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Abstract 

We describe our experiments using the 
DeSR parser in the multilingual and do-
main adaptation tracks of the CoNLL 2007 
shared task. DeSR implements an incre-
mental deterministic Shift/Reduce parsing 
algorithm, using specific rules to handle 
non-projective dependencies. For the multi-
lingual track we adopted a second order 
averaged perceptron and performed feature 
selection to tune a feature model for each 
language. For the domain adaptation track 
we applied a tree revision method which 
learns how to correct the mistakes made by 
the base parser on the adaptation domain. 

1 Introduction 

Classifier-based dependency parsers (Yamada and 
Matsumoto, 2003; Nivre and Scholz, 2004) learn 
from an annotated corpus how to select an 
appropriate sequence of Shift/Reduce actions to 
construct the dependency tree for a sentence. 
Learning is based on techniques such as SVM 
(Vapnik 1998) or Memory Based Learning 
(Daelemans 2003), which provide high accuracy 
but are often computationally expensive. For the 
multilingual track in the CoNLL 2007 Shared 
Task, we employed a Shift/Reduce parser which 
uses a perceptron algorithm with second-order 
feature maps, in order to verify whether a simpler 
and faster algorithm can still achieve comparable 
accuracy. 

For the domain adaptation track we wished to 
explore the use of tree revisions in order to 
incorporate language knowledge from a new 
domain. 

2 Multilingual Track 

The overall parsing algorithm is a deterministic 
classifier-based statistical parser, which extends 
the approach by Yamada and Matsumoto (2003), 
by using different reduction rules that ensure 
deterministic incremental processing of the input 
sentence and by adding specific rules for handling 
non-projective dependencies. The parser also 
performs dependency labeling within a single 
processing step. 

The parser is modular and can use several 
learning algorithms. The submitted runs used a 
second order Average Perceptron, derived from the 
multiclass perceptron of Crammer and Singer 
(2003). 

No additional resources were used. No pre-
processing or post-processing was used, except 
stemming for English, by means of the Snowball 
stemmer (Porter 2001). 

3 Deterministic Classifier-based Parsing 

DeSR (Attardi, 2006) is an incremental determinis-
tic classifier-based parser. The parser constructs 
dependency trees employing a deterministic bot-
tom-up algorithm which performs Shift/Reduce 
actions while analyzing input sentences in left-to-
right order. 

Using a notation similar to (Nivre and Scholz, 
2003), the state of the parser is represented by a 
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quadruple 〈S, I, T, A〉, where S is the stack of past 
tokens, I is the list of (remaining) input tokens, T is 
a stack of temporary tokens and A is the arc rela-
tion for the dependency graph. 

Given an input string W, the parser is initialized 
to 〈(), W, (), ()〉, and terminates when it reaches a 
configuration 〈S, (), (), A〉. 

The three basic parsing rule schemas are as fol-
lows: 

〈S, n|I, T, A〉 
Shift 〈n|S, I, T, A〉 

〈s|S, n|I, T, A〉 
Rightd 〈S, n|I, T, A∪{( s, d, n)} 〉 

〈s|S, n|I, T, A〉 
Leftd 〈S, s|I, T, A∪{(n, d, s)} 〉 

The schemas for the Left and Right rules are in-
stantiated for each dependency type d ∈ D, for a 
total of 2|D| + 1 rules. These rules perform both 
attachment and labeling. 

At each step the parser uses classifiers trained 
on a treebank corpus in order to predict which ac-
tion to perform and which dependency label to as-
sign given the current configuration. 

4 Non-Projective Relations 

For handling non-projective relations, Nivre and 
Nilsson (2005) suggested applying a pre-
processing step to a dependency parser, which con-
sists in lifting non-projective arcs to their head re-
peatedly, until the tree becomes pseudo-projective. 
A post-processing step is then required to restore 
the arcs to the proper heads. 

In DeSR non-projective dependencies are han-
dled in a single step by means of the following ad-
ditional parsing rules, slightly different from those 
in (Attardi, 2006): 

 
〈s1|s2|S, n|I, T, A〉 

Right2d 〈 S, s1|n|I, T, A∪{(s2, d, n)} 〉 
〈s1|s2|S, n|I, T, A〉 

Left2d 〈s2|S, s1|I, T, A∪{(n, d, s2)} 〉 
〈s1|s2|s3|S, n|I, T, A〉 

Right3d 〈 S, s1|s2|n|I, T, A∪{( s3, d, n)} 〉 
〈s1|s2|s3|S, n|I, T, A〉 Left3d 〈s2|s3|S, s1|I, T, A∪{(n, d, s3)} 〉 

 

〈s1|s2|S, n|I, T, A〉 
Extract 〈n|s1|S, I, s2|T, A〉 

〈S, I, s1|T, A〉 
Insert 〈s1|S, I, T, A〉 

Left2, Right2 are similar to Left and Right, except 
that they create links crossing one intermediate 
node, while Left3 and Right3 cross two intermedi-
ate nodes. Notice that the RightX actions put back 
on the input the intervening tokens, allowing the 
parser to complete the linking of tokens whose 
processing had been delayed. Extract/Insert gener-
alize the previous rules by moving one token to the 
stack T and reinserting the top of T into S. 

5 Perceptron Learning and 2nd-Order 
Feature Maps 

The software architecture of the DeSR parser is 
modular. Several learning algorithms are available, 
including SVM, Maximum Entropy, Memory-
Based Learning, Logistic Regression and a few 
variants of the perceptron algorithm. 

We obtained the best accuracy with a multiclass 
averaged perceptron classifier based on the 
ultraconservative formulation of Crammer and 
Singer (2003) with uniform negative updates. The 
classifier function is: { }xxF k

k
⋅= αmaxarg)(  

where each parsing action k is associated with a 
weight vector αk. To regularize the model the final 
weight vectors are computed as the average of all 
weight vectors posited during training. The number 
of learning iterations over the training data, which 
is the only adjustable parameter of the algorithm, 
was determined by cross-validation.  

In order to overcome the limitations of a linear 
perceptron, we introduce a feature map Φ: IRd → 
IRd(d+1)/2 that maps a feature vector x into a higher 
dimensional feature space consisting of all un-
ordered feature pairs: 

Φ(x) = 〈xixj | i = 1, …, d, j = i, …, d〉 
In other words we expand the original 
representation in the input space with a feature 
map that generates all second-order feature 
combinations from each observation. We call this 
the 2nd-order model, where the inner products are 
computed as αk ⋅ Φ(x), with αk a vector of dimen-
sion d(d+1)/2. Applying a linear perceptron to this 
feature space corresponds to simulating a polyno-
mial kernel of degree two.  

A polynomial kernel of degree two for SVM 
was also used by Yamada and Matsumoto (2003). 
However, training SVMs on large data sets like 
those arising from a big training corpus was too 
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computationally expensive, forcing them to resort 
to partitioning the training data (by POS) and to 
learn several models. 

Our implementation of the perceptron algorithm 
uses sparse data structures (hash maps) so that it 
can handle efficiently even large feature spaces in 
a single model. For example the feature space for 
the 2nd-order model for English contains over 21 
million. Parsing unseen data can be performed at 
tens of sentences per second. More details on such 
aspects of the DeSR parser can be found in (Ci-
aramita and Attardi 2007). 

6 Tuning 

The base parser was tuned on several parameters to 
optimize its accuracy as follows. 

6.1 Feature Selection 

Given the different characteristics of languages and 
corpus annotations, it is worth while to select a 
different set of features for each language. For ex-
ample, certain corpora do not contain lemmas or 
morphological information so lexical information 
will be useful. Vice versa, when lemmas are pre-
sent, lexical information might be avoided, reduc-
ing the size of the feature set. 

We performed a series of feature selection ex-
periments on each language, starting from a fairly 
comprehensive set of 43 features and trying all 
variants obtained by dropping a single feature. The 
best of these alternatives feature models was cho-
sen and the process iterated until no further gains 
were achieved. The score for the alternatives was 
computed on a development set of approximately 
5000 tokens, extracted from a split of the original 
training corpus. 

Despite the process is not guaranteed to produce 
a global optimum, we noticed LAS improvements 
of up to 4 percentage points on some languages. 

The set of features to be used by DeSR is con-
trolled by a number of parameters supplied through 
a parameter file. Each parameter describes a fea-
ture and from which tokens to extract it. Tokens 
are referred through positive numbers for input 
tokens and negative numbers for tokens on the 
stack. For example 

PosFeatures -2 -1 0 1 2 3 
means to use the POS tag of the first two tokens on 
the stack and of the first four tokens on the input. 

The parameter PosPrev refers to the POS of the 
preceding token in the original sentence, 
PosLeftChild refers to the POS of the left chil-
dren of a token, PastActions tells how many 
previous actions to include as features. 

The selection process was started from the fol-
lowing base feature model: 

LexFeatures -1 0 1 
LemmaFeatures -2 -1 0 1 2 3 
LemmaPrev  -1 0 
LemmaSucc  -1 0 
LemmaLeftChild -1 0 
LemmaRightChild -1 
MorphoFeatures -1 0 1 2 
PosFeatures -2 -1 0 1 2 3 
PosNext  -1 0 
PosPrev  -1 0 
PosLeftChild -1 0 
PosRightChild -1 0 
CPosFeatures -1 0 1 
DepFeatures -1 0 
DepLeftChild -1 0 
DepRightChild -1 
PastActions 1 

The selection process produced different variants 
for each language, sometimes suggesting dropping 
certain intermediate features, like the lemma of the 
third next input token in the case of Catalan: 

LemmaFeatures -2 -1 0 1 3 
LemmaPrev  0 
LemmaSucc  -1 
LemmaLeftChild 0 
LemmaRightChild -1 
PosFeatures -2 -1 0 1 2 3 
PosPrev  0 
PosSucc  -1 
PosLeftChild -1 0 
PosRightChild -1 0 
CPosFeatures -1 0 1 
MorphoFeatures 0 1 
DepLeftChild -1 0 
DepRightChild -1 

For Italian, instead, we ran a series of tests in par-
allel using a set of manually prepared feature mod-
els. The best of these models achieved a LAS of 
80.95%. The final run used this model with the 
addition of the morphological agreement feature 
discussed below. 
 

English was the only language for which no feature 
selection was done and for which lexical features 
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were used. English is also the language where the 
official score is significantly lower than what we 
had been getting on our development set (90.01% 
UAS). 

6.2 Prepositional Attachment 

Certain languages, such as Catalan, use detailed 
dependency labeling, that for instance distinguish 
between adverbials of location and time. We ex-
ploited this information by introducing a feature 
that captures the entity type of a child of the top 
word on the stack or in the input. During training a 
list of nouns occurring in the corpus as dependent 
on prepositions with label CCL (meaning ‘com-
plement of location’ for Catalan) was created and 
similarly for CCT (complement of time). The en-
tity type TIME is extracted as a feature depending 
on whether the noun occurs in the time list more 
than α times than in the location list, and similarly 
for the feature LOCATION. α was set to 1.5 in our 
experiments. 

6.3 Morphological Agreement 

Certain languages require gender and number 
agreement between head and dependent. The fea-
ture MorphoAgreement is computed for such lan-
guages and provided noticeable accuracy 
improvements. 

For example, for Italian, the improvement was 
from: 
  LAS: 80.95%,  UAS: 85.03% 

to: 

  LAS: 81.34%,  UAS: 85.54% 
For Catalan, adding this feature we obtained an 
unofficial score of: 
  LAS: 87.64%,  UAS: 92.20% 
with respect to the official run: 
  LAS: 86.86%,  UAS: 91.41% 

7 Accuracy 

Table 1 reports the accuracy scores in the multilin-
gual track. They are all considerably above the 
average and within 2% from the best for Catalan, 
3% for Chinese, Greek, Italian and Turkish. 

8 Performance 

The experiments were performed on a 2.4 Ghz 
AMD Opteron machine with 32 GB RAM. Train-
ing the parser using the 2nd-order perceptron on the 
English corpus required less than 3 GB of memory 
and about one hour for each iteration over the 
whole dataset. Parsing the English test set required 
39.97 sec. For comparison, we tested the MST 
parser version 0.4.3 (Mstparser, 2007), configured 
for second-order, on the same data: training took 
73.9 minutes to perform 10 iterations and parsing 
took 97.5 sec. MST parser achieved: 

LAS: 89.01%, UAS: 90.17% 

9 Error Analysis on Catalan 

The parser achieved its best score on Catalan, so 
we performed an analysis on its output for this lan-
guage. 

Among the 42 dependency relations that the 
parser had to assign to a sentence, the largest num-
ber of errors occurred assigning CC (124), SP (33), 
CD (27), SUJ (26), CONJUNCT (22), SN (23). 

The submitted run for Catalan did not use the 
entity feature discussed earlier and indeed 67 er-
rors were due to assigning CCT or CCL instead of 
CC (generic complement of circumstance). How-
ever over half of these appear as underspecified 
annotation errors in the corpus rather than parser 
errors. 

By adding the ChildEntityType feature, 
which distinguishes better between CCT and CCL, 
the UAS improved, while the LAS dropped 
slightly, due to the effect of underspecified annota-
tions in the corpus: 

   LAS: 87.22%,    UAS: 91.71% 

Table 1. Multilingual track official scores. 

LAS UAS 
Task 

1st DeSR Avg 1st DeSR Avg 

Arabic  76.52  72.66 68.34  86.09  82.53 78.84  

Basque  76.92  69.48 68.06  82.80  76.86 75.15  

Catalan  88.70  86.86 79.85  93.40  91.41 87.98  

Chinese  84.69  81.50 76.59  88.94  86.73 81.98  

Czech  80.19  77.37 70.12  86.28  83.40 77.56  

English  89.61  85.85 80.95  90.63  86.99 82.67  

Greek  76.31  73.92 70.22  84.08  80.75 77.78  

Hungarian  80.27  76.81 71.49  83.55  81.81 76.34  

Italian  84.40  81.34 78.06  87.91  85.54 82.45  

Turkish  79.81  76.87 73.19  86.22  83.56 80.33  

1115



A peculiar aspect of the original Catalan corpus 
was the use of a large number (195) of dependency 
labels. These labels were reduced to 42 in the ver-
sion used for CoNNL 2007, in order to make it 
comparable to other corpora. However, performing 
some preliminary experiments using the original 
Catalan collection with all 195 dependency labels, 
the DeSR parser achieved a significantly better 
score: 

LAS: 88.80%, UAS: 91.43% 

while with the modified one, the score dropped to: 
LAS: 84.55%, UAS: 89.38% 

This suggests that accuracy might improve for 
other languages as well if the training corpus was 
labeled with more precise dependencies. 

10 Adaptation Track 

The adaptation track originally covered two do-
mains, the CHILDES and the Chemistry domain.  

The CHILDES (Brown, 1973; MacWhinney, 
2000) consists of transcriptions of dialogues with 
children, typically short sentences of the kind: 

Would you like more grape juice ? 
That 's a nice box of books . 

Phrases are short, half of them are questions. The 
only difficulty that appeared from looking at the 
unlabeled collection supplied for training in the 
domain was the presence of truncated terms like 
goin (for going), d (for did), etc. However none 
of these unusually spelled words appeared in the 
test set, so a normal English parser performed rea-
sonably well on this task. Because of certain in-
consistencies in the annotation guidelines, the 
organizers decided to make this task optional and 
hence we submitted just the parse produced by the 
parser trained for English. 

For the second adaptation task we were given a 
large collection of unlabeled data in the chemistry 
domain (Kulick et al, 2004) as well as a test set of 
5000 tokens (200 sentences) to parse (eng-
lish_pchemtbtb_test.conll). 

There were three sets of unlabeled documents: 
we chose the smallest (unlab1) consisting of over 
300,000 tokens (11663 sentences). unlab1 was 
tokenized, POS and lemmas were added using our 
version of TreeTagger (Schmid, 1994), and lem-
mas replaced with stems, which had turned out to 
be more effective than lemmas. We call this set 
pchemtb_unlab1.conll. 

We trained the DeSR parser on English using 
english_ptb_train.conll, the WSJ PTB col-
lection provided for CoNLL 2007. This consists of 
WSJ sections 02-11, half of the usual set 02-23, for 
a total of 460,000 tokens with dependencies gener-
ated with the converter by Johansson and Nugues 
(2007). 

We added stems and produced a parser called 
DeSRwsj. By parsing eng-
lish_pchem_test.conll with DeSRwsj we 
obtained pchemtb_test_base.desr, our base-
line for the task. 

By visual inspection using DgAnnotator 
(DgAnnotator, 2006), the parses looked generally 
correct. Most of the errors seemed due to improper 
handling of conjunctions and disjunctions. The 
collection in fact contains several phrases like: 

Specific antibodies raised against 
P450IIB1 , P450 IA1 or IA2 , 
P450IIE1 , and P450IIIA2 inhibited 
the activation in liver microsomes 
from rats pretreated with PB , BNF , 
INH and DEX respectively 

The parser did not seem to have much of a problem 
with terminology, possibly because the supplied 
gold POS were adequate. 

For the adaptation we proceeded as follows. We 
parsed pchemtb_unlab1.conll using DeSRwsj 
obtaining pchemtb_unlab1.desr. 

We then extracted a set of 12,500 sentences 
from ptb_train.conll and 7,500 sentences 
from pchemtb_unlab1.desr, creating a corpus 
of 20,000 sentences called combined.conll. In 
both cases the selection criteria was to choose sen-
tences shorter than 30 tokens. 

We then trained a low accuracy parser (called 
DesrCombined) on combined.conll, by using 
a 1st-order averaged perceptron. DesrCombined 
was used to parse english_ptb_train.conll, 
the original training corpus for English. By com-
paring this parse with the original, one can detect 
where such parser makes mistakes. The rationale 
for using an inaccurate parser is to obtain parses 
with many errors so that they form a suitably large 
training set for the next step: parser revision. 

We then used a parsing revision technique (At-
tardi and Ciaramita, 2007) to learn how to correct 
these errors, producing a parse reviser called 
DesrReviser. The revision technique consists of 
comparing the parse trees produced by the parser 
with the gold standard parse trees, from the 
annotated corpus. Where a difference is noted, a 
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revision rule is determined to correct the mistake. 
Such rules consist in movements of a single link to 
a different head. Learning how to revise a parse 
tree consists in training a classifier on a set of 
training examples consisting of pairs 〈(wi, d, wj), 
ti〉, i.e. the link to be modified and the 
transformation rule to apply. Attardi and Ciaramita 
(2007) showed that 80% of the corrections can be 
typically dealt with just 20 tree revision rules. For 
the adaptation track we limited the training to 
errors recurring at least 20 times and to 30 rules. 
DesrReviser was then applied to 

pchemtb_test_base.desr producing 
pchemtb_test_rev.desr, our final submission. 

Many conjunction errors were corrected, in par-
ticular by moving the head of the sentence from a 
coordinate verb to the conjunction ‘and’ linking 
two coordinate phrases. 

The revision step produced an improvement of 
0.42% LAS over the score achieved by using just 
the base DeSRwsj parser. 

Table 2 reports the official accuracy scores on 
the closed adaptation track. DeSR achieved a close 
second best UAS on the ptchemtb test set and 
third best on CHILDES. The results are quite en-
couraging, particularly considering that the revi-
sion step does not yet correct the dependency 
labels and that our base English parser had a lower 
rank in the multilingual track. 
 

LAS UAS 
Task 

1st DeSR Avg 1st DeSR Avg 

CHILDES     61.37 58.67 57.89 

Pchemtb  81.06 80.40 73.03 83.42  83.08 76.42 

Table 2. Closed adaptation track scores. 

Notice that the adaptation process could be iter-
ated. Since the combination 
DeSRwsj+DesrReviser is a more accurate parser 
than DeSRwsj, we could use it again to parse 
pchemtb_unlab1.conll and so on. 

11 Conclusions 

For performing multilingual parsing in the CoNLL 
2007 shared task we employed DeSR, a classifier-
based Shift/Reduce parser. We used a second order 
averaged perceptron as classifier and achieved ac-
curacy scores quite above the average in all lan-
guages. For proper comparison with other 

approaches, one should take into account that the 
parser is incremental and deterministic; hence it is 
typically faster than other non linear algorithms. 

For the adaptation track we used a novel ap-
proach, based on the technique of tree revision, 
applied to a parser trained on a corpus combining 
sentences from both the training and the adaptation 
domain. The technique achieved quite promising 
results and it also offers the interesting possibility 
of being iterated, allowing the parser to incorporate 
language knowledge from additional domains. 

Since the technique is applicable to any parser, 
we plan to test it also with more accurate English 
parsers. 
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