
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1166–1169,
Prague, June 2007. c©2007 Association for Computational Linguistics

Structural Correspondence Learning for Dependency Parsing

Nobuyuki Shimizu
Information Technology Center

University of Tokyo
Tokyo, Japan

shimizu@r.dl.itc.u-tokyo.ac.jp

Hiroshi Nakagawa
Information Technology Center

University of Tokyo
Tokyo, Japan

nakagawa@dl.itc.u-tokyo.ac.jp

Abstract

Following (Blitzer et al., 2006), we present
an application of structural correspondence
learning to non-projective dependency pars-
ing (McDonald et al., 2005). To induce the
correspondences among dependency edges
from different domains, we looked at ev-
ery two tokens in a sentence and examined
whether or not there is a preposition, a de-
terminer or a helping verb between them.
Three binary linear classifiers were trained
to predict the existence of a preposition,
etc, on unlabeled data and we used singu-
lar value decomposition to induce new fea-
tures. During the training, the parser was
trained with these additional features in ad-
dition to these described in (McDonald et
al., 2005). We discriminatively trained our
parser in an on-line fashion using a vari-
ant of the voted perceptron (Collins, 2002;
Collins and Roark, 2004; Crammer and
Singer, 2003).

1 Introduction

We have recently seen growing popularity of depen-
dency parsing. It is no longer rare to see dependency
relations used as features, in tasks such as machine
translation (Ding and Palmer, 2005) and relation ex-
traction (Bunescu and Mooney, 2005). However,
there is one factor that prevents the use of depen-
dency parsing: sparseness of annotated corpora out-
side Wall Street Journal. In many situations we need
to parse sentences from a target domain with no la-
beled data, which is a different distribution from a

source domain where plentiful labeled training data
is available.

In this paper, we investigate the effectiveness of
structural correspondence learning (SCL) (Blitzer
et al., 2006) in the domain adaptation task given by
the CoNLL 2007. They hypothesize that a model
trained in the source domain using this common fea-
ture representation will generalize better to the tar-
get domain, and focus on using unlabeled data from
both the source and target domains to learn a com-
mon feature representation that is meaningful across
both domains.

The paper is structured as follows: in section
2, we review the decoding and learning aspects of
(McDonald et al., 2005), in section 3, structural cor-
respondence learning applied to dependency pars-
ing, and in section 4, we describe the experiments
and the features needed for the CoNLL 2006 shared
task.

2 Non-Projective Dependency Parsing

2.1 Dependency Structure

Let us definex to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, andy to be a generic dependency
structure, that is, a set of edges forx.

A labeled edge is a tuple〈DEPREL, i → j〉where
i is the start point of the edge,j is the end point, and
DEPREL is the label of the edge. The token ati is
the head of the token atj.

Table 1 shows our formulation of a structured pre-
diction problem. Givenx, the input tokens and their
features (column 2 and 3, Table 1), the task is to pre-

1166

Index Token POS Labeled Edge
1 John NN 〈SUBJ, 2 → 1〉
2 saw VBD 〈PRED, 0 → 2〉
3 a DT 〈DET, 4 → 3〉
4 dog NN 〈OBJ, 2 → 4〉
5 yesterday RB 〈ADJU, 2 → 5〉
6 which WDT 〈MODWH, 7 → 6〉
7 was VBD 〈MODPRED, 4 → 7〉
8 a DT 〈DET, 10 → 8〉
9 Yorkshire NN 〈MODN, 10 → 9〉
10 Terrier NN 〈OBJ, 7 → 10〉
11 . . 〈., 10 → 11〉

Table 1: Example Edges

dict y, the set of labeled edges (column 4, Table 1).
In this paper we use the common method of fac-

toring the score of the dependency structure as the
sum of the scores of all the labeled edges. A de-
pendency structure is characterized by its labeled
edges, and for each labeled edge, we have features
and corresponding weights. The score of a depen-
dency structure is the sum of these weights.

For example, let us say we would like to find the
score of the labeled edge〈OBJ, 2 → 4〉. This is the
edge going to the 4th token ”dog” in Table 1. The
features for this edge could be:

• There is an edge starting at saw, with the POS tag VBD,
and the distance between the head and the child is 2. (
head = wordj , headPOS = posj , dist(i, j) = |i− j|)

• There is an edge ending at dog, with the POS tag NN,
and the distance between the head and the child is 2. (
child = wordi, childPOS = posi, dist(i, j) = |i− j|)

In the upcoming section, we explain a decoding
algorithm for the dependency structures, and later
we give a method for learning the weight vector used
in the decoding.

2.2 Maximum Spanning Tree Algorithm

As in (McDonald et al., 2005), we use Chu-Liu-
Edmonds (CLE) algorithm (Chu and Liu, 1965; Ed-
monds, 1967) for decoding. CLE finds the Maxi-
mum Spanning Tree in a directed graph. The follow-
ing is a summary given in (McDonald et al., 2005).

Informally, the algorithm has each vertex in the
graph greedily select the incoming edge with high-
est weight.

Note that the edge is coming from the parent to
the child. That is, given a child nodewordj , we are
finding the parent, or the headwordi such that the
edge(i, j) has the highest weight among alli, i 6= j.

If a tree results, then this must be the maximum
spanning tree. If not, there must be a cycle. The
procedure identifies a cycle and contracts it into a
single vertex and recalculates edge weights going
into and out of the cycle. It can be shown that a
maximum spanning tree on the contracted graph is
equivalent to a maximum spanning tree in the orig-
inal graph (Leonidas, 2003). Hence the algorithm
can recursively call itself on the new graph.

2.3 Online Learning

Again following (McDonald et al., 2005), we have
used the single best MIRA (Crammer and Singer,
2003), which is a “margin aware” variant of percep-
tron (Collins, 2002; Collins and Roark, 2004) for
structured prediction. In short, the update is exe-
cuted when the decoder fails to predict the correct
parse, and we compare the correct parseyt and the
incorrect parsey′ suggested by the decoding algo-
rithm. The weights of the features iny′ will be low-
ered, and the weights of the features inyt will be
increased accordingly.

3 Domain Adaptation

Following (Blitzer et al., 2006), we present an appli-
cation of structural correspondence learning (SCL)
to non-projective dependency parsing (McDonald
et al., 2005). SCL is a method for adapting a clas-
sifier learned in a source domain to a target domain.
We assume that both domains have unlabeled data,
but only the source domain has labeled training data.

SCL works as follows: 1. Define a set of pivot
features on the unlabeled data from both domains. 2.
Use these pivot features to learn a mapping from the
original feature spaces of both domains to a shared,
low-dimensional real-valued feature space. A high
inner product in this new space indicates a high de-
gree of correspondence. 3. Use both the transformed
and original features from the source domain. 4.
Again using both the transformed and original fea-
tures, test the samples from the target domain. If we
learned a good mapping, then the effectiveness of
the classifier in the source domain should transfer to
the target domain.

To induce the correspondences among depen-
dency edges in the source domain and the target
domain, we looked at every two tokens in a sen-
tence and examined whether or not there is a prepo-
sition, a determiner or a helping verb between them.
Although no edge is present in unlabeled data, the

1167

presence of a preposition indicates that this edge be-
tween the tokens, if existed, will not be a noun mod-
ifier (in English corpus, this label is NMOD). Thus,
this induced feature should correlate with the label
of an edge candidate. We postulate that the label of
an edge candidate, if known, may allow the super-
vised learner to choose the correct edge among the
edge candidates in the target domain.

In the first step, we chose the presence of a prepo-
sition, a determiner or a helping verb between tokens
as pivot features. Then three binary linear classifiers
were trained to predict the existence of a preposi-
tion (prep), determiner (det) and helping verb (hv)
on unlabeled data and obtained a weight vector for
each classifier.

classifierprep(e) = sign(wprepφ(e))

classifierdet(e) = sign(wdetφ(e))

classifierhv(e) = sign(whvφ(e))

The input to the above classifiers is an edgee in-
stead of a whole sentencex. φ is a mapping from
an edge to a feature vector. Since POS tags were
not available in unlabeled data, for pivot predictors,
we took the subset of the features given by an edge.
The features for pivot predictors are listed in Table 2.
The reminder of the features are the same as ones
used in (McDonald et al., 2005).

Using each weight vector as a column, we created
a weight matrix. W = [wprep|wdet|whv]. And run a
singular value decomposition to induce a lower di-
mensional feature space.W = UΣV . We then took
the transpose of the resulting unitary matrix,U⊤

which maps the original data to the space spanned
by the principal components, and applied it to the
feature vector of every potential edge. The origi-

nal feature vector is
(

fsubset

freminder

)

. We argument the

feature vector with the additional feature induced by

U⊤. The augmented feature vectors

(

fsubset

freminder

U⊤fsubset

)

were used throughout the training and testing of the
dependency parser.

4 Experiments

Our experiments were conducted on CoNLL-2007
shared task domain adaptation track (Nivre et al.,
2007) using treebanks (Marcus et al., 1993; Johans-
son and Nugues, 2007; Kulick et al., 2004).

Given an edge〈DEPREL, i, j〉
head−1 = wordi−1

head = wordi

head+1 = wordi+1

child−1 = wordj−1

child = wordj

child+1 = wordj+1

Table 2: Binary Features for Pivot Predictors

4.1 Dependency Relation

The CLE algorithm works on a directed graph with
unlabeled edges. Since the CoNLL shared task
requires the labeling of edges, as a preprocessing
stage, we created a directed complete graph. Then
we labeled each edge with the highest scoring de-
pendency relation. This complete graph was given
to the CLE algorithm and the edge labels were never
altered in the course of finding the maximum span-
ning tree.

4.2 Features

The features we used for pivot predictors to classify
each edge〈DEPREL, i, j〉 are shown in Table 2. The
index i is the position of the parent andj is that of
the child.

wordj = the word token at the positionj.
posj = the coarse part-of-speech atj.

No other features were used beyond the combina-
tions of the word token in Table 2.

The hardware used was an Intel CPU at 3.0 Ghz
with 32 GB of memory, and the software was writ-
ten in C++. While more iterations should help, due
to the time constraints, we were unable to complete
more training. The parser required a few days to
train.

5 Results

Unfortunately, we have discovered a bug in our
codes after submitting our results for the blind tests,
and the reported results in (Nivre et al., 2007) were
not representative of our approach. The current re-
sults (closed class) are shown in Table 3.

For the explanations of Labeled Attachment
Score, Unlabeled Attachment Score and Label Ac-
curacy, the readers are suggested to refer to the
shared task introductory paper (Nivre et al., 2007).
WSJ represents the application of the parser without
SCL to the source domain test set, and WSJ-SCL
the parser with SCL to the same test set. Similarily

1168

Domain LAS UAS Label Accuracy
WSJ 83.01%→ 83.43% 86.43%→ 86.81% 88.77%→ 88.99%
WSJ-SCL 83.43%→ 83.59% 86.87%→ 86.93% 88.75%→ 89.01%
Chem 74.75%→ 75.18% 80.74%→ 81.24% 82.34%→ 82.70%
Chem-SCL 75.04%→ 74.91% 81.02%→ 80.82% 82.18%→ 82.18%

Table 3: Labeled Attachment Score, Unlabeled Attachment Score and Label Accuracy

Chem and Chem-SCL represents the application of
the parser without SCL and with SCL to the source
domain test set respectively. We did batch learn-
ing by running the online algorithm 4 times. An
arrow → indicates how the results after 2nd itera-
tion changed at the end of 4th iteration. Contrary
to our expectations, we seem to see SCL overfitting
to the source domain WSJ in this experiment. Due
to the lack of POS tags in unlabeled data, our fea-
ture set for pivot predictors uses tokens extensively
unlike that for the dependency parser. Since tokens
are not as abstract as POS tags, we suspect induced
features may have caused overfitting.

6 Conclusion

We presented an application of structural correspon-
dence learning to non-projective dependency pars-
ing. Effectiveness of SCL for domain adaptation is
mixed in this experiment perhaps due to the mis-
match between feature sets. Future work includes
use of more sophisticated features such as POS and
other morphological features, possibly a joint do-
main adaptation of POS tagging and dependency
parsing for unlabeled data as well as re-examination
of pivot features.

References

J. Blitzer, R. McDonald, and F. Pereira. 2006. Domain
adaptation with structural correspondence learning. In
Proc. of Empirical Methods in Natural Language Pro-
cessing (EMNLP).

R. Bunescu and R. Mooney. 2005. A shortest path de-
pendency kernel for relation extraction. InProc. of
the Joint Conf. on Human Language Technology and
Empirical Methods in Natural Language Processing
(HLT/EMNLP).

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. InScience Sinica, page
14:13961400.

M. Collins and B. Roark. 2004. Incremental parsing with
the perceptron algorithm. InProc. of the 42rd Annual
Meeting of the ACL.

M. Collins. 2002. Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. InProc. of Empirical Methods
in Natural Language Processing (EMNLP).

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems. InJMLR.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InProc. of the 43rd Annual Meeting of the ACL.

J. Edmonds. 1967. Optimum branchings. InJournal of
Research of the National Bureau of Standards, page
71B:233240.

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on Computational
Linguistics (NODALIDA).

S. Kulick, A. Bies, M. Liberman, M. Mandel, R. Mc-
Donald, M. Palmer, A. Schein, and L. Ungar. 2004.
Integrated annotation for biomedical information ex-
traction. In Proc. of the Human Language Technol-
ogy Conference and the Annual Meeting of the North
American Chapter of the Association for Computa-
tional Linguistics (HLT/NAACL).

G. Leonidas. 2003. Arborescence optimization problems
solvable by edmonds algorithm. InTheoretical Com-
puter Science, page 301:427 437.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the Penn
Treebank.Computational Linguistics, 19(2):313–330.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajič. 2005.
Non-projective dependency parsing using spanning
tree algorithms. InProc. of the Joint Conf. on Hu-
man Language Technology and Empirical Methods in
Natural Language Processing (HLT/EMNLP).

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson,
S. Riedel, and D. Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. InProc. of the
Joint Conf. on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL).

1169

