Structural Correspondence L earning for Dependency Parsing

Nobuyuki Shimizu Hiroshi Nakagawa
Information Technology Center Information Technology Center
University of Tokyo University of Tokyo
Tokyo, Japan Tokyo, Japan

shimzu@.dl.itc.u-tokyo.ac.jp nakagawa@ll .itc.u-tokyo.ac.jp

Abstract source domain where plentiful labeled training data

Following (Blitzer et al., 2006), we present 'S 2vailable.

an application of structural correspondence In this paper, we investigate the effectivene;s of
learning to non-projective dependency pars- structural correspondenc_e Iearnlng (SCL) (Blltzer
ing (McDonald et al., 2005). To induce the et al., 2006) in the domain adaptatllon task given by
correspondences among dependency edges thg CoNLL 2007. They h_ypothesme_: that a model
from different domains, we looked at ev- trained in the source domain using this common fea-
ery two tokens in a sentence and examined ture representation will generalize better to the tar-
whether or not there is a preposition, a de- get domain, and focus on using u_nlabeled data from
terminer or a helping verb between them. both the source and target dom_auns to I_earn a com-
Three binary linear classifiers were trained mon feature representation that is meaningful across

to predict the existence of a preposition, P°th domains. _ _
etc, on unlabeled data and we used singu- The paper is structured as follows: in section
lar value decomposition to induce new fea- 2, we review the decoding and learning aspects of
tures. During the training, the parser was (McDonald et al., 2005), in section 3, structural cor-
trained with these additional features in ad-  'éSpondence learning applied to dependency pars-
dition to these described in (McDonald et ing, and in section 4, we describe the experiments
al., 2005). We discriminatively trained our and the features needed for the CoNLL 2006 shared

parser in an on-line fashion using a vari- task.
ant of the voted perceptron (Collins, 2002; o _
Collins and Roark, 2004; Crammer and 2 Non-Projective Dependency Parsing

Singer, 2003). 2.1 Dependency Structure

1 Introduction Let us definer to be a generic sequence of input to-

We have recently seen growing popularity of deperkens together with their POS tags and other morpho-
dency parsing. Itis no longer rare to see dependentggical features, ang to be a generic dependency
relations used as features, in tasks such as machigfgucture, that is, a set of edges for

translation (Ding and Palmer, 2005) and relation ex- A labeled edge is a tup®EPREL, i — j) where
traction (Bunescu and Mooney, 2005). However; is the start point of the edgg s the end point, and
there is one factor that prevents the use of depeREPREL is the label of the edge. The tokeniat
dency parsing: sparseness of annotated corpora otite head of the token &t

side Wall Street Journal. In many situations we need Table 1 shows our formulation of a structured pre-
to parse sentences from a target domain with no latiction problem. Given:, the input tokens and their
beled data, which is a different distribution from afeatures (column 2 and 3, Table 1), the task is to pre-
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Index  Token POS  Labeled Edge If a tree results, then this must be the maximum

1 John NN (UBJ,2 — 1) spanning tree. If not, there must be a cycle. The
2 saw VBD  (PRED,0 — 2) procedure identifies a cycle and contracts it into a
3 a DT (DET,4 — 3) single vertex and recalculates edge weights going
4 dog NN (OBJ,2 — 4) into and out of the cycle. It can be shown that a
S yesterday RB  (ADJU,2 — 5) maximum spanning tree on the contracted graph is
6 which WDT  (MODWH, 7 — 6) equivalent to a maximum spanning tree in the orig-
7 was VBD  (MODPRED, 4 — 7) inal graph (Leonidas, 2003). Hence the algorithm
8 a ) DT (DET, 10 — 8) can recursively call itself on the new graph.
9 Yorkshire NN (MODN, 10 — 9)

R . .
10 Temer AN 20?81 11>1O> 2.3 OnlineLearning

Again following (McDonald et al., 2005), we have
used the single best MIRA (Crammer and Singer,
2003), which is a “margin aware” variant of percep-
dict y, the set of labeled edges (column 4, Table 1)tron (Collins, 2002; Collins and Roark, 2004) for

In this paper we use the common method of facstructured prediction. In short, the update is exe-
toring the score of the dependency structure as thited when the decoder fails to predict the correct
sum of the scores of all the labeled edges. A deparse, and we compare the correct passand the
pendency structure is characterized by its labeleéicorrect parse,’ suggested by the decoding algo-
edges, and for each labeled edge, we have featun@thm. The weights of the features if will be low-
and corresponding weights. The score of a depeered, and the weights of the featuresyinwill be
dency structure is the sum of these weights. increased accordingly.

For example, let us say we would like to find the ) )
score of the labeled edd®BJ, 2 — 4). Thisis the 3 Domain Adaptation

edge going to the 4th token "dog” in Table 1. Therqiowing (Blitzer et al., 2006), we present an appli-
features for this edge could be: cation of structural correspondence learning (SCL)
e There is an edge starting at saw, with the POS tag VBDIO hon-projective dependency parsing (McDonald
and the distance between the heqd anq the ghilq is 2. e(t al., 2005)_ SCL is a method for adapting a clas-
head = wordy, headpos = pos;, dist(i,7) = |i — j| ) . . . .
sifier learned in a source domain to a target domain.
e There is an edge ending at dog, with the POS tag NNywe assume that both domains have unlabeled data,
and the distance between the head and trf child is 2. but only the source domain has labeled training data.
child = word;, childpos = posi, dist(i,7) = |i — j|)
SCL works as follows: 1. Define a set of pivot
In the upcoming section, we explain a decodingeatures on the unlabeled data from both domains. 2.
algorithm for the dependency structures, and latqyse these pivot features to learn a mapping from the
we give a method for learning the weight vector usegyiginal feature spaces of both domains to a shared,
in the decoding. low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
_ ~gree of correspondence. 3. Use both the transformed
As in (McDonald et al.,, 2005), we use Chu-Liu-gng original features from the source domain. 4.
Edmonds (CLE) algorithm (Chu and Liu, 1965; Ed-again using both the transformed and original fea-
monds, 1967) for decoding. CLE finds the Maxi g test the samples from the target domain. If we
mum Spanning Tree in a directed graph. The followWjg5ned a good mapping, then the effectiveness of
ing is a summary given in (McDonald et al., 2005).the classifier in the source domain should transfer to
Informally, the algorithm has each vertex in the the target domain.
graph greedily select the incoming edge with high- To induce the correspondences among depen-
est weight. dency edges in the source domain and the target
Note that the edge is coming from the parent talomain, we looked at every two tokens in a sen-
the child. That s, given a child nodeord;, we are tence and examined whether or not there is a prepo-
finding the parent, or the headord; such that the sition, a determiner or a helping verb between them.
edge(i, j) has the highest weight among alf # j.  Although no edge is present in unlabeled data, the

Table 1: Example Edges

2.2 Maximum Spanning Tree Algorithm
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presence of a preposition indicates that this edge hp@;‘g‘ a”_eggngPRE'-v i, J)
tween the tokens, if existed, will not be a noun mod- j,euq — word,
ifier (in English corpus, this label is NMOD). Thus, head 1 = wordi
this induced feature should correlate with the label ¢hild-1 = word;—
. hild = word;

of an edge candidate. We postulate that the label Oﬁhild+1 = word; 41
an edge candidate, if known, may allow the super- _ _ _
vised learner to choose the correct edge among the T1able 2: Binary Features for Pivot Predictors
edge candidates in the target domain.

In the first step, we chose the presence of aprepg:1  Dependency Relation
S'“O’.“ adeterminer or a heIpmg_ verb petween to.k.enf‘he CLE algorithm works on a directed graph with
as pivot features. Then three binary linear classifiers .

. X . unlabeled edges. Since the CoNLL shared task
were trained to predict the existence of a preposi- . . )
. . . requires the labeling of edges, as a preprocessing
tion (prep), determiner det) and helping verb/v) )

. ; stage, we created a directed complete graph. Then
on unlabeled data and obtained a weight vector for : ) )
o we labeled each edge with the highest scoring de-

each classifier. . . .
pendency relation. This complete graph was given
classifierprep(e) = sign(wprep(e)) to the CLE algorithm and the edge labels were never
classifierqe(e) = sign(waerd(e)) altered in the course of finding the maximum span-

classifiern,(e) = sign(wn,d(e)) ning tree.

The input to the above classifiers is an eddge- 4.2 Features

stnea% of ? wh?lets?nt\e/nof r¢ Igir? mipé)g% fromW '}'he features we used for pivot predictors to classify
an edge 1o a fealdre vector. ce ags WeLGch edgéDEPREL, 7, j) are shown in Table 2. The
not available in unlabeled data, for pivot predictors

: index is the position of the parent andis that of
we took the subset of the features given by an edgﬁ'ie chZiId P P d
The features for pivot predictors are listed in Table 2.~ word; = the word token at the positiof

The reminder of the features are the same as ones Pos; = the coarse part-of-speechjat ,
used in (McDonald et al., 2005). No other features were used beyond the combina-

Using each weight vector as a column, we createdPnS Of the word token in Table 2.

a weight matrix. W = [wyrep|wae|wne]. And run a The hardware used was an Intel CPU at 3.0 Ghz
. = prep e v]- . .

singular value decomposition to induce a lower diVith 32 GB of memory, and the software was writ-

mensional feature spacer — Usv. We then took ten in C++. While more iterations should help, due

the transpose of the resulting unitary matrit.” to the time constraints, we were unable to complete

which maps the original data to the space spanndBCre training. The parser required a few days to
by the principal components, and applied it to thd&n-

feature vector of every potential edge. The origi15 Results

nal feature vector i ffsuéset . We argument the _ .
reminder Unfortunately, we have discovered a bug in our

feature vector with the additional feature induced b%odes after submitting our results for the blind tests

fsu se . .
UT. The augmented feature vectc{s fmmfnd’; ) and the reported results in (Nivre et al., 2007) were
U foubset not representative of our approach. The current re-

were used throughout the training and testing of thgytg (closed class) are shown in Table 3.
dependency parser. For the explanations of Labeled Attachment
Score, Unlabeled Attachment Score and Label Ac-
curacy, the readers are suggested to refer to the
Our experiments were conducted on CoNLL-2008hared task introductory paper (Nivre et al., 2007).
shared task domain adaptation track (Nivre et al\WSJ represents the application of the parser without
2007) using treebanks (Marcus et al., 1993; JohanSCL to the source domain test set, and WSJ-SCL
son and Nugues, 2007; Kulick et al., 2004). the parser with SCL to the same test set. Similarily

4 Experiments
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Domain

LAS

UAS

Label Accuracy

WSJ 83.01%— 83.43% 86.43%— 86.81% 88.77%— 88.99%
WSJ-SCL  83.43%- 83.59% 86.87%— 86.93% 88.75%— 89.01%
Chem 74.75%— 75.18%  80.74%— 81.24%  82.34%— 82.70%
Chem-SCL  75.04%- 74.91% 81.02%— 80.82% 82.18%— 82.18%

Table 3: Labeled Attachment Score, Unlabeled Attachmeatesand Label Accuracy

Chem and Chem-SCL represents the application ®f. Collins and B. Roark. 2004. Incremental parsing with
the parser without SCL and with SCL to the source the perceptron algorithm. IRroc. of the 42rd Annual
domain test set respectively. We did batch learn- Meeting of the ACL.

ing by running the online algorithm 4 times. AnM. Collins. 2002. Discriminative training methods for
arrow — indicates how the results after 2nd itera- hidden markov models: Theory and experiments with
tion changed at the end of 4th iteration. Contrary Pﬁﬁ;ﬁ:;ﬂ;%ﬂg;n;%;ﬁé O(fEl;:\Am,\FI)I'_rF',‘):?l Methods

to our expectations, we seem to see SCL overfitting

to the source domain WSJ in this experiment. Duk. Crammer and Y. Singe_r. 2003. Ultraconservative on-
to the lack of POS tags in unlabeled data, our fea- line algorithms for multiclass problems. IMLR.

ture set for pivot predictors uses tokens extensively. Ding and M. Palmer. 2005. Machine translation using
unlike that for the dependency parser. Since tokens Probabilistic synchronous dependency insertion gram-
are not as abstract as POS tags, we suspect induceda"s- InProc. of the 43rd Annual Meeting of the ACL.
features may have caused overfitting. J. Edmonds. 1967. Optimum branchings.Journal of

Research of the National Bureau of Standards, page

6 Conclusion 71B:233240.

R. Johansson and P. Nugues. 2007. Extended
We presented an application of structural correspon- constituent-to-dependency conversion for English. In

dence learning to non-projective dependency pars- Proc. of the 16th Nordic Conference on Computational
ing. Effectiveness of SCL for domain adaptation is Linguistics (NODALIDA).

mixed in this experiment perhaps due to the misS. Kulick, A. Bies, M. Liberman, M. Mandel, R. Mc-
match between feature sets. Future work includes Donald, M. Paimer, A. Schein, and L. Ungar. 2004.

. ntegrated annotation for biomedical information ex-
use of more sophisticated features such as POS anc{raction_ InProc. of the Human Language Technol-

other morphological features, possibly a joint do- gy Conference and the Annual Meeting of the North
main adaptation of POS tagging and dependency American Chapter of the Association for Computa-

parsing for unlabeled data as well as re-examination tional Linguistics (HLT/NAACL).

of pivot features. G. Leonidas. 2003. Arborescence optimization problems

solvable by edmonds algorithm. Trheoretical Com-
puter Science, page 301:427 437.
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