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Abstract

This paper presents an online algorithm for
dependency parsing problems. We propose
an adaptation of the passive and aggressive
online learning algorithm to the dependency
parsing domain. We evaluate the proposed
algorithms on the 2007 CONLL Shared
Task, and report errors analysis. Experimen-
tal results show that the system score is bet-
ter than the average score among the partici-
pating systems.

1 Introduction

Research on dependency parsing is mainly based
on machine learning methods, which can be called
history-based (Yamada and Matsumoto, 2003; Nivre
et al., 2006) and discriminative learning methods
(McDonald et al., 2005a; Corston-Oliver et al.,
2006). The learning methods using in discrimina-
tive parsing are Perceptron (Collins, 2002) and on-
line large-margin learning (MIRA) (Crammer and
Singer, 2003).

The difference of MIRA-based parsing in com-
parison with history-based methods is that the
MIRA-based parser were trained to maximize the
accuracy of the overall tree. The MIRA based
parsing is close to maximum-margin parsing as in
Taskar et al. (2004) and Tsochantaridis et al. (2005)
for parsing. However, unlike maximum-margin
parsing, it is not limited to parsing sentences of 15
words or less due to computation time. The perfor-
mance of MIRA based parsing achieves the state-of-
the-art performance in English data (McDonald et
al., 2005a; McDonald et al., 2006).
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In this paper, we propose a new adaptation of on-
line larger-margin learning to the problem of depen-
dency parsing. Unlike the MIRA parser, our method
does not need an optimization procedure in each
learning update, but users only an update equation.
This might lead to faster training time and easier im-
plementation.

The contributions of this paper are two-fold: First,
we present a training algorithm called PA learning
for dependency parsing, which is as easy to im-
plement as Perceptron, yet competitive with large
margin methods. This algorithm has implications
for anyone interested in implementing discrimina-
tive training methods for any application. Second,
we evaluate the proposed algorithm on the multilin-
gual data task as well as the domain adaptation task
(Nivre et al., 2007).

The remaining parts of the paper are organized as
follows: Section 2 proposes our dependency pars-
ing with Passive-Aggressive learning. Section 3
discusses some experimental results and Section 4
gives conclusions and plans for future work.

2 Dependency Parsing with
Passive-Aggressive Learning

This section presents the modification of Passive-
Aggressive Learning (PA) (Crammer et al., 2006)
for dependency parsing. We modify the PA algo-
rithm to deal with structured prediction, in which
our problem is to learn a discriminant function that
maps an input sentence x to a dependency tree y.
Figure 1 shows an example of dependency parsing
which depicts the relation of each word to another
word within a sentence. There are some algorithms
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oot Johm it the ball with the bat
Figure 1: This is an example of dependency tree

to determine these relations of each word to another
words, for instance, the modified CKY algorithm
(Eisner, 1996) is used to define these relations for
a given sentence.

2.1 Parsing Algorithm

Dependency-tree parsing as the search for the maxi-
mum spanning tree (MST) in a graph was proposed
by McDonald et al. (2005b). In this subsection,
we briefly describe the parsing algorithms based on
the first-order MST parsing. Due to the limitation
of participation time, we only applied the first-order
decoding parsing algorithm in CONLL-2007. How-
ever, our algorithm can be used for the second order
parsing.

Let the generic sentence be denoted by x ; the
ith word of z is denoted by w;. The generic de-
pendency tree is denoted by y. If y is a dependency
tree for sentence x, we write (i,7) € y to indicate
that there is a directed edge from word zw; to word
zwj in the tree, that is, zw; is the parent of Tw; .
T = {(z, y¢) }}—, denotes the training data. We fol-
low the edge based factorization method of Eisner
(Eisner, 1996) and define the score of a dependency
tree as the sum of the score of all edges in the tree,

s(ry)= > sli,j)= >, w-0(i,j)

(i,j)€y (i,5)€y

ey

where ®(i,j) is a high-dimensional binary fea-
ture representation of the edge from zw; to zw; .
For example in Figure 1, we can present an example
(i, 7) as follows;

Lif zw; =" hit’ and zw; =" ball’
0 otherwise

The basic question must be answered for models
of this form: how to find the dependency tree y with
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the highest score for sentence 7 The two algorithms
we employed in our dependency parsing model are
the Eisner parsing (Eisner, 1996) and Chu-Liu’s al-
gorithm (Chu and Liu, 1965). The algorithms are
commonly used in other online-learning dependency
parsing, such as in (McDonald et al., 2005a).

In the next subsection we will address the problem
of how to estimate the weight w; associated with a
feature ®; in the training data using an online PA
learning algorithm.

2.2 Online PA Learning

This section presents a modification of PA algo-
rithm for structured prediction, and its use in de-
pendency parsing. The Perceptron style for natural
language processing problems as initially proposed
by (Collins, 2002) can provide state of the art re-
sults on various domains including text chunking,
syntactic parsing, etc. The main drawback of the
Perceptron style algorithm is that it does not have a
mechanism for attaining the maximize margin of the
training data. It may be difficult to obtain high accu-
racy in dealing with hard learning data. The struc-
tured support vector machine (Tsochantaridis et al.,
2005) and the maximize margin model (Taskar et al.,
2004) can gain a maximize margin value for given
training data by solving an optimization problem (i.e
quadratic programming). It is obvious that using
such an optimization algorithm requires much com-
putational time. For dependency parsing domain,
McDonald et al (2005a) modified the MIRA learn-
ing algorithm (McDonald et al., 2005a) for struc-
tured domains in which the optimization problem
can be solved by using Hidreth’s algorithm (Censor
and Zenios, 1997), which is faster than the quadratic
programming technique. In contrast to the previous
method, this paper presents an online algorithm for
dependency parsing in which we can attain the max-
imize margin of the training data without using opti-
mization techniques. It is thus much faster and eas-
ier to implement. The details of PA algorithm for
dependency parsing are presented below.

Assume that we are given a set of sentences x;
and their dependency trees y; where s = 1, ..., n. Let
the feature mapping between a sentence x and a tree
y be: ®(x,y) O (z,y), Po(z,y), ..., Pa(z,y)
where each feature mapping ®; maps (z, y) to a real
value. We assume that each feature ®(z,y) is asso-



ciated with a weight value. The goal of PA learning
for dependency parsing is to obtain a parameter w
that minimizes the hinge-loss function and the mar-
gin of learning data.

1 Input:S = {(z;v:),7 =1,2,...,n} in which
x; is the sentence and y; is a dependency tree

2 Aggressive parameter

3 Output: the PA learning model

4 Initialize: w; = (0,0, ...,0)

s fort=1, 2... do

6 Receive an sentence x;

7 Predict yj = argmaxycy (W - ®(x¢, y4))

8 Sufferloss: [; =

wi - Oz, yp) — Wi - Pz, ye) + Vo(Ye, v7)
9 Set:
o !
PA: 7 = ) -0 T,
PA-I: Tt = mln{C, H‘I’(Ulctvy;):(b(xt:yt)w}
I 7 — ¢
PAIL 7 = eGP s
Update:

wep1 = Wi + (P (xe, y) — (e, yf))
10 end

Algorithm 1: The Passive-Aggressive algo-
rithm for dependency parsing.

Algorithm 1 shows the PA learning algorithm for
dependency parsing in which its three variants are
different only in the update formulas. In Algorithm
1, we employ two kinds of argmax algorithms: The
first is the decoding algorithm for projective lan-
guage data and the second one is for non-projective
language data. Algorithm 1 shows (line 8) p(y, ;)
is a real-valued loss for the tree y,; relative to the
correct tree y. We define the loss of a dependency
tree as the number of words which have an incorrect
parent. Thus, the largest loss a dependency tree can
have is the length of the sentence. The similar loss
function is designed for the dependency tree with la-
beled. Algorithm 1 returns an averaged weight vec-
tor: an auxiliary weight vector v is maintained that
accumulates the values of w after each iteration, and
the returned weight vector is the average of all the
weight vectors throughout training. Averaging has
been shown to help reduce overfitting (McDonald et
al., 2005a; Collins, 2002). It is easy to see that the
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main difference between the PA algorithms and the
Perceptron algorithm (PC) (Collins, 2002) as well as
the MIRA algorithm (McDonald et al., 2005a) is in
line 9. As we can see in the PC algorithm, we do
not need the value 7; and in the MIRA algorithm we
need an optimization algorithm to compute 7. We
also have three updated formulations for obtaining
7¢ in Line 9. In the scope of this paper, we only
focus on using the second update formulation (PA-I
method) for training dependency parsing data.

2.3 Feature Set

We denote p-word: word of parent node in depen-
dency tree. c-word: word of child node. p-pos: POS
of parent node. c-pos: POS of child node. p-pos+1:
POS to the right of parent in sentence. p-pos-1: POS
to the left of parent. c-pos+1: POS to the right of
child. c-pos-1: POS to the left of child. b-pos: POS
of a word in between parent and child nodes. The

p-word,p-pos
p-word

p-pos

c-word, c-pos

c-word
c-pos

Table 1: Feature Set 1: Basic Unit-gram features
p-word, p-pos, c-word, c-pos
p-pos, c-word, c-pos
p-word, c-word, c-pos
p-word, p-pos, c-pos
p-word, p-pos, c-word
p-word, c-word

P-pos, c-pos

Table 2: Feature Set 2: Basic bi-gram features
p-pos, b-pos, c-pos

p-pos, p-pos+1, c-pos-1, c-pos
p-pos-1, p-pos, c-pos-1, c-pos

p-pos, p-pos+1, c-pos, c-pos+1
p-pos-1, p-pos, c-pos, c-pos+1

Table 3: Feature Set 3: In Between POS Features
and Surrounding Word POS Features

features used in our system are described below.

e Tables 1 and 2 show our basic features. These



features are added for entire words as well as
for the 5-gram prefix if the word is longer than
5 characters.

e In addition to these features shown in Table 1,
the morphological information for each pair of
words p-word and c-word are represented. In
addition, we also add the conjunction morpho-
logical information of p-word and c-word. We
do not use the LEMMA and CPOSTAG infor-
mation in our set features. The morphological
information are obtained from FEAT informa-
tion.

e Table 3 shows our Feature set 3 which take the
form of a POS trigram: the POS of the par-
ent, of the child, and of a word in between,
for all words linearly between the parent and
the child. This feature was particularly helpful
for nouns identifying their parent (McDonald
et al., 2005a).

e Table 3 also depicts these features taken the
form of a POS 4-gram: The POS of the par-
ent, child, word before/after parent and word
before/after child. The system also used back-
off features with various trigrams where one of
the local context POS tags was removed.

e All features are also conjoined with the direc-
tion of attachment, as well as the distance be-
tween the two words being attached.

3 Experimental Results and Discussion

We test our parsing models on the CONLL-2007
(Haji¢ et al., 2004; Aduriz et al., 2003; Marti et
al., 2007; Chen et al., 2003; Béhmova et al., 2003;
Marcus et al., 1993; Johansson and Nugues, 2007;
Prokopidis et al., 2005; Csendes et al., 2005; Mon-
temagni et al., 2003; Oflazer et al., 2003) data set on
various languages including Arabic, Basque, Cata-
lan, Chinese, English, Italian, Hungarian, and Turk-
ish. Each word is attached by POS tags for each sen-
tence in both the training and the testing data. Table
4 shows the number of training and testing sentences
for these languages. The table shows that the sen-
tence length in Arabic data is largest and its size of
training data is smallest. These factors might be af-
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fected to the accuracy of our proposed algorithm as
we will discuss later.

The training and testing were conducted on a pen-
tium IV at 4.3 GHz. The detailed information about
the data are shown in the CONLL-2007 shared task.
We applied non-projective and projective parsing
along with PA learning for the data in CONLL-2007.

Table 5 reports experimental results by using the
first order decoding method in which an MST pars-
ing algorithm (McDonald et al., 2005b) is applied
for non-projective parsing and the Eisner’s method
is used for projective language data. In fact, in our
method we applied non-projective parsing for the
Italian data, the Turkish data, and the Greek data.
This was because we did not have enough time to
train all training data using both projective and non-
projective parsing. This is the problem of discrimi-
native learning methods when performing on a large
set of training data. In addition, to save time in train-
ing we set the number of best trees k to 1 and the
parameter C is set to 0.05.

Table 5 shows the comparison of the proposed
method with the average, and three top systems on
the CONLL-2007. As a result, our method yields
results above the average score on the CONLL-2007
shared task (Nivre et al., 2007).

Table 5 also indicates that the Basque results ob-
tained a lower score than other data. We obtained
69.11 UA score and 58.16 LA score, respectively.
These are far from the results of the Top3 scores
(81.13 and 75.49). We checked the outputs of the
Basque data to understand the main reason for the
errors. We see that the errors in our methods are
usually mismatched with the gold data at the labels
”ncmod” and “ncsubj”. The main reason might be
that the application of projective parsing for this data
in both training and testing is not suitable. This was
because the number of sentences with at least 1 non
projective relation in the data is large (26.1).

The Arabic score is lower than the scores of other
data because of some difficulties in our method as
follows. Morphological and sentence length prob-
lems are the main factors which affect the accuracy
of parsing Arabic data. In addition, the training size
in the Arabic is also a problem for obtaining a good
result. Furthermore, since our tasks was focused on
improving the accuracy of English data, it might be
unsuitable for other languages. This is an imbalance



Languages | Training size | Tokens size | tokens-per-sent | % of NPR | % of-sentence AL-1-NPR
Arabic 2,900 112,000 38.3 0.4 10.1
Basque 3,200 51,000 15.8 2.9 26.2
Catalan 15,000 431,000 28.8 0.1 2.9
Chinese 57,000 337,000 5.9 0.0 0.0
Czech 25,400 432,000 17.0 1.9 232
English 18,600 447,000 24.0 0.3 6.7
Greek 2,700 65,000 242 1.1 20.3
Hungarian 6,000 132,000 21.8 2.9 26.4
Italian 3,100 71,000 229 0.5 7.4
Turkish 5,600 65,000 11.6 0.5 333

Table 4: The data used in the multilingual track (Nivre et al., 2007). NPR means non-projective-relations.
AL-1-NPR means at-least-least 1 non-projective relation.

problem in our method. Table 5 also shows the com-
parison of our system to the average score and the
Top3 scores. It depicts that our system is accurate
in English data, while it has low accuracy in Basque
and Arabic data.

We also evaluate our models in the domain adap-
tation tasks. This task is to adapt our model trained
on PennBank data to the test data in the Biomedical
domain. The pchemtb-closed shared task (Marcus
et al., 1993; Johansson and Nugues, 2007; Kulick
et al., 2004) is used to illustrate our models. We do
not use any additional unlabeled data in the Biomed-
ical domain. Only the training data in the PennBank
is used to train our model. Afterward, we selected
carefully a suitable parameter using the development
test set. We set the parameter C' to 0.01 and se-
lect the non projective parsing for testing to obtain
the highest result in the development data after per-
forming several experiments. After that, the trained
model was used to test the data in Biomedical do-
main. The score (UA=82.04; LA=79.50) shows that
our method yields results above the average score
(UA=76.42; LA=73.03). In addition, it is officially
coming in 4th place out of 12 teams and within 1.5%
of the top systems.

The good result of performing our model in an-
other domain suggested that the PA learning seems
sensitive to noise. We hope that this problem is
solved in future work.

4 Conclusions

This paper presents an online algorithm for depen-
dency parsing problem which have tested on various
language data in CONLL-2007 shared task. The per-
formance in English data is close to the Top3 score.
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We also perform our algorithm on the domain adap-
tation task, in which we only focus on the training of
the source data and select a suitable parameter using
the development set. The result is very good as it
is close to the Top3 score of participating systems.
Future work will also be focused on extending our
method to a version of using semi-supervised learn-
ing that can efficiently be learnt by using labeled and
unlabeled data. We hope that the application of the
PA algorithm to other NLP problems such as seman-
tic parsing will be explored in future work.
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