes 1357 sentences 

from both newswire and web-data genres. Both 

dev and test sets have four references per sentence. 

As inputs to the system combination, 10-best 

hypotheses for each source sentence in the dev and 

test sets are collected from each of the eight single 

systems. All outputs on the MT08 test set were 

true-cased before scoring using a log-linear 

conditional Markov model proposed by Toutanova 

et al. (2008). However, to save computation effort, 

the results on the dev set are reported in case 

insensitive BLEU (ciBLEU) score instead. 

 

5.3  Experimental results 

 

In our main experiments, outputs from a total of 

eight single MT systems were combined. As listed 

in Table 1, Sys-1 is a tree-to-string system 

proposed by Quirk et al., (2005); Sys-2 is a phrase-

based system with fast pruning proposed by Moore 

and Quirk (2008); Sys-3 is a phrase-based system 

with syntactic source reordering proposed by 

Wang et al. (2007a); Sys-4 is a syntax-based pre-

ordering system proposed by Li et. al. (2007); Sys-

5 is a hierarchical system proposed by Chiang 

(2007); Sys-6 is a lexicalized re-ordering system 

proposed by Xiong et al. (2006); Sys-7 is a two-

pass phrase-based system with adapted LM 

proposed by Foster and Kuhn (2007); and  Sys-8 is 
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a hierarchical system with two-pass rescoring 

using a parser-based LM proposed by Wang et al., 

(2007b). All systems were trained within the 

confines of the constrained training condition of 

NIST MT08 evaluation. These single systems are 

optimized with maximum-BLEU training on 

different subsets of the previous NIST MT test 

data. The bilingual translation models used to 

compute the semantic similarity are from the word-

dependent HMMs proposed by He (2007), which 

are trained on two million parallel sentence-pairs 

selected from the training corpus allowed by the 

constrained training condition of MT08.  

 

5.3.1 Comparison with TER alignment 

In the IHMM-based method, the smoothing 

factor for surface similarity model is set to ρ = 3, 

the interpolation factor of the overall similarity 

model is set to α = 0.3, and the controlling factor of 

the distance-based distortion parameters is set to 

K=2. These settings are optimized on the dev set. 

Individual system results and system combination 

results using both IHMM and TER alignment, on 

both the dev and test sets, are presented in Table 1. 

The TER-based hypothesis alignment tool used in 

our experiments is the publicly available TER Java 

program, TERCOM (Snover et al., 2006). Default 

settings of TERCOM are used in the following 

experiments. 

On the dev set, the case insensitive BLEU score 

of the IHMM-based 8-way system combination 

output is about 5.8 points higher than that of the 

best single system. Compared to the TER-based 

method, the IHMM-based method is about 1.5 

BLEU points better. On the MT08 test set, the 

IHMM-based system combination gave a case 

sensitive BLEU score of 30.89%. It outperformed 

the best single system by 4.7 BLEU points and the 

TER-based system combination by 1.0 BLEU 

points. Note that the best single system on the dev 

set and the test set are different. The different 

single systems are optimized on different tuning 

sets, so this discrepancy between dev set and test 

set results is presumably due to differing degrees 

of mismatch between the dev and test sets and the 

various tuning sets. 

 

 

 

 

 

Table 1. Results of single and combined systems 

on the dev set and the MT08 test set  

System Dev 

ciBLEU% 

MT08 

BLEU% 

System 1 34.08 21.75 

System 2 33.78 20.42 

System 3 34.75 21.69 

System 4 37.85 25.52 

System 5 37.80 24.57 

System 6 37.28 24.40 

System 7 32.37 25.51 

System 8 34.98 26.24 

TER 42.11 29.89 

IHMM 43.62 30.89 

 

In order to evaluate how well our method 

performs when we combine more systems, we 

collected MT outputs on MT08 from seven 

additional single systems as summarized in Table 

2. These systems belong to two groups. Sys-9 to 

Sys-12 are in the first group. They are syntax-

augmented hierarchical systems similar to those 

described by Shen et al. (2008) using different 

Chinese word segmentation and language models. 

The second group has Sys-13 to Sys-15. Sys-13 is 

a phrasal system proposed by Koehn et al. (2003), 

Sys-14 is a hierarchical system proposed by 

Chiang (2007), and Sys-15 is a syntax-based 

system proposed by Galley et al. (2006). All seven 

systems were trained within the confines of the 

constrained training condition of NIST MT08 

evaluation.  

We collected 10-best MT outputs only on the 

MT08 test set from these seven extra systems. No 

MT outputs on our dev set are available from them 

at present. Therefore, we directly adopt system 

combination parameters trained for the previous 8-

way system combination, except the system 

weights, which are re-set by the following 

heuristics: First, the total system weight mass 1.0 is 

evenly divided among the three groups of single 

systems: {Sys-1~8}, {Sys-9~12}, and {Sys-

13~15}. Each group receives a total system weight 

mass of 1/3. Then the weight mass is further 

divided in each group: in the first group, the 

original weights of systems 1~8 are multiplied by 

1/3; in the second and third groups, the weight 

mass is evenly distributed within the group, i.e., 

1/12 for each system in group 2, and 1/9 for each 
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system in group 3
5
.  Length adaptation is applied to 

control the final output length, where the same 

expected length ratio of the previous 8-way system 

combination is adopted. 

The results of the 15-way system combination 

are presented in Table 3. It shows that the IHMM-

based method is still about 1 BLEU point better 

than the TER-based method. Moreover, combining 

15 single systems gives an output that has a NIST 

BLEU score of 34.82%, which is 3.9 points better 

than the best submission to the NIST MT08 

constrained training track (NIST, 2008). To our 

knowledge, this is the best result reported on this 

task. 

 

Table 2. Results of seven additional single systems 

on the NIST MT08 test set 

System MT08 

BLEU% 

System 9 29.59 

System 10 29.57 

System 11 29.64 

System 12 29.85 

System 13 25.53 

System 14 26.04 

System 15 29.70 

 

Table 3. Results of the 15-way system combination 

on the NIST MT08 C2E test set 

Sys. Comb.  MT08 

BLEU% 

TER 33.81 

IHMM 34.82 

 

5.3.2 Effect of the similarity model  

In this section, we evaluate the effect of the 

semantic similarity model and the surface 

similarity model by varying the interpolation 

weight α of (2). The results on both the dev and 

test sets are reported in Table 4. In one extreme 

case, α = 1, the overall similarity model is based 

only on semantic similarity. This gives a case 

insensitive BLEU score of 41.70% and a case 

sensitive BLEU score of 28.92% on the dev and 

test set, respectively. The accuracy is significantly 

improved to 43.62% on the dev set and 30.89% on 

test set when α = 0.3. In another extreme case, α = 

                                                           
5 This is just a rough guess because no dev set is available. We 

believe a better set of system weights could be obtained if MT 

outputs on a common dev set were available. 

0, in which only the surface similarity model is 

used for the overall similarity model, the 

performance degrades by about 0.2 point. 

Therefore, the surface similarity information seems 

more important for monolingual hypothesis 

alignment, but both sub-models are useful.  

 

Table 4. Effect of the similarity model 

 Dev 

ciBLEU% 

Test 

BLEU% 

α = 1.0 41.70 28.92 

α = 0.7 42.86 30.50 

α = 0.5 43.11 30.94 

α = 0.3 43.62 30.89 

α = 0.0 43.35 30.73 

 

5.3.3 Effect of the distortion model  

We investigate the effect of the distance-based 

distortion model by varying the controlling factor 

K in (6). For example, setting K=1.0 gives a linear-

decay distortion model, and setting K=2.0 gives a 

quadratic smoothed distance-based distortion 

model. As shown in Table 5, the optimal result can 

be achieved using a properly smoothed distance-

based distortion model. 

 

Table 5. Effect of the distortion model 

 Dev 

ciBLEU% 

Test 

BLEU% 

K=1.0 42.94 30.44 

K=2.0 43.62 30.89 

K=4.0 43.17 30.30 

K=8.0 43.09 30.01 

6 Conclusion 

Synonym matching and word ordering are two 

central issues for hypothesis alignment in 

confusion-network-based MT system combination. 

In this paper, an IHMM-based method is proposed 

for hypothesis alignment. It uses a similarity model 

for synonym matching and a distortion model for 

word ordering. In contrast to previous methods, the 

similarity model explicitly incorporates both 

semantic and surface word similarity, which is 

critical to monolingual word alignment, and a 

smoothed distance-based distortion model is used 

to model the first-order dependency of word 

ordering, which is shown to be better than simpler 

approaches. 
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Our experimental results show that the IHMM-

based hypothesis alignment method gave superior 

results on the NIST MT08 C2E test set compared 

to the TER-based method. Moreover, we show that 

our system combination method can scale up to 

combining more systems and produce a better 

output that has a case sensitive BLEU score of 

34.82, which is 3.9 BLEU points better than the 

best official submission of MT08.  
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