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Abstract 

We propose a new approach to language mod-

eling which utilizes discriminative learning 

methods. Our approach is an iterative one: 

starting with an initial language model, in 

each iteration we generate 'false' sentences 

from the current model, and then train a clas-

sifier to discriminate between them and sen-

tences from the training corpus. To the extent 

that this succeeds, the classifier is incorpo-

rated into the model by lowering the probabil-

ity of sentences classified as false, and the 

process is repeated. We demonstrate the effec-

tiveness of this approach on a natural lan-

guage corpus and show it provides an 11.4% 

improvement in perplexity over a modified 

kneser-ney smoothed trigram. 

1 Introduction 

Language modeling is a fundamental task in natu-

ral language processing and is routinely employed 

in a wide range of applications, such as speech 

recognition, machine translation, etc’. Tradition-

ally, a language model is a probabilistic model 

which assigns a probability value to a sentence or a 

sequence of words. We refer to these as generative 

language models. A very popular example of a 

generative language model is the n-gram, which 

conditions the probability of the next word on the 

previous (n-1)-words.  

Although simple and widely-applicable, it has 

proven difficult to allow n-grams, and other forms 

of generative language models as well, to take ad-

vantage of non-local and overlapping features.
1
 

These sorts of features, however, pose no problem 

for standard discriminative learning methods, e.g. 

large-margin classifiers. For this reason, a new 

class of language model, the discriminative lan-

guage model, has been proposed recently to aug-

ment generative language models (Gao et al., 

2005; Roark et al., 2007). Instead of providing 

probability values, discriminative language models 

directly classify sentences as either correct or in-

correct, where the definition of correctness de-

pends on the application (e.g. grammatical / 

ungrammatical, correct translation / incorrect trans-

lation, etc').  

Discriminative learning methods require 

negative samples. Given that the corpora used for 

training language models contain only real 

sentences, i.e. positive samples, obtaining these 

can be problematic. In most work on 

discriminative language modeling this was not a 

major issue as the work was concerned with 

specific applications, and these provided a natural 

definition of negative samples. For instance, 

(Roark et al., 2007) proposed a discriminative 

language model for a speech recognition task. 

Given an acoustic sequence, a baseline recognizer 

was used to generate a set of possible 

transcriptions. The correct transcription was taken 

as a positive sample, while the rest were taken as 

negative samples. More recently, however, 

Okanohara and Tsujii (2007) showed that a 

                                                           
1 Conditional maximum entropy models (Rosenfeld, 1996) 

provide somewhat of a counter-example, but there, too, many 

kinds of global and non-local features are difficult to use 

(Rosenfeld, 1997). 
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discriminative language model can be trained 

independently of a specific application by using a 

generative language model to obtain the negative 

samples. Using a non-linear large-margin learning 

algorithm, they successfully trained a classifier to 

discriminate real sentences from sentences 

generated by a trigram. 

In this paper we extend this line of work to 

study the extent to which discriminative learning 

methods can lead to better generative language 

models per-se. The basic intuition is the following: 

if a classifier can be used to discriminate real sen-

tences from 'false' sentences generated by a lan-

guage model, then it can also be used to improve 

that language model by taking probability mass 

away from sentences classified as false and trans-

ferring it to sentences classified as real. If the re-

sulting language model can be efficiently sampled 

from, then this process can be repeated, until gen-

erated sentences can no longer be distinguished 

from real ones. 

The remainder of the paper is structured as 

follows: In the next section we formally develop 

this intuition, providing a quick overview of the 

whole-sentence maximum-entropy model and of 

self-supervised boosting, two previous works on 

which we rely. We also present the method we use 

for sampling from the current model, which for the 

present work is far more efficient than the classical 

Gibbs sampling. Our experimental results are 

presented in section 3, and section 4 concludes 

with a discussion and a future outlook. 

 

2 Learning Framework 

2.1 Whole-sentence maximum-entropy model 

The vast majority of statistical language models 

estimate the probability of a given sentence as a 

product of conditional probabilities via the chain 

rule: 
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h w w −=  is called the history of the 

word wi. Most work on language modeling 

therefore is directed at the estimation of 

( | )i iP w h . While this is theoretically correct, it 

makes it difficult to incorporate global information 

about the sentence into the model, e.g. length, 

grammaticality, etc'. For this reason, the whole-

sentence maximum-entropy model was proposed 

in (Rosenfeld, 1997). In the WSME model the 

probability of a sentence is defined directly as: 
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Where 
0 ( )P s  is some baseline model, 

0 ( ) exp( ( ))
def

i i
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Z P s f sλ= ⋅∑ ∑  is a normalization 

constant and the {fi}'s are features encoding some 

information about the sentence. Most generally, a 

feature is a function from the set of word 

sequences to R, the set of real numbers. However, 

in most applications, as in our work, the features 

are taken to be binary. Lastly, the {λi}'s are real 

coefficients encoding the relative importance of 

their corresponding features. In the WSME 

framework the set of features {fi} is given ahead of 

training by the modeler, and learning consists of 

estimating the coefficients {λi}. This is done by 

stipulating the constraints 
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where pɶ  is the empirical distribution defined by 

the training set {s1, ... sN}.
2
 If these constraints are 

consistent then there is a unique solution in {λi} 

that satisfies them. This solution is guaranteed to 

be the one closest to P0 in the Kullback-Leblier 

sense among all solutions satisfying (3). It is also 

guaranteed to be the maximum likelihood solution 

for the exponential family. For more details, see 

(Chen and Rosenfeld, 1999a). 

2.2 Self-supervised boosting 

 A different approach to learning the same sort 

of model as in (2) was proposed in (Welling et al., 

2003). Here, instead of having all the features pre-

given, they are learned one at a time along with 

their corresponding coefficients. Welling et al. 

show that adding a new feature to (2) can be 

                                                           
2 Sometimes a smoothed version of (3) is used instead (e.g. 

Chen and Rosenfeld, 1999b). 
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interpreted as gradient ascent on the log-likelihood 

function, and show that the optimal feature is the 

one that best discriminates real data from data 

sampled from the current model. To see this, let 

 
0

( ) ln( ( )) ( )
i i

i

E s P s f sλ= +∑  (4) 

denote the energy associated with sentence s.
3
 

Equation (2) can now be rewritten as - 

 
1
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where Z is a normalization constant as before. The 

derivative of the log-likelihood with respect to an 

arbitrary parameter β is then – 
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where {s1, ... sN} is once again the training corpus, 

and the second sum runs over the set of all word 

sequences.  

Now, suppose we change the energy function by 

adding an infinitesimal multiple of a new feature 

f
*
. The log-likelihood after adding the feature can 

be approximated by – 
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where the derivative of L is taken at 0ε = . 

Because the optimal feature is the one that 

maximizes the increase in log-likelihood, we are 

searching for a feature that maximizes this 

derivative. Using equation (6) and noting that 

*E
f
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 we have – 
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This expression cannot be computed in practice, 

because the set of all word sequences S is infinite. 

The second term however can approximated using 

samples {ui} from the current model – 
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3 In (Welling et al., 2003) the term for P0 does not appear, 

which is equivalent to taking the uniform distribution as the 

baseline model. 

In other words, given a set of N samples {ui} 

from the model, the optimal feature to add is one 

that gives high scores to sampled sentences and 

low ones to real sentences. By labeling real 

sentences with 0 and sampled sentences with 1, the 

task of learning the feature translates into the task 

of training a classifier to discriminate between 

these two classes of sentences.  

In the remainder of the paper we will use feature 

and classifier interchangeably. 

2.3 Rejection sampling 

Self-supervised boosting was presented as a 

general method for density estimation, and was not 

tested in the context of language modeling. Rather, 

Welling at al. demonstrated its effectiveness in 

modeling hand-written digits and on synthetic data. 

Đn both cases essentially linear classifiers were 

used as features. As these are computationally very 

efficient, the authors could use a variant of Gibbs 

sampling for generating negative samples.  

Unfortunately, as shown in (Okanohara and Tsujii, 

2007), with the represetation of sentences that we 

use, linear classifiers cannot discriminate real 

sentences from sentences sampled from a trigram, 

which is the model we use as a baseline, so here 

we resort to a non-linear large-margin classifier 

(see section 3 for details). While large-margin 

classifiers consistently out-perform other learning 

algorithms in many NLP tasks, their non-linear 

variations are also notoriously slow when it comes 

to computing their decision function – taking time 

that can be linear in the size of their training data. 

This means that MCMC techniques like Gibbs 

sampling quickly become intractable, even for 

small corpora, as they require performing very 

large numbers of classifications. For this reason we 

use a different sampling scheme which we refer to 

as rejection sampling. This allows us to sample 

from the true model distribution while requiring a 

drastically smaller number of classifications, as 

long as the current model isn't too far removed 

from the baseline. 

We will start by describing the sampling 

process, and then show that the probability 

distribution it samples from has the form of  

equation (2). To sample a sentence from the cur-

rent model, we generate one from the baseline 

model, and then pass it through each of the classi-

fiers in the model. If a given classifier classifies the 

53



sentence as a model sentence, then it is rejected 

with a certain probability associated with this clas-

sifier. Only if a sentence is accepted by all classifi-

ers is it taken as a sample sentence. Otherwise, the 

sampling process is restarted. 

Let us derive an expression for the probability of 

a sentence s generated in this manner. To simplify 

notation, assume that at this point we added but a 

single feature f to the baseline model P0, and 

let rejp  stand for the rejection probability 

associated with it. Furthermore, let p- stand for the 

accuracy of f in classifying sentences sampled 

from P0 (negative samples). Formally, 
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First let's assume that ( ) 1f s = . The probability 

for generating s is a sum of the probabilities of two 

disjoint outcomes – the probability of generating s 

as the first sentence and having it survive the 

rejection, plus the probability of generating in the 

first iteration some sentence s' such that ( ') 1f s = , 

rejecting that, and then generating s in one of the 

subsequent iterations. Formally, this means that – 
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Rearranging, we have – 
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Similarly, the probability for a sentence s for 

which ( ) 0f s =  is the probability of generating s 

as the first sentence, plus the probability of 

generating some other sentence s' for which 

( ') 1f s = , rejecting it, and then generating s in a 

future iteration. Formally, 
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Letting 1 rejZ p p−= − , and letting 

ln(1 )rejpλ = − , we have, for all s – 
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This process can be trivially generalized for N 

features. Let – 
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stand for fi's accuracy in classifying sentences 

generated from Pi-1, and let 
i

rejp  be the rejection 

probability associated with the i'th feature. 

Sampling from the model then proceeds by 

sampling a sentence s from P0. For each 1 i N≤ ≤ , 

in order, if ( ) 1if s = , then we attempt to reject s 

with probability 
i

rejp . If s survives all the rejection 

attempts, it is returned as the next sample. Using 

similar arguments as before it's possible to show 

that if we take ln(1 )i

i rejpλ = −  and –  

 

1
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N

i i
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Z p p−
=
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then the probability of a sentence s sampled by this 

process is given by equation (2). Conversely, this 

shows that rejection sampling can be used for 

obtaining negative samples from the model given 

in (2) by taking 1 exp( )i

rej ip λ= − , as long as 

0 exp( ) 1iλ< ≤ . In section 3 we show that in our 

experimental setup, rejection sampling brings 

about enormous savings in the number of 

classifications necessary during training, as 

compared with Gibbs sampling.  

2.4 Adding a new feature 

Given the current model Pi and a new feature 

fi+1, we wish to find the optimal λi+1, or 

equivalently its optimal rejection probability 
1i

rejp
+

. 

In the WSME framework, the weights of the 

features are set in such a way that the expected 

value of the features on sentences sampled from 

the model equals their expected value on real 

sentences. A possible way to set the weight of a 

new feature is therefore to set 
1i

rejp
+

 such that the 

constraint:  

         
1 1 1( ) ( )

iP i p i
E f E f

+ + +=
ɶ

            (18) 

is satistfied, where pɶ   is once again the empirical 

distribution defined by the training set. Intuitively, 

this means that the new feature could no longer be 

used to discriminate between sentences sampled 

from Pi+1 and real sentences. However, setting 
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1i

rejp
+

in this manner may violate the constraints (18) 

associated with the features already existing in the 

model, thus hampering the model's performance. 

Therefore, we set the new feature's rejection 

probability by directly searching for the one that 

minimizes an estimate of Pi+1's perplexity on a set 

of held out real sentences. To do this, we first 

sample a new set of sentences from Pi, 

independently of the set that was used for training 

1if + , and use it to estimate 
1i

p
+

− . For any 

arbitrarily determined 
1i

rej
p +

, this enables us to 

calculate an estimate for the normalization constant 

Z (equation 17), and therefore an estimate for  Pi+1. 

We do this for a range of possible values for 
1i

rej
p +

 

and pick the one that leads to the largest reduction 

in perplexity on the held out data.
4
  

3 Experimental work 

We tested our approach on the ATIS natural 

language corpus (Hemphill et al., 1990). We split 

the corpus into a training set of 11,000 sentences, a 

held-out set containing 1,045 sentences, and a test 

set containing 1,000 sentences which were 

reserved for measuring perplexity. The corpus was 

pre-processed so that every word appearing less 

than three times was replaced by a special UNK 

symbol. The resulting lexicon contained 603 word 

types.  

Our learning framework leaves open a number 

of design choices:  

1. Baseline language model: For P0 we used a 

trigram with modified kneser-ney smoothing 

[Chen and Goodman, 1998], which is still 

considered one of the best smoothing methods for 

n-gram language models. 

 

2. Sentence representation: Each sentence was 

represented as the collection of unigrams, bigrams 

and trigrams it contained. A coordinate was 

reserved for each such n-gram which appeared in 

the data, whether real or sampled. The value of the 

n'th coordinate in the vector representation of 

                                                           
4 Interestingly, in practice both methods result in near identical 

rejection probabilities, within a precision of 0.0001. This 

indicates that satisfying the constraint (18) for the new feature 

is more important, in terms of perplexity, than preserving the 

constraints of the previous features, insofar as those get 

violated. 

sentence s was set to the number of times the 

corresponding n-gram appeared in s.  

 

3. Type of classifiers: For our features we used 

large-margin classifiers trained using the online 

algorithm described in (Crammer et al., 2006). The 

code for the classifier was generously provided by 

Daisuke Okanohara. This code was extensively 

optimized to take advantage of the very sparse 

sentence representation described above. As shown 

in (Okanohara and Tsujii, 2007), using this 

representation, a linear classifier cannot distinguish 

sentences sampled from a trigram and real 

sentences. Therefore, we used a 3rd order 

polynomial kernel, which was found to give good 

results. No special effort was otherwise made in 

order to optimize the parameters of the classifiers. 

 

4. Stopping criterion: The process of adding 

features to the model was continued until the 

classification performance of the next feature was 

within 2% of chance performance. 

 

We refer to the language model obtained by this 

approach as the boosted model to distinguish it 

from the baseline model. To estimate the boosted 

model's perplexity we needed to estimate the 

normalization constant Z in equation (2). Since this 

constant is equal to  
0
(exp( ))

P i i

i

E fλ∑  it can be 

estimated from a large-enough sample from P0. We 

used 10,000,000 sentences generated from the 

baseline trigram and took the upper bound of the 

95% confidence interval of the sample mean as an 

upper bound for Z. This means the perplexity 

estimates we report are upper bounds for the real 

model perplexity with 95% confidence.
5
  

The algorithm converged after 21 features were 

added to the model. Figure 1 presents the model's 

perplexity on the test set estimated after each 

iteration. The perplexity of the final model is 9.02. 

In comparison, the perplexity of the modified 

kneser-ney smoothed trigram on this corpus is 

10.18. This is an 11.4% improvement relative to 

the baseline model. 

                                                           
5 Alternatively we could have used our estimate for PN(s) de-

scribed in section 2.4. A large sample of sentences would still 

be necessary though, to get a good estimate for equation (16). 
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Figure 1. Model perplexity during training. The x-

axis denotes the number of features added to the 

model. The final perplexity after 21 features is 9.02. 

 

 
Figure 2. Classifier accuracy during training, 

assessed on held-out data. 0.5 signifies chance 
performance. 

 

Figure 2 shows the accuracy of the trained 

features on held-out data. The held-out data was 

composed of equal parts real and model sentences, 

so 50% accuracy is chance performance. As might 

have been expected, the classifiers start out with a 

relatively high accuracy of 68%, which dwindles 

down to little over 50% as more features are added 

to the model. Not surprisingly, there is a strong 

correlation between the accuracy of a feature and 

the reduction in perplexity it engenders (spearman 

correlation coefficient r=0.89, p<10
-5

.)  

In tables 1 and 2 we show a representative 

sample of sentences from the baseline model and 

from the final model. As the baseline model is a 

trigram, it cannot capture dependencies that span a 

range longer than two words. Hence sentences that 

start out seemingly in one topic and then veer off 

to another are common. The global information 

available to the features used by the boosted model 

greatly reduces this phenomenon. To get a 

quantitative sense of this, we generated 200 

sentences from each model and submitted them for 

grammaticality testing by a proficient (though non-

native) English speaker. Of the trigram-generated  

please list costs in at pittsburgh 

what type of airplane is have an early morning 

what types of aircraft is that a meal 

what not nineteen forty two 

between boston and atlanta on august fifteenth 

which airlines fly american flying on 

what is the flight leaving pittsburgh after six p m 

Table 1. A sample of sentences generated by the 

baseline model, a trigram smoothed with modified 

kneser-ney smoothing. 

 

 

what is the cost of flight d l three seventeen 

sixty five 

what time does flight at eight thirty eight a m 

and six p m 

what does fare code q w mean 

what kind of aircraft will i be flying on 

flights from philadelphia on saturday 

what is the fare for flight two nine six 

what is the cost of coach transcontinental flight 

u a three oh two from denver to san francisco 

Table 2. A sample of sentences generated by the final 

model 

 

 

sentences, 86 were deemed grammatical (43%), 

while of those generated by the boosted model 132 

were grammatical (66%). This difference is 

statistically significant with p<10
-5

. 

Finally, let us quantify the computational 

savings obtained from using rejection sampling. 

Let |V| stand for the lexicon size (here |V|=603) 

and |L| for the average sentence length (|L|=14). In 

Gibbs sampling, a sentence is sampled by starting 

out with a random sequence of words. For each 

word position, the current word is replaced with 

each word in the lexicon, and the probability of the 

resulting sentence is calculated. Then one of the 

words is randomly selected for this position in 

proportion to the calculated probabilities. The 

sentence has to be scanned in this manner several 

times for the sample to approximate the model 

distribution. Assuming we perform only 3 scans 

for each sentence, Gibbs sampling would have thus 

required us to classify 3 | || | 25,000V L ≈  

sentences per sampled sentence. Given that in each 

iteration we generate 12,045 sentences, and that in 

the n'th iteration each sentence has to be classified 

by n features, this gives a total of roughly 
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107 10⋅ classifications after 21 iterations. In 

contrast, using rejection sampling, we used only 
76.7 10⋅  classifications in total – a difference of 

over three orders of magnitude.  

 

4 Discussion 

In this work we presented a method that enables 

using discriminative learning methods for refining  

generative language models. Utilizing large- 

margin classifiers that are trained to discriminate 

real sentences from model sentences we showed 

that sizeable improvements in perplexity over a 

state-of-the-art smoothed trigram are possible. 

Our method bears some similarity to the recently 

developed Contrastive Estimation method (Smith 

and Eisner, 2004). Contrastive estimation (CE) was 

proposed as a means for training log-linear prob-

abilistic models. As all training methods, contras-

tive estimation pushes probability mass unto 

positive samples. Unlike other methods, CE takes 

this probability mass from the 'neighborhood' of 

each positive sample. For example, given a real 

sentence s, CE might give it more probability by 

taking away probability from similar sentences 

which are likely to be ungrammatical, for instance 

sentences that are formed by taking s and switch-

ing the order of two adjacent words in it. This is 

intuitively similar to our approach – effectively, 

our model gives probability mass to positive sam-

ples, taking it away from sentences classified as 

model sentences. A major difference between the 

two approaches, however, is that in CE the defini-

tion of the sentence's neighborhood must be speci-

fied in advance by the modeler. In our work, the 

'neighborhood' is determined automatically and 

dynamically as learning proceeds, according to the 

capabilities of the classifiers used. 

The sentence representation we chose for this 

work is rather simple, and was intended primarily 

to demonstrate the efficacy of our approach. In 

future work we plan to experiment with richer 

representations, e.g. including long-range n-grams 

(Rosenfeld, 1996), class n-grams (Brown et al., 

1992), grammatical features (Amaya and Benedy, 

2001), etc'.  

The main computational bottleneck in our 

approach is the generation of negative samples 

from the current model. Rejection sampling 

allowed us to use computationally intensive 

classifiers as our features by reducing the number 

of classifications that had to be performed during 

the sampling process. However, if the boosted 

model strays too far from the baseline P0, these 

savings will be negated by the very large sentence 

rejection probabilities that will ensue. This is likely 

to be the case when richer representations as 

suggested above are used, necessitating a return to 

Gibbs sampling. Therefore, in future work we plan 

to experiment with classifiers whose decision 

function is cheaper to compute, such as neural 

networks and decision trees. Another possible 

direction would be using the recently proposed 

Deep Belief Network formalism (Hinton et al., 

2006). DBNs utilize semi-linear features which are 

stacked recursively and thus very efficiently model 

non-linearities in their data. These have been used 

in the past for language modeling (Mnih and 

Hinton, 2007), but not within the whole-sentence 

framework. 
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