
Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 11–20,
Honolulu, October 2008. c©2008 Association for Computational Linguistics

It’s a Contradiction—No, it’s Not:
A Case Study using Functional Relations

Alan Ritter, Doug Downey, Stephen Soderland and Oren Etzioni
Turing Center

Department of Computer Science and Engineering
University of Washington

Box 352350
Seattle, WA 98195, USA

{aritter,ddowney,soderlan,etzioni}@cs.washington.edu

Abstract

Contradiction Detection (CD) in text is a
difficult NLP task. We investigate CD
over functions (e.g., BornIn(Person)=Place),
and present a domain-independent algorithm
that automatically discovers phrases denoting
functions with high precision. Previous work
on CD has investigated hand-chosen sentence
pairs. In contrast, we automatically harvested
from the Web pairs of sentences that appear
contradictory, but were surprised to find that
most pairs are in fact consistent. For example,
“Mozart was born in Salzburg” does not con-
tradict “Mozart was born in Austria” despite
the functional nature of the phrase “was born
in”. We show that background knowledge
about meronyms (e.g., Salzburg is in Austria),
synonyms, functions, and more is essential for
success in the CD task.

1 Introduction and Motivation

Detecting contradictory statements is an important
and challenging NLP task with a wide range of
potential applications including analysis of politi-
cal discourse, of scientific literature, and more (de
Marneffe et al., 2008; Condoravdi et al., 2003;
Harabagiu et al., 2006). De Marneffe et al. present a
model of CD that defines the task, analyzes different
types of contradictions, and reports on a CD system.
They report 23% precision and 19% recall at detect-
ing contradictions in the RTE-3 data set (Voorhees,
2008). Although RTE-3 contains a wide variety of
contradictions, it does not reflect the prevalence of
seeming contradictions and the paucity of genuine
contradictions, which we have found in our corpus.

1.1 Contradictions and World Knowledge

Our paper is motivated in part by de Marneffe et al.’s
work, but with some important differences. First,
we introduce a simple logical foundation for the CD
task, which suggests that extensive world knowl-
edge is essential for building a domain-independent
CD system. Second, we automatically generate a
large corpus of apparent contradictions found in ar-
bitrary Web text. We show that most of these appar-
ent contradictions are actually consistent statements
due to meronyms (Alan Turing was born in London
and in England), synonyms (George Bush is mar-
ried to both Mrs. Bush and Laura Bush), hypernyms
(Mozart died of both renal failure and kidney dis-
ease), and reference ambiguity (one John Smith was
born in 1997 and a different John Smith in 1883).
Next, we show how background knowledge enables
a CD system to discard seeming contradictions and
focus on genuine ones.

De Marneffe et al. introduced a typology of con-
tradiction in text, but focused primarily on contra-
dictions that can be detected from linguistic evi-
dence (e.g. negation, antonymy, and structural or
lexical disagreements). We extend their analysis to
a class of contradictions that can only be detected
utilizing background knowledge. Consider for ex-
ample the following sentences:

1) “Mozart was born in Salzburg.”
2) “Mozart was born in Vienna.”
3) “Mozart visited Salzburg.”
4) “Mozart visited Vienna.”

Sentences 1 & 2 are contradictory, but 3 & 4 are
not. Why is that? The distinction is not syntactic.
Rather, sentences 1 and 2 are contradictory because

11

the relation expressed by the phrase “was born in”
can be characterized here as a function from peo-
ple’s names to their unique birthplaces. In contrast,
“visited” does not denote a functional relation.1

We cannot assume that a CD system knows, in
advance, all the functional relations that might ap-
pear in a corpus. Thus, a central challenge for a
function-based CD system is to determine which re-
lations are functional based on a corpus. Intuitively,
we might expect that “functional phrases” such as
“was born in” would typically map person names
to unique place names, making function detection
easy. But, in fact, function detection is surprisingly
difficult because name ambiguity (e.g., John Smith),
common nouns (e.g., “dad” or “mom”), definite de-
scriptions (e.g., “the president”), and other linguistic
phenomena can mask functions in text. For example,
the two sentences “John Smith was born in 1997.”
and “John Smith was born in 1883.” can be viewed
as either evidence that “was born in” does not de-
note a function or, alternatively, that “John Smith”
is ambiguous.

1.2 A CD System Based on Functions

We report on the AUCONTRAIRE CD system, which
addresses each of the above challenges. First, AU-
CONTRAIRE identifies “functional phrases” statis-
tically (Section 3). Second, AUCONTRAIRE uses
these phrases to automatically create a large cor-
pus of apparent contradictions (Section 4.2). Fi-
nally, AUCONTRAIRE sifts through this corpus to
find genuine contradictions using knowledge about
synonymy, meronymy, argument types, and ambi-
guity (Section 4.3).

Instead of analyzing sentences directly, AUCON-
TRAIRE relies on the TEXTRUNNER Open Informa-
tion Extraction system (Banko et al., 2007; Banko
and Etzioni, 2008) to map each sentence to one or
more tuples that represent the entities in the sen-
tences and the relationships between them (e.g.,
was born in(Mozart,Salzburg)). Using extracted tu-
ples greatly simplifies the CD task, because nu-
merous syntactic problems (e.g., anaphora, rela-
tive clauses) and semantic challenges (e.g., quantifi-
cation, counterfactuals, temporal qualification) are

1Although we focus on function-based CD in our case study,
we believe that our observations apply to other types of CD as
well.

delegated to TEXTRUNNER or simply ignored. Nev-
ertheless, extracted tuples are a convenient approxi-
mation of sentence content, which enables us to fo-
cus on function detection and function-based CD.

Our contributions are the following:

• We present a novel model of the Contradiction
Detection (CD) task, which offers a simple log-
ical foundation for the task and emphasizes the
central role of background knowledge.

• We introduce and evaluate a new EM-style al-
gorithm for detecting whether phrases denote
functional relations and whether nouns (e.g.,
“dad”) are ambiguous, which enables a CD sys-
tem to identify functions in arbitrary domains.

• We automatically generate a corpus of seem-
ing contradictions from Web text, and report
on a set of experiments over this corpus, which
provide a baseline for future work on statistical
function identification and CD. 2

2 A Logical Foundation for CD

On what basis can a CD system conclude that two
statements T and H are contradictory? Logically,
contradiction holds when T |= ¬H . As de Marneffe
et al. point out, this occurs when T and H contain
antonyms, negation, or other lexical elements that
suggest that T and H are directly contradictory. But
other types of contradictions can only be detected
with the help of a body of background knowledge
K: In these cases, T and H alone are mutually con-
sistent. That is,

T |=\ ¬H ∧H |=\ ¬T

A contradiction between T and H arises only in
the context of K. That is:

((K ∧ T) |= ¬H) ∨ ((K ∧H) |= ¬T)

Consider the example of Mozart’s birthplace in
the introduction. To detect a contradiction, a CD
system must know that A) “Mozart” refers to the
same entity in both sentences, that B) “was born in”
denotes a functional relation, and that C) Vienna and
Salzburg are inconsistent locations.

2The corpus is available at http://www.cs.
washington.edu/research/aucontraire/

12

Of course, world knowledge, and reasoning about
text, are often uncertain, which leads us to associate
probabilities with a CD system’s conclusions. Nev-
ertheless, the knowledge base K is essential for CD.

We now turn to a probabilistic model that helps
us simultaneously estimate the functionality of re-
lations (B in the above example) and ambiguity of
argument values (A above). Section 4 describes the
remaining components of AUCONTRAIRE.

3 Detecting Functionality and Ambiguity

This section introduces a formal model for comput-
ing the probability that a phrase denotes a function
based on a set of extracted tuples. An extracted tuple
takes the form R(x, y) where (roughly) x is the sub-
ject of a sentence, y is the object, and R is a phrase
denoting the relationship between them. If the re-
lation denoted by R is functional, then typically the
object y is a function of the subject x. Thus, our dis-
cussion focuses on this possibility, though the anal-
ysis is easily extended to the symmetric case.

Logically, a relation R is functional in a vari-
able x if it maps it to a unique variable y:
∀x, y1, y2 R(x, y1) ∧ R(x, y2) ⇒ y1 = y2. Thus,
given a large random sample of ground instances of
R, we could detect with high confidence whether R
is functional. In text, the situation is far more com-
plex due to ambiguity, polysemy, synonymy, and
other linguistic phenomena. Deciding whether R is
functional becomes a probabilistic assessment based
on aggregated textual evidence.

The main evidence that a relation R(x, y) is func-
tional comes from the distribution of y values for
a given x value. If R denotes a function and x is
unambiguous, then we expect the extractions to be
predominantly a single y value, with a few outliers
due to noise. We aggregate the evidence that R is
locally functional for a particular x value to assess
whether R is globally functional for all x.

We refer to a set of extractions with the same
relation R and argument x as a contradiction set
R(x, ·). Figure 1 shows three example contradic-
tion sets. Each example illustrates a situation com-
monly found in our data. Example A in Figure 1
shows strong evidence for a functional relation. 66
out of 70 TEXTRUNNER extractions for was born in
(Mozart, PLACE) have the same y value. An am-
biguous x argument, however, can make a func-

tional relation appear non-functional. Example B
depicts a distribution of y values that appears less
functional due to the fact that “John Adams” refers
to multiple, distinct real-world individuals with that
name. Finally, example C exhibits evidence for a
non-functional relation.

A. was born in(Mozart, PLACE):
Salzburg(66), Germany(3), Vienna(1)

B. was born in(John Adams, PLACE):
Braintree(12), Quincy(10), Worcester(8)

C. lived in(Mozart, PLACE):
Vienna(20), Prague(13), Salzburg(5)

Figure 1: Functional relations such as example A have a
different distribution of y values than non-functional rela-
tions such as C. However, an ambiguous x argument as in
B, can make a functional relation appear non-functional.

3.1 Formal Model of Functions in Text
To decide whether R is functional in x for all x,
we first consider how to detect whether R is lo-
cally functional for a particular value of x. The local
functionality of R with respect to x is the probabil-
ity that R is functional estimated solely on evidence
from the distribution of y values in a contradiction
set R(x, ·).

To decide the probability that R is a function, we
define global functionality as the average local func-
tionality score for each x, weighted by the probabil-
ity that x is unambiguous. Below, we outline an EM-
style algorithm that alternately estimates the proba-
bility that R is functional and the probability that x
is ambiguous.

Let R∗x indicate the event that the relation R is
locally functional for the argument x, and that x is
locally unambiguous for R. Also, let D indicate
the set of observed tuples, and define DR(x,·) as the
multi-set containing the frequencies for extractions
of the form R(x, ·). For example the distribution of
extractions from Figure 1 for example A is
Dwas born in(Mozart,·) = {66, 3, 1}.
Let θfR be the probability that R(x, ·) is locally

functional for a random x, and let Θf be the vector
of these parameters across all relations R. Likewise,
θux represents the probability that x is locally unam-
biguous for random R, and Θu the vector for all x.

13

We wish to determine the maximum a pos-
teriori (MAP) functionality and ambiguity pa-
rameters given the observed data D, that is
arg maxΘf ,Θu P (Θf ,Θu|D). By Bayes Rule:

P (Θf ,Θu|D) =
P (D|Θf ,Θu)P (Θf ,Θu)

P (D)
(1)

We outline a generative model for the data,
P (D|Θf ,Θu). Let us assume that the event R∗x de-
pends only on θfR and θux , and further assume that
given these two parameters, local ambiguity and lo-
cal functionality are conditionally independent. We
obtain the following expression for the probability
of R∗x given the parameters:

P (R∗x|Θf ,Θu) = θfRθ
u
x

We assume each set of data DR(x,·) is gener-
ated independently of all other data and parameters,
given R∗x. From this and the above we have:

P (D|Θf ,Θu) =
∏
R,x

(
P (DR(x,·)|R∗x)θfRθ

u
x

+P (DR(x,·)|¬R∗x)(1− θfRθ
u
x)
)

(2)

These independence assumptions allow us to ex-
press P (D|Θf ,Θu) in terms of distributions over
DR(x,·) given whether or not R∗x holds. We use the
URNS model as described in (Downey et al., 2005)
to estimate these probabilities based on binomial
distributions. In the single-urn URNS model that we
utilize, the extraction process is modeled as draws of
labeled balls from an urn, where the labels are either
correct extractions or errors, and different labels can
be repeated on varying numbers of balls in the urn.

Let k = maxDR(x,·), and let n =
∑
DR(x,·);

we will approximate the distribution over DR(x,·)
in terms of k and n. If R(x, ·) is locally func-
tional and unambiguous, there is exactly one cor-
rect extraction label in the urn (potentially repeated
multiple times). Because the probability of correct-
ness tends to increase with extraction frequency, we
make the simplifying assumption that the most fre-
quently extracted element is correct.3 In this case, k
is the number of correct extractions, which by the

3As this assumption is invalid when there is not a unique
maximal element, we default to the prior P (R∗x) in that case.

URNS model has a binomial distribution with pa-
rameters n and p, where p is the precision of the ex-
traction process. If R(x, ·) is not locally functional
and unambiguous, then we expect k to typically take
on smaller values. Empirically, the underlying fre-
quency of the most frequent element in the¬R∗x case
tends to follow a Beta distribution.

Under the model, the probability of the evidence
given R∗x is:

P (DR(x,·)|R∗x) ≈ P (k, n|R∗x) =

(
n

k

)
pk(1− p)n−k

And the probability of the evidence given ¬R∗x is:

P (DR(x,·)|¬R∗x) ≈ P (k, n|¬R∗x)

=
(n
k

) ∫ 1
0
p
′k+αf−1

(1−p′)n+βf−1−k

B(αf ,βf) dp′

=
(n
k

)
Γ(n− k + βf)Γ(αf + k)

B(αf , βf)Γ(αf + βf + n)
(3)

where n is the sum over DR(x,·), Γ is the Gamma
function and B is the Beta function. αf and βf are
the parameters of the Beta distribution for the ¬R∗x
case. These parameters and the prior distributions
are estimated empirically, based on a sample of the
data set of relations described in Section 5.1.

3.2 Estimating Functionality and Ambiguity
Substituting Equation 3 into Equation 2 and apply-
ing an appropriate prior gives the probability of pa-
rameters Θf and Θu given the observed data D.
However, Equation 2 contains a large product of
sums—with two independent vectors of coefficients,
Θf and Θu—making it difficult to optimize analyti-
cally.

If we knew which arguments were ambiguous,
we would ignore them in computing the function-
ality of a relation. Likewise, if we knew which rela-
tions were non-functional, we would ignore them in
computing the ambiguity of an argument. Instead,
we initialize the Θf and Θu arrays randomly, and
then execute an algorithm similar to Expectation-
Maximization (EM) (Dempster et al., 1977) to arrive
at a high-probability setting of the parameters.

Note that if Θu is fixed, we can compute the ex-
pected fraction of locally unambiguous arguments x
for which R is locally functional, using DR(x′,·) and

14

Equation 3. Likewise, for fixed Θf , for any given
x we can compute the expected fraction of locally
functional relations R that are locally unambiguous
for x.

Specifically, we repeat until convergence:

1. Set θfR = 1
sR

∑
x P (R∗x|DR(x,·))θux for all R.

2. Set θux = 1
sx

∑
R P (R∗x|DR(x,·))θ

f
R for all x.

In both steps above, the sums are taken over only
those x or R for which DR(x,·) is non-empty. Also,
the normalizer sR =

∑
x θ

u
x and likewise sx =∑

R θ
f
R.

As in standard EM, we iteratively update our pa-
rameter values based on an expectation computed
over the unknown variables. However, we alter-
nately optimize two disjoint sets of parameters (the
functionality and ambiguity parameters), rather than
just a single set of parameters as in standard EM.
Investigating the optimality guarantees and conver-
gence properties of our algorithm is an item of future
work.

By iteratively setting the parameters to the expec-
tations in steps 1 and 2, we arrive at a good setting
of the parameters. Section 5.2 reports on the perfor-
mance of this algorithm in practice.

4 System Overview

AUCONTRAIRE identifies phrases denoting func-
tional relations and utilizes these to find contradic-
tory assertions in a massive, open-domain corpus of
text.

AUCONTRAIRE begins by finding extractions of
the form R(x, y), and identifies a set of relations
R that have a high probability of being functional.
Next, AUCONTRAIRE identifies contradiction sets
of the form R(x, ·). In practice, most contradiction
sets turned out to consist overwhelmingly of seem-
ing contradictions—assertions that do not actually
contradict each other for a variety of reasons that
we enumerate in section 4.3. Thus, a major chal-
lenge for AUCONTRAIRE is to tease apart which
pairs of assertions in R(x, ·) represent genuine con-
tradictions.

Here are the main components of AUCONTRAIRE

as illustrated in Figure 2:
Extractor: Create a set of extracted assertions E
from a large corpus of Web pages or other docu-
ments. Each extraction R(x, y) has a probability p

Figure 2: AUCONTRAIRE architecture

of being correct.
Function Learner: Discover a set of functional re-
lations F from among the relations in E . Assign to
each relation in F a probability pf that it is func-
tional.
Contradiction Detector: Query E for assertions
with a relation R in F , and identify sets C of po-
tentially contradictory assertions. Filter out seeming
contradictions in C by reasoning about synonymy,
meronymy, argument types, and argument ambigu-
ity. Assign to each potential contradiction a proba-
bility pc that it is a genuine contradiction.

4.1 Extracting Factual Assertions

AUCONTRAIRE needs to explore a large set of
factual assertions, since genuine contradictions are
quite rare (see Section 5). We used a set of extrac-
tions E from the Open Information Extraction sys-
tem, TEXTRUNNER (Banko et al., 2007), which was
run on a set of 117 million Web pages.

TEXTRUNNER does not require a pre-defined set
of relations, but instead uses shallow linguistic anal-
ysis and a domain-independent model to identify
phrases from the text that serve as relations and
phrases that serve as arguments to that relation.
TEXTRUNNER creates a set of extractions in a sin-
gle pass over the Web page collection and provides
an index to query the vast set of extractions.

Although its extractions are noisy, TEXTRUNNER

provides a probability that the extractions are cor-

15

rect, based in part on corroboration of facts from
different Web pages (Downey et al., 2005).

4.2 Finding Potential Contradictions

The next step of AUCONTRAIRE is to find contra-
diction sets in E .

We used the methods described in Section 3 to
estimate the functionality of the most frequent rela-
tions in E . For each relation R that AUCONTRAIRE

has judged to be functional, we identify contradic-
tion sets R(x, ·), where a relation R and domain ar-
gument x have multiple range arguments y.

4.3 Handling Seeming Contradictions

For a variety of reasons, a pair of extractions
R(x, y1) and R(x, y2) may not be actually contra-
dictory. The following is a list of the major sources
of false positives—pairs of extractions that are not
genuine contradictions, and how they are handled
by AUCONTRAIRE. The features indicative of each
condition are combined using Logistic Regression,
in order to estimate the probability that a given pair,
{R(x, y1), R(x, y2)} is a genuine contradiction.

Synonyms: The set of potential contradictions
died from(Mozart,·) may contain assertions that
Mozart died from renal failure and that he died from
kidney failure. These are distinct values of y, but
do not contradict each other, as the two terms are
synonyms. AUCONTRAIRE uses a variety of knowl-
edge sources to handle synonyms. WordNet is a re-
liable source of synonyms, particularly for common
nouns, but has limited recall. AUCONTRAIRE also
utilizes synonyms generated by RESOLVER (Yates
and Etzioni, 2007)— a system that identifies syn-
onyms from TEXTRUNNER extractions. Addition-
ally, AUCONTRAIRE uses edit-distance and token-
based string similarity (Cohen et al., 2003) between
apparently contradictory values of y to identify syn-
onyms.

Meronyms: For some relations, there is no con-
tradiction when y1 and y2 share a meronym,
i.e. “part of” relation. For example, in the set
born in(Mozart,·) there is no contradiction be-
tween the y values “Salzburg” and “Austria”, but
“Salzburg” conflicts with “Vienna”. Although this
is only true in cases where y occurs in an up-
ward monotone context (MacCartney and Manning,
2007), in practice genuine contradictions between

y-values sharing a meronym relationship are ex-
tremely rare. We therefore simply assigned contra-
dictions between meronyms a probability close to
zero. We used the Tipster Gazetteer4 and WordNet
to identify meronyms, both of which have high pre-
cision but low coverage.

Argument Typing: Two y values are not contra-
dictory if they are of different argument types. For
example, the relation born in can take a date or a
location for the y value. While a person can be
born in only one year and in only one city, a per-
son can be born in both a year and a city. To avoid
such false positives, AUCONTRAIRE uses a sim-
ple named-entity tagger5 in combination with large
dictionaries of person and location names to as-
sign high-level types (person, location, date, other)
to each argument. AUCONTRAIRE filters out ex-
tractions from a contradiction set that do not have
matching argument types.

Ambiguity: As pointed out in Section 3, false con-
tradictions arise when a single x value refers to mul-
tiple real-world entities. For example, if the con-
tradiction set born in(John Sutherland, ·) includes
birth years of both 1827 and 1878, is one of these a
mistake, or do we have a grandfather and grandson
with the same name? AUCONTRAIRE computes the
probability that an x value is unambiguous as part
of its Function Learner (see Section 3). An x value
can be identified as ambiguous if its distribution of
y values is non-functional for multiple functional re-
lations.

If a pair of extractions, {R(x, y1), R(x, y2)}, does
not fall into any of the above categories and R is
functional, then it is likely that the sentences under-
lying the extractions are indeed contradictory. We
combined the various knowledge sources described
above using Logistic Regression, and used 10-fold
cross-validation to automatically tune the weights
associated with each knowledge source. In addi-
tion, the learning algorithm also utilizes the follow-
ing features:

• Global functionality of the relation, θfR
• Global unambiguity of x, θux
4http://crl.nmsu.edu/cgi-bin/Tools/CLR/

clrcat
5http://search.cpan.org/˜simon/

Lingua-EN-NamedEntity-1.1/NamedEntity.pm

16

• Local functionality of R(x, ·)
• String similarity (a combination of token-based

similarity and edit-distance) between y1 and y2

• The argument types (person, location, date, or
other)

The learned model is then used to estimate how
likely a potential contradiction {R(x, y1), R(x, y2)}
is to be genuine.

5 Experimental Results

We evaluated several aspects of AUCONTRAIRE:
its ability to detect functional relations and to de-
tect ambiguous arguments (Section 5.2); its preci-
sion and recall in contradiction detection (Section
5.3); and the contribution of AUCONTRAIRE’s key
knowledge sources (Section 5.4).

5.1 Data Set
To evaluate AUCONTRAIRE we used TEXTRUN-
NER’s extractions from a corpus of 117 million Web
pages. We restricted our data set to the 1,000 most
frequent relations, in part to keep the experiments
tractable and also to ensure sufficient statistical sup-
port for identifying functional relations.

We labeled each relation as functional or not,
and computed an estimate of the probability it is
functional as described in section 3.2. Section 5.2
presents the results of the Function Learner on this
set of relations. We took the top 2% (20 relations)
as F , the set of functional relations in our exper-
iments. Out of these, 75% are indeed functional.
Some examples include: was born in, died in, and
was founded by.

There were 1.2 million extractions for all thou-
sand relations, and about 20,000 extractions in 6,000
contradiction sets for all relations in F .

We hand-tagged 10% of the contradiction sets
R(x, ·) where R ∈ F , discarding any sets with over
20 distinct y values since the x argument for that
set is almost certainly ambiguous. This resulted in a
data set of 567 contradiction sets containing a total
of 2,564 extractions and 8,844 potentially contradic-
tory pairs of extractions.

We labeled each of these 8,844 pairs as contradic-
tory or not. In each case, we inspected the original
sentences, and if the distinction was unclear, con-
sulted the original source Web pages, Wikipedia ar-
ticles, and Web search engine results.

In our data set, genuine contradictions over func-
tional relations are surprisingly rare. We found only
110 genuine contradictions in the hand-tagged sam-
ple, only 1.2% of the potential contradiction pairs.

5.2 Detecting Functionality and Ambiguity

We ran AUCONTRAIRE’s EM algorithm on the
thousand most frequent relations. Performance con-
verged after 5 iterations resulting in estimates of the
probability that each relation is functional and each
x argument is unambiguous. We used these proba-
bilities to generate the precision-recall curves shown
in Figure 3.

The graph on the left shows results for function-
ality, while the graph on the right shows precision at
finding unambiguous arguments. The solid lines are
results after 5 iterations of EM, and the dashed lines
are from computing functionality or ambiguity with-
out EM (i.e. assuming uniform values of Θc when
computing Θf and vice versa). The EM algorithm
improved results for both functionality and ambigu-
ity, increasing area under curve (AUC) by 19% for
functionality and by 31% for ambiguity.

Of course, the ultimate test of how well AUCON-
TRAIRE can identify functional relations is how well
the Contradiction Detector performs on automati-
cally identified functional relations.

5.3 Detecting Contradictions

We conducted experiments to evaluate how well
AUCONTRAIRE distinguishes genuine contradic-
tions from false positives.

The bold line in Figure 4 depicts AUCONTRAIRE

performance on the distribution of contradictions
and seeming contradictions found in actual Web
data. The dashed line shows the performance of AU-
CONTRAIRE on an artificially “balanced” data set
that we constructed to contain 50% genuine contra-
dictions and 50% seeming ones.

Previous research in CD presented results on
manually selected data sets with a relatively bal-
anced mix of positive and negative instances. As
Figure 4 suggests, this is a much easier problem than
CD “in the wild”. The data gathered from the Web
is badly skewed, containing only 1.2% genuine con-
tradictions.

17

Functionality

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AuContraire
No Iteration

Ambiguity

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AuContraire
No Iteration

Figure 3: After 5 iterations of EM, AUCONTRAIRE achieves a 19% boost to area under the precision-recall curve
(AUC) for functionality detection, and a 31% boost to AUC for ambiguity detection.

Recall

P
re

ci
si

on

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Web Distribution
Balanced Data

Figure 4: Performance of AUCONTRAIRE at distinguish-
ing genuine contradictions from false positives. The bold
line is results on the actual distribution of data from the
Web. The dashed line is from a data set constructed to
have 50% positive and 50% negative instances.

5.4 Contribution of Knowledge Sources

We carried out an ablation study to quantify how
much each knowledge source contributes to AU-
CONTRAIRE’s performance. Since most of the
knowledge sources do not apply to numeric argu-
ment values, we excluded the extractions where y
is a number in this study. As shown in Figure 5,
performance of AUCONTRAIRE degrades with no
knowledge of synonyms (NS), with no knowledge
of meronyms (NM), and especially without argu-
ment typing (NT). Conversely, improvements to any
of these three components would likely improve the
performance of AUCONTRAIRE.

The relatively small drop in performance from

no meronyms does not indicate that meronyms are
not essential to our task, only that our knowledge
sources for meronyms were not as useful as we
hoped. The Tipster Gazetteer has surprisingly low
coverage for our data set. It contains only 41% of
the y values that are locations. Many of these are
matches on a different location with the same name,
which results in incorrect meronym information. We
estimate that a gazetteer with complete coverage
would increase area under the curve by approxi-
mately 40% compared to a system with meronyms
from the Tipster Gazetteer and WordNet.

AuContraire NS NM NT

Percentage AUC

0
20

40
60

80
10

0

Figure 5: Area under the precision-recall curve for the
full AUCONTRAIRE and for AUCONTRAIRE with knowl-
edge removed. NS has no synonym knowledge; NM has
no meronym knowledge; NT has no argument typing.

To analyze the errors made by AUCONTRAIRE,
we hand-labeled all false-positives at the point of
maximum F-score: 29% Recall and 48% Precision.

18

Figure 6 reveals the central importance of world
knowledge for the CD task. About half of the errors
(49%) are due to ambiguous x-arguments, which we
found to be one of the most persistent obstacles to
discovering genuine contradictions. A sizable por-
tion is due to missing meronyms (34%) and missing
synonyms (14%), suggesting that lexical resources
with broader coverage than WordNet and the Tipster
Gazetteer would substantially improve performance.
Surprisingly, only 3% are due to errors in the extrac-
tion process.

Extraction Errors (3%)

Missing Synonyms (14%)

Missing Meronyms (34%)

Ambiguity (49%)

Figure 6: Sources of errors in contradiction detection.

All of our experimental results are based on the
automatically discovered set of functions F . We
would expect AUCONTRAIRE’s performance to im-
prove substantially if it were given a large set of
functional relations as input.

6 Related Work

Condoravdi et al. (2003) first proposed contradiction
detection as an important NLP task, and Harabagiu
et al. (2006) were the first to report results on con-
tradiction detection using negation, although their
evaluation corpus was a balanced data set built
by manually negating entailments in a data set
from the Recognizing Textual Entailment confer-
ences (RTE) (Dagan et al., 2005). De Marneffe et
al. (2008) reported experimental results on a contra-
diction corpus created by annotating the RTE data
sets.

RTE-3 included an optional task, requiring sys-
tems to make a 3-way distinction: {entails, contra-
dicts, neither} (Voorhees, 2008). The average per-
formance for contradictions on the RTE-3 was preci-
sion 0.11 at recall 0.12, and the best system had pre-
cision 0.23 at recall 0.19. We did not run AUCON-
TRAIRE on the RTE data sets because they contained

relatively few of the “functional contradictions” that
AUCONTRAIRE tackles. On our Web-based data
sets, we achieved a precision of 0.62 at recall 0.19,
and precision 0.92 at recall 0.51 on the balanced data
set. Of course, comparisons across very different
data sets are not meaningful, but merely serve to un-
derscore the difficulty of the CD task.

In contrast to previous work, AUCONTRAIRE is
the first to do CD on data automatically extracted
from the Web. This is a much harder problem than
using an artificially balanced data set, as shown in
Figure 4.

Automatic discovery of functional relations has
been addressed in the database literature as Func-
tional Dependency Mining (Huhtala et al., 1999;
Yao and Hamilton, 2008). This focuses on dis-
covering functional relationships between sets of at-
tributes, and does not address the ambiguity inherent
in natural language.

7 Conclusions and Future Work

We have described a case study of contradiction de-
tection (CD) based on functional relations. In this
context, we introduced and evaluated the AUCON-
TRAIRE system and its novel EM-style algorithm
for determining whether an arbitrary phrase is func-
tional. We also created a unique “natural” data set
of seeming contradictions based on sentences drawn
from a Web corpus, which we make available to the
research community.

We have drawn two key lessons from our case
study. First, many seeming contradictions (approx-
imately 99% in our experiments) are not genuine
contradictions. Thus, the CD task may be much
harder on natural data than on RTE data as sug-
gested by Figure 4. Second, extensive background
knowledge is necessary to tease apart seeming con-
tradictions from genuine ones. We believe that these
lessons are broadly applicable, but verification of
this claim is a topic for future work.

Acknowledgements

This research was supported in part by NSF grants
IIS-0535284 and IIS-0312988, ONR grant N00014-
08-1-0431 as well as gifts from the Utilika Founda-
tion and Google, and was carried out at the Univer-
sity of Washington’s Turing Center.

19

References
M. Banko and O. Etzioni. 2008. The tradeoffs between

traditional and open relation extraction. In Proceed-
ings of ACL.

M. Banko, M. Cafarella, S. Soderland, M. Broadhead,
and O. Etzioni. 2007. Open information extraction
from the Web. In Procs. of IJCAI.

W.W. Cohen, P. Ravikumar, and S.E. Fienberg. 2003.
A comparison of string distance metrics for name-
matching tasks. In IIWeb.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Rein-
hard Stolle, and Daniel G. Bobrow. 2003. Entailment,
intensionality and text understanding. In Proceedings
of the HLT-NAACL 2003 workshop on Text meaning,
pages 38–45, Morristown, NJ, USA. Association for
Computational Linguistics.

I. Dagan, O. Glickman, and B. Magnini. 2005. The
PASCAL Recognising Textual Entailment Challenge.
Proceedings of the PASCAL Challenges Workshop on
Recognising Textual Entailment, pages 1–8.

Marie-Catherine de Marneffe, Anna Rafferty, and
Christopher D. Manning. 2008. Finding contradic-
tions in text. In ACL 2008.

A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Max-
imum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society Se-
ries B, 39(1):1–38.

D. Downey, O. Etzioni, and S. Soderland. 2005. A Prob-
abilistic Model of Redundancy in Information Extrac-
tion. In Procs. of IJCAI.

Sanda Harabagiu, Andrew Hickl, and Finley Lacatusu.
2006. Negation, contrast and contradiction in text pro-
cessing. In AAAI.

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu
Toivonen. 1999. TANE: An efficient algorithm for
discovering functional and approximate dependencies.
The Computer Journal, 42(2):100–111.

B. MacCartney and C.D. Manning. 2007. Natural Logic
for Textual Inference. In Workshop on Textual Entail-
ment and Paraphrasing.

Ellen M. Voorhees. 2008. Contradictions and justifica-
tions: Extensions to the textual entailment task. In
Proceedings of ACL-08: HLT, pages 63–71, Colum-
bus, Ohio, June. Association for Computational Lin-
guistics.

Hong Yao and Howard J. Hamilton. 2008. Mining func-
tional dependencies from data. Data Min. Knowl. Dis-
cov., 16(2):197–219.

A. Yates and O. Etzioni. 2007. Unsupervised resolution
of objects and relations on the Web. In Procs. of HLT.

20

