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Abstract

We present a discriminative method for learn-
ing selectional preferences from unlabeled
text. Positive examples are taken from ob-
served predicate-argument pairs, while nega-
tives are constructed from unobserved combi-
nations. We train a Support Vector Machine
classifier to distinguish the positive from the
negative instances. We show how to parti-
tion the examples for efficient training with
57 thousand features and 6.5 million training
instances. The model outperforms other re-
cent approaches, achieving excellent correla-
tion with human plausibility judgments. Com-
pared to Mutual Information, it identifies 66%
more verb-object pairs in unseen text, and re-
solves 37% more pronouns correctly in a pro-
noun resolution experiment.

1 Introduction

Selectional preferences (SPs) tell us which argu-
ments are plausible for a particular predicate. For
example, Table 2 (Section 4.4) lists plausible and
implausible direct objects (arguments) for particu-
lar verbs (predicates). SPs can help resolve syntac-
tic, word sense, and reference ambiguity (Clark and
Weir, 2002), and so gathering them has received a
lot of attention in the NLP community.

One way to determine SPs is from co-occurrences
of predicates and arguments in text. Unfortunately,
no matter how much text we use, many acceptable
pairs will be missing. Bikel (2004) found that only
1.49% of the bilexical dependencies considered by
Collins’ parser during decoding were observed dur-
ing training. In our parsed corpus (Section 4.1),

for example, we findeat with nachos, burritos, and
tacos, but not with the equally tastyquesadillas,
chimichangas, or tostadas. Rather than solely re-
lying on co-occurrence counts, we would like to use
them to generalize to unseen pairs.

In particular, we would like to exploit a number
of arbitrary and potentially overlapping properties
of predicates and arguments when we assign SPs.
We do this by representing these properties as fea-
tures in a linear classifier, and training the weights
using discriminative learning. Positive examples
are taken from observed predicate-argument pairs,
while pseudo-negatives are constructed from unob-
served combinations. We train a Support Vector Ma-
chine (SVM) classifier to distinguish the positives
from the negatives. We refer to our model’s scores
as Discriminative Selectional Preference (DSP). By
creating training vectors automatically, DSP enjoys
all the advantages of supervised learning, but with-
out the need for manual annotation of examples.

We evaluate DSP on the task of assigning verb-
object selectional preference. We encode a noun’s
textual distribution as feature information. The
learned feature weights are linguistically interesting,
yielding high-quality similar-word lists as latent in-
formation. Despite its representational power, DSP

scales to real-world data sizes: examples are parti-
tioned by predicate, and a separate SVM is trained
for each partition. This allows us to efficiently learn
with over 57 thousand features and 6.5 million ex-
amples. DSPoutperforms recently proposed alterna-
tives in a range of experiments, and better correlates
with human plausibility judgments. It also shows
strong gains over a Mutual Information-based co-
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occurrence model on two tasks: identifying objects
of verbs in an unseen corpus and finding pronominal
antecedents in coreference data.

2 Related Work

Most approaches to SPs generalize from observed
predicate-argument pairs to semantically similar
ones by modeling the semantic class of the argu-
ment, following Resnik (1996). For example, we
might have a classMexican Food and learn that the
entire class is suitable for eating. Usually, the classes
are from WordNet (Miller et al., 1990), although
they can also be inferred from clustering (Rooth et
al., 1999). Brockmann and Lapata (2003) compare
a number of WordNet-based approaches, including
Resnik (1996), Li and Abe (1998), and Clark and
Weir (2002), and found that the more sophisticated
class-based approaches do not always outperform
simple frequency-based models.

Another line of research generalizes using simi-
lar words. Suppose we are calculating the proba-
bility of a particular noun,n, occurring as the ob-
ject argument of a given verbal predicate,v. Let
Pr(n|v) be the empirical maximum-likelihood esti-
mate from observed text. Dagan et al. (1999) define
the similarity-weighted probability, PrSIM, to be:

PrSIM(n|v) =
∑

v′∈SIMS(v)

Sim(v′, v)Pr(n|v′) (1)

whereSim(v′, v) returns a real-valued similarity be-
tween two verbsv′ andv (normalized over all pair
similarities in the sum). In contrast, Erk (2007)
generalizes by substituting similararguments, while
Wang et al. (2005) use the cross-product of simi-
lar pairs. One key issue is how to define the set
of similar words, SIMS(w). Erk (2007) compared a
number of techniques for creating similar-word sets
and found that both the Jaccard coefficient and Lin
(1998a)’s information-theoretic metric work best.
Similarity-smoothed models are simple to compute,
potentially adaptable to new domains, and require
no manually-compiled resources such as WordNet.

Selectional Preferences have also been a recent
focus of researchers investigating the learning of
paraphrases and inference rules (Pantel et al., 2007;
Roberto et al., 2007). Inferences such as “[X wins
Y] ⇒ [X playsY]” are only valid for certain argu-

mentsX andY. We follow Pantel et al. (2007) in us-
ing automatically-extracted semantic classes to help
characterize plausible arguments.

Discriminative techniques are widely used in NLP
and have been applied to the related tasks of word
prediction and language modeling. Even-Zohar and
Roth (2000) use a classifier to predict the most likely
word to fill a position in a sentence (in their ex-
periments: a verb) from a set of candidates (sets
of verbs), by inspecting the context of the target
token (e.g., the presence or absence of a particu-
lar nearby word in the sentence). This approach
can therefore learn which specific arguments occur
with a particular predicate. In comparison, our fea-
tures are second-order: we learn whatkinds of argu-
ments occur with a predicate by encoding features
of the arguments. Recent distributed and latent-
variable models also represent words with feature
vectors (Bengio et al., 2003; Blitzer et al., 2005).
Many of these approaches learn both the feature
weights and the feature representation. Vectors must
be kept low-dimensional for tractability, while learn-
ing and inference on larger scales is impractical. By
partitioning our examples by predicate, we can effi-
ciently use high-dimensional, sparse vectors.

Our technique of generating negative examples
is similar to the approach of Okanohara and Tsujii
(2007). They learn a classifier to disambiguate ac-
tual sentences from pseudo-negative examples sam-
pled from an N-gram language model. Smith and
Eisner (2005) also automatically generate negative
examples. They perturb their input sequence (e.g.
the sentence word order) to create a neighborhood of
implicit negative evidence. We create negatives by
substitution rather than perturbation, and use corpus-
wide statistics to choose our negative instances.

3 Methodology

3.1 Creating Examples

To learn a discriminative model of selectional pref-
erence, we create positive and negative training ex-
amples automatically from raw text. To create the
positives, we automatically parse a large corpus, and
then extract the predicate-argument pairs that have
a statistical association in this data. We measure
this association using pointwise Mutual Information
(MI) (Church and Hanks, 1990). The MI between a
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verb predicate,v, and its object argument,n, is:

MI(v, n) = log
Pr(v, n)

Pr(v)Pr(n)
= log

Pr(n|v)

Pr(n)
(2)

If MI >0, the probabilityv andn occur together is
greater than if they were independently distributed.

We create sets of positive and negative examples
separately for each predicate,v. First, we extract all
pairs where MI(v, n)>τ as positives. For each pos-
itive, we create pseudo-negative examples,(v, n′),
by pairingv with a new argument,n′, that either has
MI below the threshold or did not occur withv in the
corpus. We require each negativen′ to have a similar
frequency to its correspondingn. This prevents our
learning algorithm from focusing on any accidental
frequency-based bias. We mix inK negatives for
each positive, sampling without replacement to cre-
ate all the negatives for a particular predicate. For
eachv, 1

K+1 of its examples will be positive. The
thresholdτ represents a trade-off between capturing
a large number of positive pairs and ensuring these
pairs have good association. Similarly,K is a trade-
off between the number of examples and the com-
putational efficiency. Ultimately, these parameters
should be optimized for task performance.

Of course, some negatives will actually be plau-
sible arguments that were unobserved due to sparse-
ness. Fortunately, modern discriminative methods
like soft-margin SVMs can learn in the face of label
error by allowing slack, subject to a tunable regular-
ization penalty (Cortes and Vapnik, 1995).

If MI is a sparse and imperfect model of SP, what
can DSP gain by training on MI’s scores? We can
regard DSP as learning a view of SP that is or-
thogonal to MI, in a co-training sense (Blum and
Mitchell, 1998). MI labels the data based solely
on co-occurrence; DSP uses these labels to iden-
tify other regularities – ones that extend beyond co-
occurring words. For example, many instances of
n where MI(eat, n)>τ also have MI(buy, n)>τ and
MI(cook, n)>τ . Also, compared to other nouns,
a disproportionate number ofeat-nouns are lower-
case, single-token words, and they rarely contain
digits, hyphens, or begin with a human first name
like Bob. DSP encodes these interdependent prop-
erties as features in a linear classifier. This classi-
fier can score any noun as a plausible argument of
eat if indicative features are present; MI can only

assign high plausibility to observed (eat,n) pairs.
Similarity-smoothed models can make use of the
regularities across similar verbs, but not the finer-
grained string- and token-based features.

Our training examples are similar to the data cre-
ated for pseudodisambiguation, the usual evalua-
tion task for SP models (Erk, 2007; Keller and La-
pata, 2003; Rooth et al., 1999). This data con-
sists of triples(v, n, n′) wherev, n is a predicate-
argument pair observed in the corpus andv, n′ has
not been observed. The models score correctly
if they rank observed (and thus plausible) argu-
ments above corresponding unobserved (and thus
likely implausible) ones. We refer to this asPair-
wise Disambiguation. Unlike this task, we classify
each predicate-argument pair independently as plau-
sible/implausible. We also use MI rather than fre-
quency to define the positive pairs, ensuring that the
positive pairs truly have a statistical association, and
are not simply the result of parser error or noise.1

3.2 Partitioning for Efficient Training

After creating our positive and negative training
pairs, we must select a feature representation for our
examples. LetΦ be a mapping from a predicate-
argument pair(v, n) to a feature vector,Φ :
(v, n) → 〈φ1...φk〉. Predictions are made based
on a weighted combination of the features,y =
λ ·Φ(v, n), whereλ is our learned weight vector.

We can make training significantly more efficient
by using a special form of attribute-value features.
Let every featureφi be of the formφi(v, n) = 〈v =
v̂∧f(n)〉. That is, every feature is an intersection of
the occurrence of a particular predicate,v̂, and some
feature of the argumentf(n). For example, a fea-
ture for a verb-object pair might be, “the verb iseat
and the object is lower-case.” In this representation,
features for one predicate will be completely inde-
pendent from those for every other predicate. Thus
rather than a single training procedure, we can actu-
ally partition the examples by predicate, and train a

1For a fixed verb, MI is proportional to Keller and Lapata
(2003)’s conditional probability scores for pseudodisambigua-
tion of (v, n, n′) triples: Pr(v|n) = Pr(v, n)/Pr(n), which was
shown to be a better measure of association than co-occurrence
frequencyf(v, n). Normalizing by Pr(v) (yielding MI) allows
us to use a constant threshold across all verbs. MI was also
recently used for inference-rule SPs by Pantel et al. (2007).
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classifier for each predicate independently. The pre-
diction becomesyv = λ

v ·Φv(n), whereλ
v are the

learned weights corresponding to predicatev and all
featuresΦv(n)=f(n) depend on the argument only.

Some predicate partitions may have insufficient
examples for training. Also, a predicate may oc-
cur in test data that was unseen during training. To
handle these instances, we decided to cluster low-
frequency predicates. In our experiments assigning
SP to verb-object pairs, we cluster all verbs that have
less than 250 positive examples, using clusters gen-
erated by the CBC algorithm (Pantel and Lin, 2002).
For example, the low-frequency verbsincarcerate,
parole, andcourt-martial are all mapped to the same
partition, while more-frequent verbs likearrest and
execute each have their own partition. About 5.5%
of examples are clustered, corresponding to 30% of
the 7367 total verbs. 40% of verbs (but only 0.6% of
examples) were not in any CBC cluster; these were
mapped to a single backoff partition.

The parameters for each partition,λ
v, can be

trained with any supervised learning technique. We
use SVM (Section 4.1) because it is effective in simi-
lar high-dimensional, sparse-vector settings, and has
an efficient implementation (Joachims, 1999). In
SVM, the sign ofyv gives the classification. We can
also use the scalaryv as our DSPscore (i.e. the posi-
tive distance from the separating SVM hyperplane).

3.3 Features

This section details our argument features,f(n), for
assigning verb-object selectional preference. For a
verb predicate (or partition)v and object argument
n, the form of our classifier isyv =

∑
i λ

v
i fi(n).

3.3.1 Verb co-occurrence

We provide features for the empirical probability
of the noun occurring as the object argument of other
verbs, Pr(n|v′). If we were to only use these features
(indexing the feature weights by each verbv′), the
form of our classifier would be:

yv =
∑

v′

λv
v′Pr(n|v′) (3)

Note the similarity between Equation (3) and Equa-
tion (1). Now the feature weights,λv

v′ , take the role
of the similarity function,Sim(v′, v). Unlike Equa-
tion (1), however, these weights are not set by an

external similarity algorithm, but are optimized to
discriminate the positive and negative training ex-
amples. We need not restrict ourselves to a short list
of similar verbs; we include Probj(n|v

′) features for
every verb that occurs more than 10 times in our cor-
pus. λv

v′ may be positive or negative, depending on
the relation betweenv′ andv. We also include fea-
tures for the probability of the noun occurring as the
subject of other verbs, Prsubj(n|v

′). For example,
nouns that can be the object ofeat will also occur as
the subject oftaste andcontain. Other contexts, such
as adjectival and nominal predicates, could also aid
the prediction, but have not yet been investigated.

The advantage of tuning similarity to the appli-
cation of interest has been shown previously by
Weeds and Weir (2005). They optimize a few meta-
parameters separately for the tasks of thesaurus gen-
eration and pseudodisambiguation. Our approach,
on the other hand, discriminatively sets millions of
individual similarity values. Like Weeds and Weir
(2005), our similarity values are asymmetric.

3.3.2 String-based

We include several simple character-based fea-
tures of the noun string: the number of tokens, the
case, and whether it contains digits, hyphens, an
apostrophe, or other punctuation. We also include a
feature for the first and last token, and fire indicator
features if any token in the noun occurs on in-house
lists of given names, family names, cities, provinces,
countries, corporations, languages, etc. We also fire
a feature if a token is a corporate designation (like
inc. or ltd.) or a human one (likeMr. or Sheik).

3.3.3 Semantic classes

Motivated by previous SP models that make use
of semantic classes, we generated word clusters us-
ing CBC (Pantel and Lin, 2002) on a 10 GB corpus,
giving 3620 clusters. If a noun belongs in a cluster,
a corresponding feature fires. If a noun is in none of
the clusters, ano-class feature fires.

As an example, CBC cluster 1891 contains:

sidewalk, driveway, roadway, footpath,
bridge, highway, road, runway, street, alley,
path, Interstate, . . .

In our training data, we have examples likewiden
highway, widen road and widen motorway. If we
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see that we can widen a highway, we learn that we
can also widen a sidewalk, bridge, runway, etc.

We also made use of the person-name/instance
pairs automatically extracted by Fleischman et al.
(2003).2 This data provides counts for pairs such
as “Edwin Moses,hurdler” and “William Farley,in-
dustrialist.” We have features for allconcepts and
therefore learn their association with each verb.

4 Experiments and Results

4.1 Set up

We parsed the 3 GB AQUAINT corpus (Voorhees,
2002) using Minipar (Lin, 1998b), and collected
verb-object and verb-subject frequencies, building
an empirical MI model from this data. Verbs and
nouns were converted to their (possibly multi-token)
root, and string case was preserved. Passive sub-
jects (the car was bought) were converted to objects
(bought car). We set the MI-threshold,τ , to be 0,
and the negative-to-positive ratio,K, to be 2.

Numerous previous pseudodisambiguation evalu-
ations only include arguments that occur between 30
and 3000 times (Erk, 2007; Keller and Lapata, 2003;
Rooth et al., 1999). Presumably the lower bound is
to help ensure the negative argument is unobserved
because it is unsuitable, not because of data sparse-
ness. We wish to use our model on arguments of
any frequency, including those that never occurred
in the training corpus (and therefore have empty co-
occurrence features (Section 3.3.1)). We proceed as
follows: first, we exclude pairs whenever the noun
occurs less than 3 times in our corpus, removing
many misspellings and other noun noise. Next, we
omit verb co-occurrence features for nouns that oc-
cur less than 10 times, and instead fire a low-count
feature. When we move to a new corpus, previously-
unseen nouns are treated like these low-count train-
ing nouns.

This processing results in a set of 6.8 million
pairs, divided into 2318 partitions (192 of which
are verb clusters (Section 3.2)). For each parti-
tion, we take 95% of the examples for training,
2.5% for development and 2.5% for a final unseen
test set. We provide full results for two models:
DSPcooc which only uses the verb co-occurrence fea-
tures, and DSPall which uses all the features men-

2Available at http://www.mit.edu/˜mbf/instances.txt.gz

tioned in Section 3.3. Feature values are normalized
within each feature type. We train our (linear kernel)
discriminative models using SVMlight (Joachims,
1999) on each partition, but set meta-parametersC

(regularization) andj (cost of positive vs. nega-
tive misclassifications: max atj=2) on the macro-
averaged score across all development partitions.
Note that we can not use the development set to op-
timize τ andK because the development examples
are obtainedafter setting these values.

4.2 Feature weights

It is interesting to inspect the feature weights re-
turned by our system. In particular, the weights
on the verb co-occurrence features (Section 3.3.1)
provide a high-quality, argument-specific similarity-
ranking of other verb contexts. The DSPparameters
for eat, for example, place high weight on features
like Pr(n|braise), Pr(n|ration), and Pr(n|garnish).
Lin (1998a)’s similar word list foreat misses these
but includessleep (ranked 6) andsit (ranked 14), be-
cause these have similarsubjects to eat. Discrimina-
tive, context-specific training seems to yield a bet-
ter set of similar predicates, e.g. the highest-ranked
contexts for DSPcooc on the verbjoin,3

lead 1.42, rejoin 1.39, form 1.34, belong to
1.31, found 1.31, quit 1.29, guide 1.19, induct
1.19, launch (subj) 1.18, work at 1.14

give a better SIMS(join) for Equation (1) than the
top similarities returned by (Lin, 1998a):

participate 0.164, lead 0.150, return to 0.148,
say 0.143, rejoin 0.142, sign 0.142, meet
0.142, include 0.141, leave 0.140, work 0.137

Other features are also weighted intuitively. Note
that case is a strong indicator for some arguments,
for example the weight on being lower-case is high
for become (0.972) andeat (0.505), but highly nega-
tive for accuse (-0.675) andembroil (-0.573) which
often take names of people and organizations.

4.3 Pseudodisambiguation

We first evaluate DSP on disambiguating posi-
tives from pseudo-negatives, comparing to recently-

3Which all correspond to nouns occurring in the object po-
sition of the verb (e.g. Probj(n|lead)), except “launch (subj)”
which corresponds to Prsubj(n|launch).
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System
MacroAvg MicroAvg Pairwise

P R F P R F Acc Cov

Dagan et al. (1999) 0.36 0.90 0.51 0.68 0.92 0.78 0.58 0.98
Erk (2007) 0.49 0.66 0.56 0.70 0.82 0.76 0.72 0.83
Keller and Lapata (2003) 0.72 0.34 0.46 0.80 0.50 0.62 0.80 0.57
DSPcooc 0.53 0.72 0.61 0.73 0.94 0.82 0.77 1.00
DSPall 0.60 0.71 0.65 0.77 0.90 0.83 0.81 1.00

Table 1: Pseudodisambiguation results averaged across each example (MacroAvg), weighted by word frequency (Mi-
croAvg), plus coverage and accuracy of pairwise competition (Pairwise).

proposed systems that also require no manually-
compiled resources like WordNet. We convert Da-
gan et al. (1999)’s similarity-smoothed probability
to MI by replacing the empirical Pr(n|v) in Equa-
tion (2) with the smoothed PrSIM from Equation (1).
We also test an MI model inspired by Erk (2007):

MI SIM(n, v) = log
∑

n′∈SIMS(n)

Sim(n′, n)
Pr(v, n′)

Pr(v)Pr(n′)

We gather similar words using Lin (1998a), mining
similar verbs from a comparable-sized parsed cor-
pus, and collecting similar nouns from a broader 10
GB corpus of English text.4

We also use Keller and Lapata (2003)’s approach
to obtaining web-counts. Rather than mining parse
trees, this technique retrieves counts for the pattern
“V Det N” in raw online text, whereV is any in-
flection of the verb,Det is the, a, or the empty
string, andN is the singular or plural form of the
noun. We compute a web-based MI by collecting
Pr(n, v), Pr(n), and Pr(v) using all inflections, ex-
cept we only use the root form of the noun. Rather
than using a search engine, we obtain counts from
the Google Web 5-gram Corpus.5

All systems are thresholded at zero to make a clas-
sification. Unlike DSP, the comparison systems may

4For both the similar-noun and similar-verb smoothing, we
only smooth over similar pairsthat occurred in the corpus.
While averaging over all similar pairs tends to underestimate
the probability, averaging over only the observed pairs tends to
overestimate it. We tested both and adopt the latter because it
resulted in better performance on our development set.

5Available from the LDC as LDC2006T13. This collection
was generated from approximately 1 trillion tokens of online
text. Unfortunately, tokens appearing less than 200 times have
been mapped to the〈UNK〉 symbol, and only N-grams appear-
ing more than 40 times are included. Unlike results from search
engines, however, experiments with this corpus are replicable.

not be able to provide a score for each example.
The similarity-smoothed examples will be undefined
if SIMS(w) is empty. Also, the Keller and Lapata
(2003) approach will be undefined if the pair is un-
observed on the web. As a reasonable default for
these cases, we assign them a negative decision.

We evaluate disambiguation using precision (P),
recall (R), and their harmonic mean, F-Score (F).
Table 1 gives the results of our comparison. In the
MacroAvg results, we weight each example equally.
For MicroAvg, we weight each example by the fre-
quency of the noun. To more directly compare with
previous work, we also reproducedPairwise Disam-
biguation by randomly pairing each positive with
one of the negatives and then evaluating each system
by the percentage it ranks correctly (Acc). For the
comparison approaches, if one score is undefined,
we choose the other one. If both are undefined, we
abstain from a decision. Coverage (Cov) is the per-
cent of pairs where a decision was made.6

Our simple system with only verb co-occurrence
features, DSPcooc, outperforms all comparison ap-
proaches. Using the richer feature set in DSPall

results in a statistically significant gain in perfor-
mance, up to an F-Score of 0.65 and a pairwise
disambiguation accuracy of 0.81.7 DSPall has both
broader coverage and better accuracy than all com-
peting approaches. In the remainder of the experi-
ments, we use DSPall and refer to it simply as DSP.

Some errors are because of plausible but unseen
arguments being used as test-set pseudo-negatives.
For example, for the verbdamage, DSP’s three most
high-scoring false positives are the nounsjetliner,
carpet, andgear. While none occur withdamage in

6I.e. we use the “half coverage” condition from Erk (2007).
7The differences between DSPall and all comparison sys-

tems are statistically significant (McNemar’s test, p<0.01).
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Figure 1: Disambiguation results by noun frequency.

our corpus, all intuitively satisfy the verb’s SPs.
MacroAvg performance is worse thanMicroAvg

because all systems perform better on frequent
nouns. When we plot F-Score by noun frequency
(Figure 1), we see that DSPoutperforms comparison
approaches across all frequencies, but achieves its
biggest gains on the low-frequency nouns. A richer
feature set allows DSPto make correct inferences on
examples that provide minimal co-occurrence data.
These are also the examples for which we would ex-
pect co-occurrence models like MI to fail.

As a further experiment, we re-trained DSP but
with only the string-based features removed. Overall
macro-averaged F-score dropped from 0.65 to 0.64
(a statistically significant reduction in performance).
The system scored nearly identically to DSP on the
high-frequency nouns, but performed roughly 15%
worse on the nouns that occurred less than ten times.
This shows that the string-based features are impor-
tant for selectional preference, and particularly help-
ful for low-frequency nouns.

4.4 Human Plausibility

Table 2 compares some of our systems on data used
by Resnik (1996) (also Appendix 2 in Holmes et al.
(1989)). The plausibility of these pairs was initially
judged based on the experimenters’ intuitions, and
later confirmed in a human experiment. We include
the scores of Resnik’s system, and note that its errors
were attributed to sense ambiguity and other limi-
tations of class-based approaches (Resnik, 1996).8

8For example,warn-engine scores highly because engines
are in the classentity, and physical entities (e.g. people) are
often objects ofwarn. Unlike DSP, Resnik’s approach cannot
learn that forwarn, “the property of being a person is more

Seen Criteria
Unseen Verb-Object Freq.

All = 1 = 2 = 3 > 3

MI > 0 0.44 0.33 0.57 0.70 0.82
Freq.> 0 0.57 0.45 0.76 0.89 0.96
DSP> 0 0.73 0.69 0.80 0.85 0.88

Table 3: Recall on identification of Verb-Object pairs
from an unseen corpus (divided by pair frequency).

The other comparison approaches also make a num-
ber of mistakes, which can often be traced to a mis-
guided choice of similar word to smooth with.

We also compare to our empirical MI model,
trained on our parsed corpus. Although Resnik
(1996) reported that 10 of the 16 plausible pairs did
not occur in his training corpus, all of them occurred
in ours and hence MI gives very reasonable scores
on the plausible objects. It has no statistics, however,
for many of the implausible ones. DSP can make
finer decisions than MI, recognizing that “warning
an engine” is more absurd than “judging a climate.”

4.5 Unseen Verb-Object Identification

We next compare MI and DSP on a much larger set
of plausible examples, and also test how well the
models generalize across data sets. We took the MI
and DSP systems trained on AQUAINT and asked
them to rate observed (and thus likely plausible)
verb-object pairs taken from an unseen corpus. We
extracted the pairs by parsing the San Jose Mercury
News (SJM) section of the TIPSTER corpus (Har-
man, 1992). Each unique verb-object pair is a single
instance in this evaluation.

Table 3 gives recall across all pairs(All ) and
grouped by pair-frequency in the unseen corpus (1,
2, 3, >3). DSP accepts far more pairs than MI
(73% vs. 44%), even far more than a system that
accepts any previously observed verb-object combi-
nation as plausible (57%). Recall is higher on more
frequent verb-object pairs, but 70% of the pairs oc-
curred only once in the corpus. Even if we smooth
MI by smoothing Pr(n|v) in Equation 2 using modi-
fied KN-smoothing (Chen and Goodman, 1998), the
recall of MI>0 on SJM only increases from 44.1%
to 44.9%, still far below DSP. Frequency-based
models have fundamentally low coverage. As fur-

important than the property of being an entity” (Resnik, 1996).

65



Verb Plaus./Implaus. Resnik Dagan et al. Erk MI DSP

see friend/method 5.79/-0.01 0.20/1.40* 0.46/-0.07 1.11/-0.57 0.98/0.02
read article/fashion 6.80/-0.20 3.00/0.11 3.80/1.90 4.00/— 2.12/-0.65
find label/fever 1.10/0.22 1.50/2.20* 0.59/0.01 0.42/0.07 1.61/0.81
hear story/issue 1.89/1.89* 0.66/1.50* 2.00/2.60* 2.99/-1.03 1.66/0.67
write letter/market 7.26/0.00 2.50/-0.43 3.60/-0.24 5.06/-4.12 3.08/-1.31
urge daughter/contrast 1.14/1.86* 0.14/1.60* 1.10/3.60* -0.95/— -0.34/-0.62
warn driver/engine 4.73/3.61 1.20/0.05 2.30/0.62 2.87/— 2.00/-0.99
judge contest/climate 1.30/0.28 1.50/1.90* 1.70/1.70* 3.90/— 1.00/0.51
teach language/distance1.87/1.86 2.50/1.30 3.60/2.70 3.53/— 1.86/0.19
show sample/travel 1.44/0.41 1.60/0.14 0.40/-0.82 0.53/-0.49 1.00/-0.83
expect visit/mouth 0.59/5.93* 1.40/1.50* 1.40/0.37 1.05/-0.65 1.44/-0.15
answer request/tragedy 4.49/3.88 2.70/1.50 3.10/-0.64 2.93/— 1.00/0.01
recognize author/pocket 0.50/0.50* 0.03/0.37* 0.77/1.30* 0.48/— 1.00/0.00
repeat comment/journal 1.23/1.23* 2.30/1.40 2.90/— 2.59/— 1.00/-0.48
understand concept/session 1.52/1.51 2.70/0.25 2.00/-0.28 3.96/— 2.23/-0.46
remember reply/smoke 1.31/0.20 2.10/1.20 0.54/2.60* 1.13/-0.06 1.00/-0.42

Table 2: Selectional ratings for plausible/implausible direct objects (Holmes et al., 1989). Mistakes are marked with
an asterisk (*), undefined scores are marked with a dash (—). Only DSP is completely defined and completely correct.
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Figure 2: Pronoun resolution precision-recall on MUC.

ther evidence, if we build a model of MI on the SJM
corpus and use it in our pseudodisambiguation ex-
periment (Section 4.3), MI>0 gets aMacroAvg pre-
cision of 86% but aMacroAvg recall of only 12%.9

4.6 Pronoun Resolution

Finally, we evaluate DSP on a common application
of selectional preferences: choosing the correct an-
tecedent for pronouns in text (Dagan and Itai, 1990;
Kehler et al., 2004). We study the cases where a

9Recall that even the Keller and Lapata (2003) system, built
on the world’s largest corpus, achieves only 34% recall (Table 1)
(with only 48% of positives and 27% of all pairs previously
observed, but see Footnote 5).

pronoun is the direct object of a verb predicate,v. A
pronoun’s antecedent must obeyv’s selectional pref-
erences. If we have a better model of SP, we should
be able to better select pronoun antecedents.

We parsed the MUC-7 (1997) coreference corpus
and extracted all pronouns in a direct object rela-
tion. For each pronoun,p, modified by a verb,v, we
extracted all preceding nouns within the current or
previous sentence. Thirty-nine anaphoric pronouns
had an antecedent in this window and are used in
the evaluation. For eachp, let N(p)+ by the set of
preceding nouns coreferent withp, and letN(p)−

be the remaining non-coreferent nouns. We take
all (v, n+) wheren+ ∈ N(p)+ as positive, and all
other pairs(v, n−), n− ∈ N(p)− as negative.

We compare MI and DSP on this set, classifying
every (v, n) with MI>T (or DSP>T ) as positive.
By varyingT , we get a precision-recall curve (Fig-
ure 2). Precision is low because, of course, there
are many nouns that satisfy the predicate’s SPs that
are not coreferent. DSP>0 has both a higher recall
and higher precision than accepting every pair pre-
viously seen in text (the right-most point on MI>T ).
The DSP>T system achieves higher precision than
MI>T for points where recall is greater than 60%
(where MI<0). Interestingly, the recall of MI>0 is
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System Acc

Most-Recent Noun 17.9%
Maximum MI 28.2%
Maximum DSP 38.5%

Table 4: Pronoun resolution accuracy on nouns in current
or previous sentence in MUC.

higher here than it is for general verb-objects (Sec-
tion 4.5). On the subset of pairs with strong empir-
ical association (MI>0), MI generally outperforms
DSPat equivalent recall values.

We next compare MI and DSPas stand-alone pro-
noun resolution systems (Table 4). As a standard
baseline, for each pronoun, we choose the most
recent noun in text as the pronoun’s antecedent,
achieving 17.9% resolution accuracy. This baseline
is quite low because many of the most-recent nouns
are subjects of the pronoun’s verb phrase, and there-
fore resolution violates syntactic coreference con-
straints. If instead we choose the previous noun with
the highest MI as antecedent, we get an accuracy of
28.2%, while choosing the previous noun with the
highest DSP achieves 38.5%. DSP resolves 37%
more pronouns correctly than MI. We leave as fu-
ture work a full-scale pronoun resolution system that
incorporates both MI and DSP as backed-off, inter-
polated, or separate semantic features.

5 Conclusions and Future Work

We have presented a simple, effective model of se-
lectional preference based on discriminative train-
ing. Supervised techniques typically achieve higher
performance than unsupervised models, and we du-
plicate these gains with DSP. Here, however, these
gains come at no additional labeling cost, as train-
ing examples are generated automatically from un-
labeled text. DSPallows an arbitrary combination of
features, including verb co-occurrence features that
yield high-quality similar-word lists as latent output.
This work only scratches the surface of possible fea-
ture mining; information from WordNet relations,
Wikipedia categories, or parallel corpora could also
provide valuable clues to SP. Also, if any other sys-
tem were to exceed DSP’s performance, it could also
be included as one of DSP’s features.

It would be interesting to expand our co-

occurrence features, including co-occurrence counts
across more grammatical relations and using counts
from external, unparsed corpora like the world wide
web. We could also reverse the role of noun and verb
in our training, having verb-specific features and
discriminating separately for each argument noun.
The latent information would then be lists of similar
nouns.

Finally, note that while we focused on word-word
co-occurrences, sense-sense SPs can also be learned
with our algorithm. If our training corpus was sense-
labeled, we could run our algorithm over the senses
rather than the words. The resulting model would
then require sense-tagged input if it were to be used
within an application like parsing or coreference res-
olution. Also, like other models of SP, our technique
can also be used for sense disambiguations: the
weightings on our semantic class features indicate,
for a particular noun, which of its senses (classes) is
most compatible with each verb.
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