
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 51–58,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

Refining Generative Language Models using Discriminative Learning

Ben Sandbank

Blavatnik School of Computer Science

Tel-Aviv University

Tel-Aviv 69978, Israel
sandban@post.tau.ac.il

Abstract

We propose a new approach to language mod-

eling which utilizes discriminative learning

methods. Our approach is an iterative one:

starting with an initial language model, in

each iteration we generate 'false' sentences

from the current model, and then train a clas-

sifier to discriminate between them and sen-

tences from the training corpus. To the extent

that this succeeds, the classifier is incorpo-

rated into the model by lowering the probabil-

ity of sentences classified as false, and the

process is repeated. We demonstrate the effec-

tiveness of this approach on a natural lan-

guage corpus and show it provides an 11.4%

improvement in perplexity over a modified

kneser-ney smoothed trigram.

1 Introduction

Language modeling is a fundamental task in natu-

ral language processing and is routinely employed

in a wide range of applications, such as speech

recognition, machine translation, etc’. Tradition-

ally, a language model is a probabilistic model

which assigns a probability value to a sentence or a

sequence of words. We refer to these as generative

language models. A very popular example of a

generative language model is the n-gram, which

conditions the probability of the next word on the

previous (n-1)-words.

Although simple and widely-applicable, it has

proven difficult to allow n-grams, and other forms

of generative language models as well, to take ad-

vantage of non-local and overlapping features.
1

These sorts of features, however, pose no problem

for standard discriminative learning methods, e.g.

large-margin classifiers. For this reason, a new

class of language model, the discriminative lan-

guage model, has been proposed recently to aug-

ment generative language models (Gao et al.,

2005; Roark et al., 2007). Instead of providing

probability values, discriminative language models

directly classify sentences as either correct or in-

correct, where the definition of correctness de-

pends on the application (e.g. grammatical /

ungrammatical, correct translation / incorrect trans-

lation, etc').

Discriminative learning methods require

negative samples. Given that the corpora used for

training language models contain only real

sentences, i.e. positive samples, obtaining these

can be problematic. In most work on

discriminative language modeling this was not a

major issue as the work was concerned with

specific applications, and these provided a natural

definition of negative samples. For instance,

(Roark et al., 2007) proposed a discriminative

language model for a speech recognition task.

Given an acoustic sequence, a baseline recognizer

was used to generate a set of possible

transcriptions. The correct transcription was taken

as a positive sample, while the rest were taken as

negative samples. More recently, however,

Okanohara and Tsujii (2007) showed that a

1 Conditional maximum entropy models (Rosenfeld, 1996)

provide somewhat of a counter-example, but there, too, many

kinds of global and non-local features are difficult to use

(Rosenfeld, 1997).

51

discriminative language model can be trained

independently of a specific application by using a

generative language model to obtain the negative

samples. Using a non-linear large-margin learning

algorithm, they successfully trained a classifier to

discriminate real sentences from sentences

generated by a trigram.

In this paper we extend this line of work to

study the extent to which discriminative learning

methods can lead to better generative language

models per-se. The basic intuition is the following:

if a classifier can be used to discriminate real sen-

tences from 'false' sentences generated by a lan-

guage model, then it can also be used to improve

that language model by taking probability mass

away from sentences classified as false and trans-

ferring it to sentences classified as real. If the re-

sulting language model can be efficiently sampled

from, then this process can be repeated, until gen-

erated sentences can no longer be distinguished

from real ones.

The remainder of the paper is structured as

follows: In the next section we formally develop

this intuition, providing a quick overview of the

whole-sentence maximum-entropy model and of

self-supervised boosting, two previous works on

which we rely. We also present the method we use

for sampling from the current model, which for the

present work is far more efficient than the classical

Gibbs sampling. Our experimental results are

presented in section 3, and section 4 concludes

with a discussion and a future outlook.

2 Learning Framework

2.1 Whole-sentence maximum-entropy model

The vast majority of statistical language models

estimate the probability of a given sentence as a

product of conditional probabilities via the chain

rule:

1

1

P() P(...) P(|)
ndef def

n i i

i

s w w w h
=

= = ∏ (1)

where
1 1...

def

i i
h w w −= is called the history of the

word wi. Most work on language modeling

therefore is directed at the estimation of

(|)i iP w h . While this is theoretically correct, it

makes it difficult to incorporate global information

about the sentence into the model, e.g. length,

grammaticality, etc'. For this reason, the whole-

sentence maximum-entropy model was proposed

in (Rosenfeld, 1997). In the WSME model the

probability of a sentence is defined directly as:

0

1
() () exp(())

i i

i

P s P s f s
Z

λ= ⋅ ∑ (2)

Where
0 ()P s is some baseline model,

0 () exp(())
def

i i

s i

Z P s f sλ= ⋅∑ ∑ is a normalization

constant and the {fi}'s are features encoding some

information about the sentence. Most generally, a

feature is a function from the set of word

sequences to R, the set of real numbers. However,

in most applications, as in our work, the features

are taken to be binary. Lastly, the {λi}'s are real

coefficients encoding the relative importance of

their corresponding features. In the WSME

framework the set of features {fi} is given ahead of

training by the modeler, and learning consists of

estimating the coefficients {λi}. This is done by

stipulating the constraints

1

1
() () ()

Ndef

p i p i i j

j

E f E f f s
N =

= = ∑ɶ
 (3)

where pɶ is the empirical distribution defined by

the training set {s1, ... sN}.
2
 If these constraints are

consistent then there is a unique solution in {λi}

that satisfies them. This solution is guaranteed to

be the one closest to P0 in the Kullback-Leblier

sense among all solutions satisfying (3). It is also

guaranteed to be the maximum likelihood solution

for the exponential family. For more details, see

(Chen and Rosenfeld, 1999a).

2.2 Self-supervised boosting

 A different approach to learning the same sort

of model as in (2) was proposed in (Welling et al.,

2003). Here, instead of having all the features pre-

given, they are learned one at a time along with

their corresponding coefficients. Welling et al.

show that adding a new feature to (2) can be

2 Sometimes a smoothed version of (3) is used instead (e.g.

Chen and Rosenfeld, 1999b).

52

interpreted as gradient ascent on the log-likelihood

function, and show that the optimal feature is the

one that best discriminates real data from data

sampled from the current model. To see this, let

0

() ln(()) ()
i i

i

E s P s f sλ= +∑ (4)

denote the energy associated with sentence s.
3

Equation (2) can now be rewritten as -

1

() exp(())P s E s
Z

= (5)

where Z is a normalization constant as before. The

derivative of the log-likelihood with respect to an

arbitrary parameter β is then –

1

()1 ()
()

N
i

i s S

E sL E s
P s

Nβ β β= ∈

∂∂ ∂
= − +

∂ ∂ ∂
∑ ∑ (6)

where {s1, ... sN} is once again the training corpus,

and the second sum runs over the set of all word

sequences.

Now, suppose we change the energy function by

adding an infinitesimal multiple of a new feature

f
*
. The log-likelihood after adding the feature can

be approximated by –

*

(() ()) (())
L

L E s f s L E sε ε
ε

∂
+ ≈ +

∂
 (7)

where the derivative of L is taken at 0ε = .

Because the optimal feature is the one that

maximizes the increase in log-likelihood, we are

searching for a feature that maximizes this

derivative. Using equation (6) and noting that

*E
f

ε

∂
=

∂
 we have –

* *

1

1
() () ()

N

i

i s S

L
f s P s f s

Nε = ∈

∂
= − +

∂
∑ ∑ (8)

This expression cannot be computed in practice,

because the set of all word sequences S is infinite.

The second term however can approximated using

samples {ui} from the current model –

* *

1 1

1 1
() ()

N N

i i

i i

L
f s f u

N Nε = =

∂
≈ − +

∂
∑ ∑ (9)

3 In (Welling et al., 2003) the term for P0 does not appear,

which is equivalent to taking the uniform distribution as the

baseline model.

In other words, given a set of N samples {ui}

from the model, the optimal feature to add is one

that gives high scores to sampled sentences and

low ones to real sentences. By labeling real

sentences with 0 and sampled sentences with 1, the

task of learning the feature translates into the task

of training a classifier to discriminate between

these two classes of sentences.

In the remainder of the paper we will use feature

and classifier interchangeably.

2.3 Rejection sampling

Self-supervised boosting was presented as a

general method for density estimation, and was not

tested in the context of language modeling. Rather,

Welling at al. demonstrated its effectiveness in

modeling hand-written digits and on synthetic data.

Đn both cases essentially linear classifiers were

used as features. As these are computationally very

efficient, the authors could use a variant of Gibbs

sampling for generating negative samples.

Unfortunately, as shown in (Okanohara and Tsujii,

2007), with the represetation of sentences that we

use, linear classifiers cannot discriminate real

sentences from sentences sampled from a trigram,

which is the model we use as a baseline, so here

we resort to a non-linear large-margin classifier

(see section 3 for details). While large-margin

classifiers consistently out-perform other learning

algorithms in many NLP tasks, their non-linear

variations are also notoriously slow when it comes

to computing their decision function – taking time

that can be linear in the size of their training data.

This means that MCMC techniques like Gibbs

sampling quickly become intractable, even for

small corpora, as they require performing very

large numbers of classifications. For this reason we

use a different sampling scheme which we refer to

as rejection sampling. This allows us to sample

from the true model distribution while requiring a

drastically smaller number of classifications, as

long as the current model isn't too far removed

from the baseline.

We will start by describing the sampling

process, and then show that the probability

distribution it samples from has the form of

equation (2). To sample a sentence from the cur-

rent model, we generate one from the baseline

model, and then pass it through each of the classi-

fiers in the model. If a given classifier classifies the

53

sentence as a model sentence, then it is rejected

with a certain probability associated with this clas-

sifier. Only if a sentence is accepted by all classifi-

ers is it taken as a sample sentence. Otherwise, the

sampling process is restarted.

Let us derive an expression for the probability of

a sentence s generated in this manner. To simplify

notation, assume that at this point we added but a

single feature f to the baseline model P0, and

let rejp stand for the rejection probability

associated with it. Furthermore, let p- stand for the

accuracy of f in classifying sentences sampled

from P0 (negative samples). Formally,

0
()

P
p E f− = (10)

First let's assume that () 1f s = . The probability

for generating s is a sum of the probabilities of two

disjoint outcomes – the probability of generating s

as the first sentence and having it survive the

rejection, plus the probability of generating in the

first iteration some sentence s' such that (') 1f s = ,

rejecting that, and then generating s in one of the

subsequent iterations. Formally, this means that –

 1 0 1() (1) () ()rej rejP s p P s p p P s−= − + (11)

Rearranging, we have –

 1 0

1
() ()

1

rej

rej

p
P s P s

p p−

−
=

−
 (12)

Similarly, the probability for a sentence s for

which () 0f s = is the probability of generating s

as the first sentence, plus the probability of

generating some other sentence s' for which

(') 1f s = , rejecting it, and then generating s in a

future iteration. Formally,

1 0 1() () ()rejP s P s p p P s−= + (13)

and hence –

 1 0

1
() ()

1 rej

P s P s
p p−

=
−

 (14)

Letting 1 rejZ p p−= − , and letting

ln(1)rejpλ = − , we have, for all s –

1 0

1
() () exp(())P s P s f s

Z
λ= ⋅ ⋅ (15)

This process can be trivially generalized for N

features. Let –

1
()

i

i

P ip E f
−− = (16)

stand for fi's accuracy in classifying sentences

generated from Pi-1, and let
i

rejp be the rejection

probability associated with the i'th feature.

Sampling from the model then proceeds by

sampling a sentence s from P0. For each 1 i N≤ ≤ ,

in order, if () 1if s = , then we attempt to reject s

with probability
i

rejp . If s survives all the rejection

attempts, it is returned as the next sample. Using

similar arguments as before it's possible to show

that if we take ln(1)i

i rejpλ = − and –

1

(1)
N

i i

rej

i

Z p p−
=

= −∏ (17)

then the probability of a sentence s sampled by this

process is given by equation (2). Conversely, this

shows that rejection sampling can be used for

obtaining negative samples from the model given

in (2) by taking 1 exp()i

rej ip λ= − , as long as

0 exp() 1iλ< ≤ . In section 3 we show that in our

experimental setup, rejection sampling brings

about enormous savings in the number of

classifications necessary during training, as

compared with Gibbs sampling.

2.4 Adding a new feature

Given the current model Pi and a new feature

fi+1, we wish to find the optimal λi+1, or

equivalently its optimal rejection probability
1i

rejp
+

.

In the WSME framework, the weights of the

features are set in such a way that the expected

value of the features on sentences sampled from

the model equals their expected value on real

sentences. A possible way to set the weight of a

new feature is therefore to set
1i

rejp
+

 such that the

constraint:

1 1 1() ()

iP i p i
E f E f

+ + +=
ɶ

 (18)

is satistfied, where pɶ is once again the empirical

distribution defined by the training set. Intuitively,

this means that the new feature could no longer be

used to discriminate between sentences sampled

from Pi+1 and real sentences. However, setting

54

1i

rejp
+

in this manner may violate the constraints (18)

associated with the features already existing in the

model, thus hampering the model's performance.

Therefore, we set the new feature's rejection

probability by directly searching for the one that

minimizes an estimate of Pi+1's perplexity on a set

of held out real sentences. To do this, we first

sample a new set of sentences from Pi,

independently of the set that was used for training

1if + , and use it to estimate
1i

p
+

− . For any

arbitrarily determined
1i

rej
p +

, this enables us to

calculate an estimate for the normalization constant

Z (equation 17), and therefore an estimate for Pi+1.

We do this for a range of possible values for
1i

rej
p +

and pick the one that leads to the largest reduction

in perplexity on the held out data.
4

3 Experimental work

We tested our approach on the ATIS natural

language corpus (Hemphill et al., 1990). We split

the corpus into a training set of 11,000 sentences, a

held-out set containing 1,045 sentences, and a test

set containing 1,000 sentences which were

reserved for measuring perplexity. The corpus was

pre-processed so that every word appearing less

than three times was replaced by a special UNK

symbol. The resulting lexicon contained 603 word

types.

Our learning framework leaves open a number

of design choices:

1. Baseline language model: For P0 we used a

trigram with modified kneser-ney smoothing

[Chen and Goodman, 1998], which is still

considered one of the best smoothing methods for

n-gram language models.

2. Sentence representation: Each sentence was

represented as the collection of unigrams, bigrams

and trigrams it contained. A coordinate was

reserved for each such n-gram which appeared in

the data, whether real or sampled. The value of the

n'th coordinate in the vector representation of

4 Interestingly, in practice both methods result in near identical

rejection probabilities, within a precision of 0.0001. This

indicates that satisfying the constraint (18) for the new feature

is more important, in terms of perplexity, than preserving the

constraints of the previous features, insofar as those get

violated.

sentence s was set to the number of times the

corresponding n-gram appeared in s.

3. Type of classifiers: For our features we used

large-margin classifiers trained using the online

algorithm described in (Crammer et al., 2006). The

code for the classifier was generously provided by

Daisuke Okanohara. This code was extensively

optimized to take advantage of the very sparse

sentence representation described above. As shown

in (Okanohara and Tsujii, 2007), using this

representation, a linear classifier cannot distinguish

sentences sampled from a trigram and real

sentences. Therefore, we used a 3rd order

polynomial kernel, which was found to give good

results. No special effort was otherwise made in

order to optimize the parameters of the classifiers.

4. Stopping criterion: The process of adding

features to the model was continued until the

classification performance of the next feature was

within 2% of chance performance.

We refer to the language model obtained by this

approach as the boosted model to distinguish it

from the baseline model. To estimate the boosted

model's perplexity we needed to estimate the

normalization constant Z in equation (2). Since this

constant is equal to
0
(exp())

P i i

i

E fλ∑ it can be

estimated from a large-enough sample from P0. We

used 10,000,000 sentences generated from the

baseline trigram and took the upper bound of the

95% confidence interval of the sample mean as an

upper bound for Z. This means the perplexity

estimates we report are upper bounds for the real

model perplexity with 95% confidence.
5

The algorithm converged after 21 features were

added to the model. Figure 1 presents the model's

perplexity on the test set estimated after each

iteration. The perplexity of the final model is 9.02.

In comparison, the perplexity of the modified

kneser-ney smoothed trigram on this corpus is

10.18. This is an 11.4% improvement relative to

the baseline model.

5 Alternatively we could have used our estimate for PN(s) de-

scribed in section 2.4. A large sample of sentences would still

be necessary though, to get a good estimate for equation (16).

55

Figure 1. Model perplexity during training. The x-

axis denotes the number of features added to the

model. The final perplexity after 21 features is 9.02.

Figure 2. Classifier accuracy during training,

assessed on held-out data. 0.5 signifies chance
performance.

Figure 2 shows the accuracy of the trained

features on held-out data. The held-out data was

composed of equal parts real and model sentences,

so 50% accuracy is chance performance. As might

have been expected, the classifiers start out with a

relatively high accuracy of 68%, which dwindles

down to little over 50% as more features are added

to the model. Not surprisingly, there is a strong

correlation between the accuracy of a feature and

the reduction in perplexity it engenders (spearman

correlation coefficient r=0.89, p<10
-5

.)

In tables 1 and 2 we show a representative

sample of sentences from the baseline model and

from the final model. As the baseline model is a

trigram, it cannot capture dependencies that span a

range longer than two words. Hence sentences that

start out seemingly in one topic and then veer off

to another are common. The global information

available to the features used by the boosted model

greatly reduces this phenomenon. To get a

quantitative sense of this, we generated 200

sentences from each model and submitted them for

grammaticality testing by a proficient (though non-

native) English speaker. Of the trigram-generated

please list costs in at pittsburgh

what type of airplane is have an early morning

what types of aircraft is that a meal

what not nineteen forty two

between boston and atlanta on august fifteenth

which airlines fly american flying on

what is the flight leaving pittsburgh after six p m

Table 1. A sample of sentences generated by the

baseline model, a trigram smoothed with modified

kneser-ney smoothing.

what is the cost of flight d l three seventeen

sixty five

what time does flight at eight thirty eight a m

and six p m

what does fare code q w mean

what kind of aircraft will i be flying on

flights from philadelphia on saturday

what is the fare for flight two nine six

what is the cost of coach transcontinental flight

u a three oh two from denver to san francisco

Table 2. A sample of sentences generated by the final

model

sentences, 86 were deemed grammatical (43%),

while of those generated by the boosted model 132

were grammatical (66%). This difference is

statistically significant with p<10
-5

.

Finally, let us quantify the computational

savings obtained from using rejection sampling.

Let |V| stand for the lexicon size (here |V|=603)

and |L| for the average sentence length (|L|=14). In

Gibbs sampling, a sentence is sampled by starting

out with a random sequence of words. For each

word position, the current word is replaced with

each word in the lexicon, and the probability of the

resulting sentence is calculated. Then one of the

words is randomly selected for this position in

proportion to the calculated probabilities. The

sentence has to be scanned in this manner several

times for the sample to approximate the model

distribution. Assuming we perform only 3 scans

for each sentence, Gibbs sampling would have thus

required us to classify 3 | || | 25,000V L ≈

sentences per sampled sentence. Given that in each

iteration we generate 12,045 sentences, and that in

the n'th iteration each sentence has to be classified

by n features, this gives a total of roughly

56

107 10⋅ classifications after 21 iterations. In

contrast, using rejection sampling, we used only
76.7 10⋅ classifications in total – a difference of

over three orders of magnitude.

4 Discussion

In this work we presented a method that enables

using discriminative learning methods for refining

generative language models. Utilizing large-

margin classifiers that are trained to discriminate

real sentences from model sentences we showed

that sizeable improvements in perplexity over a

state-of-the-art smoothed trigram are possible.

Our method bears some similarity to the recently

developed Contrastive Estimation method (Smith

and Eisner, 2004). Contrastive estimation (CE) was

proposed as a means for training log-linear prob-

abilistic models. As all training methods, contras-

tive estimation pushes probability mass unto

positive samples. Unlike other methods, CE takes

this probability mass from the 'neighborhood' of

each positive sample. For example, given a real

sentence s, CE might give it more probability by

taking away probability from similar sentences

which are likely to be ungrammatical, for instance

sentences that are formed by taking s and switch-

ing the order of two adjacent words in it. This is

intuitively similar to our approach – effectively,

our model gives probability mass to positive sam-

ples, taking it away from sentences classified as

model sentences. A major difference between the

two approaches, however, is that in CE the defini-

tion of the sentence's neighborhood must be speci-

fied in advance by the modeler. In our work, the

'neighborhood' is determined automatically and

dynamically as learning proceeds, according to the

capabilities of the classifiers used.

The sentence representation we chose for this

work is rather simple, and was intended primarily

to demonstrate the efficacy of our approach. In

future work we plan to experiment with richer

representations, e.g. including long-range n-grams

(Rosenfeld, 1996), class n-grams (Brown et al.,

1992), grammatical features (Amaya and Benedy,

2001), etc'.

The main computational bottleneck in our

approach is the generation of negative samples

from the current model. Rejection sampling

allowed us to use computationally intensive

classifiers as our features by reducing the number

of classifications that had to be performed during

the sampling process. However, if the boosted

model strays too far from the baseline P0, these

savings will be negated by the very large sentence

rejection probabilities that will ensue. This is likely

to be the case when richer representations as

suggested above are used, necessitating a return to

Gibbs sampling. Therefore, in future work we plan

to experiment with classifiers whose decision

function is cheaper to compute, such as neural

networks and decision trees. Another possible

direction would be using the recently proposed

Deep Belief Network formalism (Hinton et al.,

2006). DBNs utilize semi-linear features which are

stacked recursively and thus very efficiently model

non-linearities in their data. These have been used

in the past for language modeling (Mnih and

Hinton, 2007), but not within the whole-sentence

framework.

Acknowledgements

We would like to thank Daisuke Okanohara for

his generosity in providing the code for the large-

margin classifier. The author is supported by the

Yeshaya Horowitz association through the center

of Complexity Science.

References

Fredy Amaya and Jose Miguel Benedi, 2001, Improve-

ment of a whole sentence maximum entropy model us-

ing grammatical features. In Proceedings of the 39th

Annual Meeting of the Association of Computational

Linguistics.

Peter. F. Brown, Vincent. J. Della Pietra, Peter. V.

deSouza, Jenifer. C. Lai and Robert. L. Mercer. Class-

based n-gram models of natural language. Computa-

tional Linguistics, 18(4):467–479, Dec. 1992.

Stanley F. Chen and Joshua. Goodman. 1998. An em-

pirical study of smoothing techniques for language

modeling. Technical Report TR–10–98, Center for Re-

search in Computing Technology, Harvard University

Stanley F. Chen and Ronald Rosenfeld. 1999a. Efficient

sampling and feature selection in whole sentence maxi-

mum entropy language models. In Proceedings of

ICASSP’99. IEEE.

Stanley F. Chen and Ronald Rosenfeld. 1999b. A Gaus-

sian prior for smoothing maximum entropy models.

Technical Report CMUCS-99-108, Carnegie Mellon

University.

57

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai

Shalev-Shwartz, and Yoram Singer. 2006. Online pas-

sive-aggressive algorithms. Journal of Machine Learn-

ing Research.

Jianfeng Gao, Hao Yu, Wei Yuan, and Peng Xu. 2005.

Minimum sample risk methods for language modeling.

In Proc. of HLT/EMNLP.

Charles T. Hemphill, John J. Godfrey and George R.

Doddington. 1990. The ATIS Spoken Language Sys-

tems Pilot Corpus. The workshop on speech and natural

language, Morgan Kaufmann.

Geoffrey E. Hinton, Simon Osindero and Yee-Whye

Teh, 2006. A fast learning algorithm for deep belief

nets, Neural Computation, 18(7):1527–1554.

Andriy Mnih and Geoffrey E. Hinton. 2007. Three new

graphical models for statistical language modeling. In

Proceedings of the 24th international conference on

Machine Learning.

Daisuke Okanohara and Jun'ichi Tsujii. 2007. A dis-

criminative language model with pseudo-negative sam-

ples. In Proceedings of the 45th Annual Meeting of the

Association of Computational Linguistics.

Brian Roark, Murat Saraclar, and Michael Collins.

2007. Discriminative n-gram language modeling. Com-

puter Speech and Language, 21(2):373–392.

Ronald Rosenfeld. 1996. A maximum entropy approach

to adaptive statistical language modeling. Computer

speech and language, 10:187–228

Ronald Rosenfeld. 1997. A whole sentence maximum

entropy language model. In Proc. of the IEEE Workshop

on Automatic Speech Recognition and Understanding.

Noah A. Smith and Jason Eisner. 2005. Contrastive es-

timation: training log-linear models on unlabeled data.

In Proceedings of the 43rd Annual Meeting of the Asso-

ciation of Computational Linguistics.

Max Welling., Richard Zemel and Geoffrey E. Hinton.

2003. Self-Supervised Boosting. Advances in Neural

Information Processing Systems, 15, MIT Press, Cam-

bridge, MA

58

