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Abstract

We present a PropBank semantic role label-
ing system for English that is integrated with
a dependency parser. To tackle the problem
of joint syntactic–semantic analysis, the sys-
tem relies on a syntactic and a semantic sub-
component. The syntactic model is a projec-
tive parser using pseudo-projective transfor-
mations, and the semantic model uses global
inference mechanisms on top of a pipeline of
classifiers. The complete syntactic–semantic
output is selected from a candidate pool gen-
erated by the subsystems.

We evaluate the system on the CoNLL-
2005 test sets using segment-based and
dependency-based metrics. Using the
segment-based CoNLL-2005 metric, our
system achieves a near state-of-the-art F1
figure of 77.97 on the WSJ+Brown test set,
or 78.84 if punctuation is treated consistently.
Using a dependency-based metric, the F1
figure of our system is 84.29 on the test
set from CoNLL-2008. Our system is the
first dependency-based semantic role labeler
for PropBank that rivals constituent-based
systems in terms of performance.

1 Introduction

Automatic semantic role labeling (SRL), the task
of determining who does what to whom, is a use-
ful intermediate step in NLP applications perform-
ing semantic analysis. It has obvious applications
for template-filling tasks such as information extrac-
tion and question answering (Surdeanu et al., 2003;
Moschitti et al., 2003). It has also been used in

prototypes of NLP systems that carry out complex
reasoning, such as entailment recognition systems
(Haghighi et al., 2005; Hickl et al., 2006). In addi-
tion, role-semantic features have recently been used
to extend vector-space representations in automatic
document categorization (Persson et al., 2008).

The NLP community has recently devoted much
attention to developing accurate and robust methods
for performing role-semantic analysis automatically,
and a number of multi-system evaluations have been
carried out (Litkowski, 2004; Carreras and Màrquez,
2005; Baker et al., 2007; Surdeanu et al., 2008).
Following the seminal work of Gildea and Juraf-
sky (2002), there have been many extensions in ma-
chine learning models, feature engineering (Xue and
Palmer, 2004), and inference procedures (Toutanova
et al., 2005; Surdeanu et al., 2007; Punyakanok et
al., 2008).

With very few exceptions (e.g. Collobert and
Weston, 2007), published SRL methods have used
some sort of syntactic structure as input (Gildea and
Palmer, 2002; Punyakanok et al., 2008). Most sys-
tems for automatic role-semantic analysis have used
constituent syntax as in the Penn Treebank (Marcus
et al., 1993), although there has also been much re-
search on the use of shallow syntax (Carreras and
Màrquez, 2004) in SRL.

In comparison, dependency syntax has received
relatively little attention for the SRL task, despite
the fact that dependency structures offer a more
transparent encoding of predicate–argument rela-
tions. Furthermore, the few systems based on de-
pendencies that have been presented have generally
performed much worse than their constituent-based
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counterparts. For instance, Pradhan et al. (2005) re-
ported that a system using a rule-based dependency
parser achieved much inferior results compared to a
system using a state-of-the-art statistical constituent
parser: The F-measure on WSJ section 23 dropped
from 78.8 to 47.2, or from 83.7 to 61.7 when using
a head-based evaluation. In a similar vein, Swanson
and Gordon (2006) reported that parse tree path fea-
tures extracted from a rule-based dependency parser
are much less reliable than those from a modern con-
stituent parser.

In contrast, we recently carried out a de-
tailed comparison (Johansson and Nugues, 2008b)
between constituent-based and dependency-based
SRL systems for FrameNet, in which the results of
the two types of systems where almost equivalent
when using modern statistical dependency parsers.
We suggested that the previous lack of progress in
dependency-based SRL was due to low parsing ac-
curacy. The experiments showed that the grammat-
ical function information available in dependency
representations results in a steeper learning curve
when training semantic role classifiers, and it also
seemed that the dependency-based role classifiers
were more resilient to lexical problems caused by
change of domain.

The recent CoNLL-2008 Shared Task (Surdeanu
et al., 2008) was an attempt to show that SRL can be
accurately carried out using only dependency syn-
tax. However, these results are not easy to compare
to previously published results since the task defini-
tions and evaluation metrics were different.

This paper compares the best-performing sys-
tem in the CoNLL-2008 Shared Task (Johans-
son and Nugues, 2008a) with previously published
constituent-based SRL systems. The system carries
out joint dependency-syntactic and semantic anal-
ysis. We first describe its implementation in Sec-
tion 2, and then compare the system with the best
system in the CoNLL-2005 Shared Task in Section
3. Since the outputs of the two systems are differ-
ent, we carry out two types of evaluations: first by
using the traditional segment-based metric used in
the CoNLL-2005 Shared Task, and then by using
the dependency-based metric from the CoNLL-2008
Shared Task. Both evaluations require a transforma-
tion of the output of one system: For the segment-
based metric, we have to convert the dependency-

based output to segments; and for the dependency-
based metric, a head-finding procedure is needed to
select heads in segments. For the first time for a sys-
tem using only dependency syntax, we report results
for PropBank-based semantic role labeling of En-
glish that are close to the state of the art, and for
some measures even superior.

2 Syntactic–Semantic Dependency
Analysis

The training corpus that we used is the dependency-
annotated Penn Treebank from the 2008 CoNLL
Shared Task on joint syntactic–semantic analysis
(Surdeanu et al., 2008). Figure 1 shows a sentence
annotated in this framework. The CoNLL task in-
volved semantic analysis of predicates from Prop-
Bank (for verbs, such as plan) and NomBank (for
nouns, such as investment); in this paper, we report
the performance on PropBank predicates only since
we compare our system with previously published
PropBank-based SRL systems.

Chrysler plans new investment in Latin America

plan.01

LOC

PMOD

NMODNMOD

OBJ

A0

investment.01

A1
A0

A2

SBJ

ROOT

Figure 1: An example sentence annotated with syntactic
and semantic dependency structures.

We model the problem of constructing a syntac-
tic and a semantic graph as a task to be solved
jointly. Intuitively, syntax and semantics are highly
interdependent and semantic interpretation should
help syntactic disambiguation, and joint syntactic–
semantic analysis has a long tradition in deep-
linguistic formalisms. Using a discriminative model,
we thus formulate the problem of finding a syntactic
tree ŷsyn and a semantic graph ŷsem for a sentence
x as maximizing a function Fjoint that scores the
complete syntactic–semantic structure:

〈ŷsyn, ŷsem〉 = arg max
ysyn,ysem

Fjoint(x, ysyn, ysem)

The dependencies in the feature representation used
to compute Fjoint determine the tractability of the
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Figure 2: The architecture of the syntactic–semantic analyzer.

search procedure needed to perform the maximiza-
tion. To be able to use complex syntactic features
such as paths when predicting semantic structures,
exact search is clearly intractable. This is true even
with simpler feature representations – the problem
is a special case of multi-headed dependency analy-
sis, which is NP-hard even if the number of heads is
bounded (Chickering et al., 1994).

This means that we must resort to a simplifica-
tion such as an incremental method or a rerank-
ing approach. We chose the latter option and thus
created syntactic and semantic submodels. The
joint syntactic–semantic prediction is selected from
a small list of candidates generated by the respective
subsystems. Figure 2 shows the architecture.

2.1 Syntactic Submodel

We model the process of syntactic parsing of a
sentence x as finding the parse tree ŷsyn =
arg maxysyn Fsyn(x, ysyn) that maximizes a scoring
function Fsyn. The learning problem consists of fit-
ting this function so that the cost of the predictions is
as low as possible according to a cost function ρsyn.
In this work, we consider linear scoring functions of
the following form:

Fsyn(x, ysyn) = Ψsyn(x, ysyn) ·w

where Ψsyn(x, ysyn) is a numeric feature represen-
tation of the pair (x, ysyn) and w a vector of feature
weights. We defined the syntactic cost ρsyn as the
sum of link costs, where the link cost was 0 for a
correct dependency link with a correct label, 0.5 for
a correct link with an incorrect label, and 1 for an
incorrect link.

A widely used discriminative framework for fit-
ting the weight vector is the max-margin model
(Taskar et al., 2003), which is a generalization of
the well-known support vector machines to gen-
eral cost-based prediction problems. Since the large

number of training examples and features in our
case make an exact solution of the max-margin op-
timization problem impractical, we used the on-
line passive–aggressive algorithm (Crammer et al.,
2006), which approximates the optimization process
in two ways:

• The weight vector w is updated incrementally,
one example at a time.

• For each example, only the most violated con-
straint is considered.

The algorithm is a margin-based variant of the per-
ceptron (preliminary experiments show that it out-
performs the ordinary perceptron on this task). Al-
gorithm 1 shows pseudocode for the algorithm.

Algorithm 1 The Online PA Algorithm
input Training set T = {(xt, yt)}Tt=1

Number of iterations N
Regularization parameter C

Initialize w to zeros
repeat N times

for (xt, yt) in T
let ỹt = arg maxy F (xt, y) + ρ(yt, y)
let τt = min

(
C, F (xt,ỹt)−F (xt,yt)+ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2

)
w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))

return waverage

We used a C value of 0.01, and the number of
iterations was 6.

2.1.1 Features and Search
The feature function Ψsyn is a factored represen-

tation, meaning that we compute the score of the
complete parse tree by summing the scores of its
parts, referred to as factors:

Ψ(x, y) ·w =
∑
f∈y

ψ(x, f) ·w
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We used a second-order factorization (McDonald
and Pereira, 2006; Carreras, 2007), meaning that
the factors are subtrees consisting of four links: the
governor–dependent link, its sibling link, and the
leftmost and rightmost dependent links of the depen-
dent.

This factorization allows us to express useful fea-
tures, but also forces us to adopt the expensive
search procedure by Carreras (2007), which ex-
tends Eisner’s span-based dynamic programming al-
gorithm (1996) to allow second-order feature depen-
dencies. This algorithm has a time complexity of
O(n4), where n is the number of words in the sen-
tence. The search was constrained to disallow mul-
tiple root links.

To evaluate the arg max in Algorithm 1 during
training, we need to handle the cost function ρsyn in
addition to the factor scores. Since the cost function
ρsyn is based on the cost of single links, this can
easily be integrated into the factor-based search.

2.1.2 Handling Nonprojective Links

Although only 0.4% of the links in the training
set are nonprojective, 7.6% of the sentences con-
tain at least one nonprojective link. Many of these
links represent long-range dependencies – such as
wh-movement – that are valuable for semantic pro-
cessing. Nonprojectivity cannot be handled by
span-based dynamic programming algorithms. For
parsers that consider features of single links only, the
Chu-Liu/Edmonds algorithm can be used instead.
However, this algorithm cannot be generalized to the
second-order setting – McDonald and Pereira (2006)
proved that this problem is NP-hard, and described
an approximate greedy search algorithm.

To simplify implementation, we instead opted for
the pseudo-projective approach (Nivre and Nilsson,
2005), in which nonprojective links are lifted up-
wards in the tree to achieve projectivity, and spe-
cial trace labels are used to enable recovery of the
nonprojective links at parse time. The use of trace
labels in the pseudo-projective transformation leads
to a proliferation of edge label types: from 69 to 234
in the training set, many of which occur only once.
Since the running time of our parser depends on the
number of labels, we used only the 20 most frequent
trace labels.

2.2 Semantic Submodel

Our semantic model consists of three parts:

• A SRL classifier pipeline that generates a list of
candidate predicate–argument structures.

• A constraint system that filters the candidate
list to enforce linguistic restrictions on the
global configuration of arguments.

• A global reranker that assigns scores to
predicate–argument structures in the filtered
candidate list.

Rather than training the models on gold-standard
syntactic input, we created an automatically parsed
training set by 5-fold cross-validation. Training
on automatic syntax makes the semantic classifiers
more resilient to parsing errors, in particular adjunct
labeling errors.

2.2.1 SRL Pipeline
The SRL pipeline consists of classifiers for pred-

icate disambiguation, argument identification, and
argument labeling. For the predicate disambigua-
tion classifiers, we trained one subclassifier for each
lemma. All classifiers in the pipeline were L2-
regularized linear logistic regression classifiers, im-
plemented using the efficient LIBLINEAR package
(Lin et al., 2008). For multiclass problems, we used
the one-vs-all binarization method, which makes it
easy to prevent outputs not allowed by the PropBank
frame.

Since our classifiers were logistic, their output
values could be meaningfully interpreted as prob-
abilities. This allowed us to combine the scores
from subclassifiers into a score for the complete
predicate–argument structure. To generate the can-
didate lists used by the global SRL models, we ap-
plied beam search based on these scores using a
beam width of 4.

The argument identification classifier was pre-
ceded by a pruning step similar to the constituent-
based pruning by Xue and Palmer (2004).

The features used by the classifiers are listed in
Table 1, and are described in Appendix A. We se-
lected the feature sets by greedy forward subset se-
lection.
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Feature PredDis ArgId ArgLab
PREDWORD •
PREDLEMMA •
PREDPARENTWORD/POS •
CHILDDEPSET • • •
CHILDWORDSET •
CHILDWORDDEPSET •
CHILDPOSSET •
CHILDPOSDEPSET •
DEPSUBCAT •
PREDRELTOPARENT •
PREDPARENTWORD/POS •
PREDLEMMASENSE • •
VOICE • •
POSITION • •
ARGWORD/POS • •
LEFTWORD/POS •
RIGHTWORD/POS • •
LEFTSIBLINGWORD/POS •
PREDPOS • •
RELPATH • •
VERBCHAINHASSUBJ • •
CONTROLLERHASOBJ •
PREDRELTOPARENT • •
FUNCTION •

Table 1: Classifier features in predicate disambiguation
(PredDis), argument identification (ArgId), and argument
labeling (ArgLab).

2.2.2 Linguistically Motivated Global
Constraints

The following three global constraints were used
to filter the candidates generated by the pipeline.

CORE ARGUMENT CONSISTENCY. Core argu-
ment labels must not appear more than once.

DISCONTINUITY CONSISTENCY. If there is a la-
bel C-X, it must be preceded by a label X.

REFERENCE CONSISTENCY. If there is a label R-
X and the label is inside an attributive relative
clause, it must be preceded by a label X.

2.2.3 Predicate–Argument Reranker
Toutanova et al. (2005) have showed that a global

model that scores the complete predicate–argument
structure can lead to substantial performance gains.
We therefore created a global SRL classifier using
the following global features in addition to the fea-
tures from the pipeline:

CORE ARGUMENT LABEL SEQUENCE. The com-
plete sequence of core argument labels. The
sequence also includes the predicate and voice,
for instance A0+break.01/Active+A1.

MISSING CORE ARGUMENT LABELS. The set of
core argument labels declared in the PropBank
frame that are not present in the predicate–
argument structure.

Similarly to the syntactic submodel, we trained
the global SRL model using the online passive–
aggressive algorithm. The cost function ρ was
defined as the number of incorrect links in the
predicate–argument structure. The number of iter-
ations was 20 and the regularization parameter C
was 0.01. Interestingly, we noted that the global
SRL model outperformed the pipeline even when
no global features were added. This shows that the
global learning model can correct label bias prob-
lems introduced by the pipeline architecture.

2.3 Syntactic–Semantic Reranking
As described previously, we carried out reranking
on the candidate set of complete syntactic–semantic
structures. To do this, we used the top 16 trees from
the syntactic module and applied a linear model:

Fjoint(x, ysyn, ysem) = Ψjoint(x, ysyn, ysem) ·w

Our baseline joint feature representation Ψjoint con-
tained only three features: the log probability of the
syntactic tree and the log probability of the seman-
tic structure according to the pipeline and the global
model, respectively. This model was trained on the
complete training set using cross-validation. The
probabilities were obtained using the multinomial
logistic function (“softmax”).

We carried out an initial experiment with a more
complex joint feature representation, but failed to
improve over the baseline. Time prevented us from
exploring this direction conclusively.

3 Comparisons with Previous Results

To compare our results with previously published
results in SRL, we carried out an experiment com-
paring our system to the top system (Punyakanok et
al., 2008) in the CoNLL-2005 Shared Task. How-
ever, comparison is nontrivial since the output of
the CoNLL-2005 systems was a set of labeled seg-
ments, while the CoNLL-2008 systems (including
ours) produced labeled semantic dependency links.

To have a fair comparison of our link-based sys-
tem against previous segment-based systems, we
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carried out a two-way evaluation: In the first eval-
uation, the dependency-based output was converted
to segments and evaluated using the segment scorer
from CoNLL-2005, and in the second evaluation, we
applied a head-finding procedure to the output of a
segment-based system and scored the result using
the link-based CoNLL-2008 scorer.

It can be discussed which of the two metrics is
most correlated with application performance. The
traditional metric used in the CoNLL-2005 task
treats SRL as a bracketing problem, meaning that
the entities scored by the evaluation procedure are
labeled snippets of text; however, it is questionable
whether this is the proper way to evaluate a task
whose purpose is to find semantic relations between
logical entities. We believe that the same criticisms
that have been leveled at the PARSEVAL metric
for constituent structures are equally valid for the
bracket-based evaluation of SRL systems. The in-
appropriateness of the traditional metric has led to
a number of alternative metrics (Litkowski, 2004;
Baker et al., 2007; Surdeanu et al., 2008).

3.1 Segment-based Evaluation

To be able to score the output of a dependency-based
SRL system using the segment scorer, a conversion
step is needed. Algorithm 2 shows how a set of seg-
ments is constructed from an argument dependency
node. For each argument node, the algorithm com-
putes the yield Y of the argument node, i.e. the set of
dependency nodes to include in the bracketing. This
set is then partitioned into contiguous parts, from
which the segments are computed. In most cases,
the yield is just the subtree dominated by the argu-
ment node. However, if the argument dominates the
predicate, then the branch containing the predicate
is removed.

Table 2 shows the performance figures of our
system on the WSJ and Brown corpora: preci-
sion, recall, F1-measure, and complete proposition
accuracy (PP). These figures are compared to the
best-performing system in the CoNLL-2005 Shared
Task (Punyakanok et al., 2008), referred to as Pun-
yakanok in the table, and the best result currently
published (Surdeanu et al., 2007), referred to as Sur-
deanu. To validate the sanity of the segment cre-
ation algorithm, the table also shows the result of ap-
plying segment creation to gold-standard syntactic–

Algorithm 2 Segment creation from an argument
dependency node.
input Predicate node p, argument node a
if a does not dominate p
Y ← {n : a dominates n}

else
c← the child of a that dominates p
Y ← {n : a dominates n} \ {n : c dominates n}

end if
S ← partition of Y into contiguous subsets
return {(min-index s,max-index s) : s ∈ S}

WSJ P R F1 PP
Our system 82.22 77.72 79.90 57.24
Punyakanok 82.28 76.78 79.44 53.79
Surdeanu 87.47 74.67 80.56 51.66
Gold standard 97.38 96.77 97.08 93.20

Brown P R F1 PP
Our system 68.79 61.87 65.15 32.34
Punyakanok 73.38 62.93 67.75 32.34
Surdeanu 81.75 61.32 70.08 34.33
Gold standard 97.22 96.55 96.89 92.79

WSJ+Brown P R F1 PP
Our system 80.50 75.59 77.97 53.94
Punyakanok 81.18 74.92 77.92 50.95
Surdeanu 86.78 72.88 79.22 49.36
Gold standard 97.36 96.75 97.05 93.15

Table 2: Evaluation with unnormalized segments.

semantic trees. We see that the two conversion pro-
cedures involved (constituent-to-dependency con-
version by the CoNLL-2008 Shared Task organizers,
and our dependency-to-segment conversion) work
satisfactorily although the process is not completely
lossless.

During inspection of the output, we noted that
many errors arise from inconsistent punctuation at-
tachment in PropBank/Treebank. We therefore nor-
malized the segments to exclude punctuation at the
beginning or end of a segment. The results of this
evaluation is shown in Table 3. This table does not
include the Surdeanu system since we did not have
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access to its output.

WSJ P R F1 PP
Our system 82.95 78.40 80.61 58.65
Punyakanok 82.67 77.14 79.81 54.55
Gold standard 97.85 97.24 97.54 94.34

Brown P R F1 PP
Our system 70.84 63.71 67.09 36.94
Punyakanok 74.29 63.71 68.60 34.08
Gold standard 97.46 96.78 97.12 93.41

WSJ+Brown P R F1 PP
Our system 81.39 76.44 78.84 55.77
Punyakanok 81.63 75.34 78.36 51.84
Gold standard 97.80 97.18 97.48 94.22

Table 3: Evaluation with normalized segments.

The results on the WSJ test set clearly show
that dependency-based SRL systems can rival
constituent-based systems in terms of performance
– it clearly outperforms the Punyakanok system, and
has a higher recall and complete proposition accu-
racy than the Surdeanu system. We interpret the high
recall as a result of the dependency syntactic repre-
sentation, which makes the parse tree paths simpler
and thus the arguments easier to find.

For the Brown test set, on the other hand, the
dependency-based system suffers from a low pre-
cision compared to the constituent-based systems.
Our error analysis indicates that the domain change
caused problems with prepositional attachment for
the dependency parser – it is well-known that prepo-
sitional attachment is a highly lexicalized problem,
and thus sensitive to domain changes. We believe
that the reason why the constituent-based systems
are more robust in this respect is that they utilize a
combination strategy, using inputs from two differ-
ent full constituent parsers, a clause bracketer, and
a chunker. However, caution is needed when draw-
ing conclusions from results on the Brown test set,
which is only 7,585 words, compared to the 59,100
words in the WSJ test set.

3.2 Dependency-based Evaluation

It has previously been noted (Pradhan et al., 2005)
that a segment-based evaluation may be unfavorable

to a dependency-based system, and that an evalua-
tion that scores argument heads may be more indica-
tive of its true performance. We thus carried out an
evaluation using the evaluation script of the CoNLL-
2008 Shared Task. In this evaluation method, an ar-
gument is counted as correctly identified if its head
and label are correct. Note that this is not equivalent
to the segment-based metric: In a perfectly identi-
fied segment, we may still pick out the wrong head,
and if the head is correct, we may infer an incorrect
segment. The evaluation script also scores predicate
disambiguation performance; we did not include this
score since the 2005 systems did not output predi-
cate sense identifiers.

Since CoNLL-2005-style segments have no in-
ternal tree structure, it is nontrivial to extract a
head. It is conceivable that the output of the parsers
used by the Punyakanok system could be used to
extract heads, but this is not recommendable be-
cause the Punyakanok system is an ensemble sys-
tem and a segment does not always exactly match
a constituent in a parse tree. Furthermore, the
CoNLL-2008 constituent-to-dependency conversion
method uses a richer structure than just the raw con-
stituents: empty categories, grammatical functions,
and named entities. To recreate this additional infor-
mation, we would have to apply automatic systems
and end up with unreliable results.

Instead, we thus chose to find an upper bound
on the performance of the segment-based system.
We applied a simple head-finding procedure (Algo-
rithm 3) to find a set of head nodes for each seg-
ment. Since the CoNLL-2005 output does not in-
clude dependency information, the algorithm uses
gold-standard dependencies and intersects segments
with the gold-standard segments. This will give us
an upper bound, since if the segment contains the
correct head, it will always be counted as correct.

The algorithm looks for dependencies leaving the
segment, and if multiple outgoing edges are found,
a couple of simple heuristics are applied. We found
that the best performance is achieved when selecting
only one outgoing edge. “Small clauses,” which are
split into an object and a predicative complement in
the dependency framework, are the only cases where
we select two heads.

Table 4 shows the results of the dependency-
based evaluation. In the table, the output of the
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Algorithm 3 Finding head nodes in a segment.
input Argument segment a
if a overlaps with a segment in the gold standard
a← intersection of a and gold standard

F ← {n : governor of n outside a}
if |F | = 1

return F
remove punctuation nodes from F
if |F | = 1

return F
if F = {n1, n2, . . .} where n1 is an object and n2 is
the predicative part of a small clause

return {n1, n2}
if F contains a node n that is a subject or an object

return {n}
else

return {n}, where n is the leftmost node in F

dependency-based system is compared to the seman-
tic dependency links automatically extracted from
the segments of the Punyakanok system.

WSJ P R F1 PP
Our system 88.46 83.55 85.93 61.97
Punyakanok 87.25 81.59 84.32 58.17

Brown P R F1 PP
Our system 77.67 69.63 73.43 41.32
Punyakanok 80.29 68.59 73.98 37.28

WSJ+Brown P R F1 PP
Our system 87.07 81.68 84.29 59.22
Punyakanok 86.94 80.21 83.45 55.39

Table 4: Dependency-based evaluation.

In this evaluation, the dependency-based system
has a higher F1-measure than the Punyakanok sys-
tem on both test sets. This suggests that the main ad-
vantage of using a dependency-based semantic role
labeler is that it is better at finding the heads of
semantic arguments, rather than finding segments.
The results are also interesting in comparison to
the multi-view system described by Pradhan et al.
(2005), which has a reported head F1 measure of
85.2 on the WSJ test set. The figure is not exactly

compatible with ours, however, since that system
used a different head extraction mechanism.

4 Conclusion

We have described a dependency-based system1 for
semantic role labeling of English in the PropBank
framework. Our evaluations show that the perfor-
mance of our system is close to the state of the
art. This holds regardless of whether a segment-
based or a dependency-based metric is used. In-
terestingly, our system has a complete proposition
accuracy that surpasses other systems by nearly 3
percentage points. Our system is the first semantic
role labeler based only on syntactic dependency that
achieves a competitive performance.

Evaluation and comparison is a difficult issue
since the natural output of a dependency-based sys-
tem is a set of semantic links rather than segments,
as is normally the case for traditional systems. To
handle this situation fairly to both types of systems,
we carried out a two-way evaluation: conversion of
dependencies to segments for the dependency-based
system, and head-finding heuristics for segment-
based systems. However, the latter is difficult since
no structure is available inside segments, and we
had to resort to computing upper-bound results using
gold-standard input; despite this, the dependency-
based system clearly outperformed the upper bound
of the performance of the segment-based system.
The comparison can also be slightly misleading
since the dependency-based system was optimized
for the dependency metric and previous systems for
the segment metric.

Our evaluations suggest that the dependency-
based SRL system is biased to finding argument
heads, rather than argument text snippets, and this
is of course perfectly logical. Whether this is an ad-
vantage or a drawback will depend on the applica-
tion – for instance, a template-filling system might
need complete segments, while an SRL-based vector
space representation for text categorization, or a rea-
soning application, might prefer using heads only.

In the future, we would like to further investigate
whether syntactic and semantic analysis could be in-
tegrated more tightly. In this work, we used a sim-

1Our system is freely available for download at
http://nlp.cs.lth.se/lth_srl.
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plistic loose coupling by means of reranking a small
set of complete structures. The same criticisms that
are often leveled at reranking-based models clearly
apply here too: The set of tentative analyses from the
submodules is too small, and the correct analysis is
often pruned too early. An example of a method to
mitigate this shortcoming is the forest reranking by
Huang (2008), in which complex features are evalu-
ated as early as possible.

A Classifier Features

Features Used in Predicate Disambiguation
PREDWORD, PREDLEMMA. The lexical form and

lemma of the predicate.
PREDPARENTWORD and PREDPARENTPOS.

Form and part-of-speech tag of the parent node
of the predicate.

CHILDDEPSET, CHILDWORDSET, CHILD-
WORDDEPSET, CHILDPOSSET, CHILD-
POSDEPSET. These features represent the set
of dependents of the predicate using combina-
tions of dependency labels, words, and parts of
speech.

DEPSUBCAT. Subcategorization frame: the con-
catenation of the dependency labels of the pred-
icate dependents.

PREDRELTOPARENT. Dependency relation be-
tween the predicate and its parent.

Features Used in Argument Identification and
Labeling
PREDLEMMASENSE. The lemma and sense num-

ber of the predicate, e.g. give.01.
VOICE. For verbs, this feature is Active or Passive.

For nouns, it is not defined.
POSITION. Position of the argument with respect

to the predicate: Before, After, or On.
ARGWORD and ARGPOS. Lexical form and part-

of-speech tag of the argument node.
LEFTWORD, LEFTPOS, RIGHTWORD, RIGHT-

POS. Form/part-of-speech tag of the left-
most/rightmost dependent of the argument.

LEFTSIBLINGWORD, LEFTSIBLINGPOS.
Form/part-of-speech tag of the left sibling of
the argument.

PREDPOS. Part-of-speech tag of the predicate.
RELPATH. A representation of the complex gram-

matical relation between the predicate and the
argument. It consists of the sequence of de-
pendency relation labels and link directions in
the path between predicate and argument, e.g.
IM↑OPRD↑OBJ↓.

VERBCHAINHASSUBJ. Binary feature that is set
to true if the predicate verb chain has a subject.
The purpose of this feature is to resolve verb
coordination ambiguity as in Figure 3.

CONTROLLERHASOBJ. Binary feature that is true
if the link between the predicate verb chain and
its parent is OPRD, and the parent has an ob-
ject. This feature is meant to resolve control
ambiguity as in Figure 4.

FUNCTION. The grammatical function of the argu-
ment node. For direct dependents of the predi-
cate, this is identical to the RELPATH.

I

SBJ

eat drinkyouand

COORD SBJ

CONJ
ROOT

SBJ COORD

ROOT

drinkandeatI

CONJ

Figure 3: Coordination ambiguity: The subject I is in an
ambiguous position with respect to drink.

I to

IMSBJ

want sleephim

OBJ

OPRD
ROOT

IM

sleepI

SBJ

want

ROOT

to

OPRD

Figure 4: Subject/object control ambiguity: I is in an am-
biguous position with respect to sleep.
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