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Abstract

This paper reports a hybridization experi-
ment, where a baseline ML dependency pars-
er, LingPars, was allowed access to Con-
straint Grammar analyses provided by a rule-
based parser (EngGram) for the same data.
Descriptive compatibility issues and their in-
fluence on performance are discussed. The
hybrid system performed considerably better
than its ML baseline, and proved more ro-
bust than the latter in the domain adaptation
task, where it was the best-scoring system in
the open class for the chemical test data, and
the best overall system for the CHILDES test
data.

1 Introduction

LingPars, a language-independent treebank-learner
developed in the context of the CoNLL-X 2006
shared task (http://nextens.uvt.nl/~conll/), was in-
spired by the Constraint Grammar (CG) parsing
approach (Karlsson et al. 1995) in the sense that it
prioritized the identification of syntactic function
over syntactic form, basing the dependency poten-
tial of a word on "edge" labels like subject, object
etc. rather than the other way around. The system
also used other features typical of CG systems,
such as BARRIER conditions, tag chains of vari-
able length, implicit clause boundaries and tag sets
(Bick 2006). For the 2007 task only one such fea-
ture was newly introduced - a directedness marker
for a few major functions, splitting subject, adver-
bial and adnominal labels into pairs of left- and
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right-attaching labels (e.g. SBJ-L, SBJ-R, NMOD-
L, NMOD-R). Even this small addition, however,
increased the memory space requirements of the
model to such a degree that only runs with 50-75%
of the training data were possible on the available
hardware.

The main purpose of the LingPars architecture
changes for CoNLL2007 (Nivre et al. 2007), how-
ever, was to test two core hypotheses:

® Can an independent, rule-based parser be
made to conform to different, data-imposed
descriptive conventions without too great a
loss in accuracy?

® Does a rules-based dependency parser have a
better chance than a machine-learned one to
identify long-distance relations and global
sentence structure, thus providing valuable
arbiter information to the latter?

Obviously, both points rule out a test involving
many languages with the same parser (CoNLL task
1). The domain adaptation task (task 2), however,
satisfied the single-language condition and also
adressed the descriptive adaptation problem (sec-
ond hypothesis), involving three English treebanks
- Wall Street Journal data from the Penn treebank
(PTB, Marcus et al. 1993) for training, and the
Pchem (Kulick et al. 2004) and CHILDES (Brown
1973 and MacWhinney 2000) treebanks with
biomedical and spoken language data, respectively.

2 Developing and adapting EngGram

A parser with hand-written rules pays a high
"labour price" to arrive at deep, linguistically pre-
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dictable and versatile analyses. For CG systems as
employed by the author, the cost, from lexicon to
dependency, is usually several man years, and re-
sults are not language-independent. One way of in-
creasing development efficiency is to combine
modules for different levels of analysis while
reusing or adapting the less-language independent
ones. Thus, the development of a new English de-
pendency parser, EngGram, under way for some
time, was accelerated for the present project by
seeding the syntactic disambiguation grammar
with Danish rules from the well-established Dan-
Gram parser (http://beta.visl.sdu.dk/
constraint_grammar.html). By maintaining an
identical set of syntactic function tags, it was even
possible to use the Danish dependency module
(Bick 2005) with only minor adaptations (mainly
concerning noun chains and proper nouns).

In order to integrate the output of a CG parser
into an ML parser for the shared task data, several
levels of compatibility issues have to be addressed.
On the input side, (1) PTB tokenization and (2)
word classes (PoS) have to be fed into the CG
parser bypassing its own modules of morphologi-
cal analysis and disambiguation. On the output
side, (3) CG function categories and (4) attachment
conventions have to be adapted to match PTB
ones.

For example, the manual rules were tuned to a
tokenization system that handles expressions such
as "a=few", "at=least” and "such=as" as units.
Though amounting to only 1% of running text,
they constitute syntactically crucial words, and
misanalysis leads to numerous secondary errors.
Even worse is the case of the genitive-s (also with
a frequency of 1%), tokenised in the PTB conven-
tion, but regarded a morpheme in EngGram. Since
EngGram does not have a word class for the isolat-
ed 's', and since ordinary rules disfavour postnomi-
nal singel-word attachment, the 's' had to be fused
in PTB-to-CG input, creating fewer tokens and
thus problems in re-aligning the analysed output.
Also relevant for a full structure parser is the parse
window. Here, in order to match PTB window
size, EngGram had to be forced not to regard ; ()
and : as delimiters, with an arguable loss in annota-
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tion accuracy due to rules with global NOT con-
texts designed for smaller windows.

Finally, PTB convention fuses certain word
classes, like subordinating conjunctions and prepo-
sitions (IN), and the infititive marker and the
preposition "to" (TO). Though these cases can be
treated by letting CG disambiguation override the
CoNLL input's pos tag, input pos can then no
longer be said to be "known", with some deteriora-
tion in recall as a consequence. Open class cate-
gories matched well even at a word-by-word level,
closed class tokens were found to sometimes differ
for individual words, an error source left largely
unchecked.

Treebank error rate is another factor to be con-
sidered - in cases where the PoS accuracy of the
human-revised treebanks is lower than that of a
CG system, the latter should be allowed to always
assign its own tags, rather than follow the suppos-
edly fixed input pos. In the domain adaptation task,
the CHILDES data were a case in point. A separate
CG run indicated 6.6% differences in PoS, and
manual inspection of part of the cases suggested
that while some cases were irrelevant variations
(e.g. adjective vs. participle), most were real error
on the part of the treebank, and the parser was
therefore set to ignore test data annotation and to
treat it as pure text.

Errors appeared to be rarer in the training data,
but inconsistencies between pos and function label
(e.g. IN-preposition and SBJ-subject for "that")
prove that errors aren't unknown here either -
which is why a hybrid system with independent
analysis has the potential benefit of compensating
for "mis-learned" patterns in the ML system.

Output conversion from CG to PTB/CoNLL for-
mat had to address, besides realignment of tokens
(e.g. genitive-s), the disparity in edge (function) la-
bels. However, since the PTB set was more coarse
grained, it was possible to simply lump several
EngGram labels into one PTB label, for instance:

SC, OC, SUB, INFM --> VMOD
ADVL, SA, OA, PIV, PRED -> ADV

Some idiosyncrasies had to be observed here, for
instance the treatment of SC (subject complement)



as VMOD for words, but ADV for clauses, or the
descriptive decision to tag direct objects in ACI
constructions with OA-clausal complements as
subjects. Some cases of label variation, however,
could not be solved in a systematic way. Thus, ad-
verbs within verb chains, always ADVL in Eng-
Gram, could not systematically be mapped, since
PTB uses both VMOD and ADYV in this position.
A certain percentage of mismatches in spite of a
correct analysis must therefore be taken into ac-
count as part of the "price" for letting the CG sys-
tem advise the machine learner.

Dependencies were generally used in the same
way in both systems, but multi word expressions
were problematic, since PTB - without marking
them as MWE - appears to attach all elements to a
common head even where internal structure (e.g. a
PP) is present. No reliable way was found to pre-
dict this behaviour from CG dependency output.
Finally, PTB often uses the adverbial modifier tag
(AMOD) for what would logically be the head of
an expression:

about (head) 1,200 (AMOD)

so (head) totally (AMOD)

herbicide (head) resistant (AMOD)
EngGram in these examples regards the first ele-
ment as AMOD modifier, and the second as head.
Since the inversion was so common, it was accept-
ed as either intentional or systematically erro-
neous, and the CG output inverted accordingly. It
is an open question, for future research, whether
the CG and ML systems could have been harmo-
nized better, had the training data been an original
dependency treebank rather than a constituent tree-
bank, - or at least linguistically revised at the de-
pendency level. Making the constituent-dependen-
cy conversion principles (Johansson & Nugues
2007, forthcoming) public before rather than after
the shared task might also have contributed to a
better CG annotation transfer.

3  System architecture
As described in (Bick 2006), the LingPars system

uses the fine-grained part of speech (PoS) tags
(POSTAG) and - for words above a certain fre-
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quency threshold - the LEMMA or, if absent,
FORM tag. In a first round, LingPars calculates a
preference list of functions and dependencies for
each word, examining all possible mother-daughter
pairs and n-grams in the sentence (or paragraph).
Next, dependencies are adjusted for function, basi-
cally summing up the frequency-, distance- and di-
rection-calibrated function->PoS attachment prob-
abilities for all contextually allowed functions for a
given word. Finally, dependency probabilities are
weighted using linked probabilities for possible
mother-, daughter- and sister-tags in a second pass.

The result are 2 arrays, one for possible daugh-
ter->mother pairs, one for word:function pairs.
LingPars then attempts to "effectuate" the depen-
dency (daughter->mother) array, starting with the -
in normalized terms - highest value. If the daughter
candidate is as yet unattached, and the dependency
does not produce circularities or crossing branches,
the corresponding part of the (ordered) word:func-
tion array is calibrated for the suggested dependen-
cy, and the top-ranking function chosen.

One of the major problems in the original sys-
tem was uniqueness clashes, and as a special case,
root attachment ambiguity, resulting from a con-
flict between the current best attachment candidate
in the pipe and an earlier chosen attachment to the
same head. Originally, the parser tried to resolve
these conflicts by assigning penalties to the attach-
ments in question and recalculating "second best"
attachments for the tokens in question. While solv-
ing some cases, this method often timed out with-
out finding a globally compatible solution.

In the new version of LingPars, with open re-
sources, the attachment and function label rankings
were calibrated using the analysis suggested by the
EngGram CG system for the same data, assigning
extra weights to readings supported by the rule
based analysis, using addition of a weight constant
for function, and multiplication with a weight con-
stant for attachments, thus integrating CG informa-
tion on par with statistical information'. This was

'Experiments suggested that there is a limit beyond which an
increase of these weighting constants, for both function and

dependency, will actually lead to a decrease in performance,
because the positive effect of long-distance attachments from
the CG system will be cancelled out by the negative effect of



not, however, thought sufficient to resolve the
global syntactic problem of root attachment where
(wrong) statistical preferences could be so strong
that even 20 rounds of penalties could not weaken
them sufficient to be ruled out. Therefore, root and
root attachments supported by the CG trees were
fixed in the first pass, without reruns. The same
method was used for another source of global er-
rors - coordination. Here, the probabilistic system
had difficulties learning patterns, because a specif-
ic function label (SBJ or OBJ etc) would be associ-
ated with a non-specific word class (CC), and a
non-specific function (COORD) with a host of dif-
ferent word classes. Again, adding a first-pass
override based on CG-provided coordination links
solved many of these cases.

Though limited to 2 types of global dependency
(root and coordination), the help provided by the
rule based analysis, also had indirect benefits by
providing a better point of departure for other at-
tachments, among other things because LingPars
exaggerated both good and bad analyses: Good at-
tachments would help weight other attachments
through correct n-gram-, mother-, daughter- and
sibling contexts, but isolated bad attachments
would lead to even worse attachments by trigger-
ing, for instance, incorrect BARRIER or crossing
branch constraints. These adverse effects were
moderated by getting a larger percentage of global
dependencies right in the first place, and also by a
new addition to the crossing and BARRIER sub-
routine invalidating it in the case of CG-supported
attachments.

4 Evaluation

The hybrid LingPars was the best-scoring system
in the open section of both domain adaptation
tasks® (Nivre et al. 2007), outperforming its proba-
bilistic core system on all scores, with an improve-
ment of 6.57 LAS percentage points for the

disturbing the application of machine-learned local dependen-
cies.

* During the test phase, the data set for one of the originally 2
test domains, CHILDES, was withdrawn from the official
ranking, though its scores were still computed and admissible
for evaluation.
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pchemtb corpus (table 1), and 3.42 for the
CHILDES attachment score (table 2). In the for-
mer, the effect was slightly more marked for at-
tachment than for label accuracy.

However, whereas results also surpassed those
of the top closed class system in the CHILDES do-
main (by 1.12 percentage points), they fell short of
this mark for the pchemtb corpus - by 1.26 per-
centage points for label accuracy and 1.80 for at-

tachment.
Top score | average | System | System
pchemtb | pchemtb | pchemtb train
Closed
LAS 81.06 73.03 71.81 | (75.01)
UAS 83.42 76.42 74.71 (76.71)
LS 88.28 81.74 80.78 (84.12)
Open
LAS 78.48 65.11 78.48 (79.04)
UAS 81.62 70.24 81.62 (80.82)
LS 87.02 77.14 87.02 (88.07)
Table 1: Performance, Pchemtb data
UAS Top score | average System
CHILDES closed| 61.37 57.89 58.07
CHILDES open 62.49 56.12 62.49

Table 2: Performance, CHILDES data

When compared with runs on (unknown) data from
the training domain, cross-domain performance of
the closed system was 2 percentage points lower
for attachment and 3.5 lower for label accuracy
(LA scores of 71.81 and 58.07 for the pchemtb and
CHILDES corpus, respectively).

Interestingly, hybrid results for the pchemtb data
were only marginally lower than for the training
domain (in fact, higher for attachment), suggest-
ing a higher domain robustness for the hybrid than
for the probabilistic approach.

*This is the accuracy for the test data used during develop-
ment. For the PTB gold test data from track 1, LAS was high-
er (76.21).
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