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Abstract 

Part of speech tagging is a fundamental 
component in many NLP systems. When 
taggers developed in one domain are used 
in another domain, the performance can 
degrade considerably. We present a method 
for developing taggers for new domains 
without requiring POS annotated text in the 
new domain. Our method involves using 
raw domain text and identifying related 
words to form a domain specific lexicon. 
This lexicon provides the initial lexical 
probabilities for EM training of an HMM 
model. We evaluate the method by apply-
ing it in the Biology domain and show that 
we achieve results that are comparable with 
some taggers developed for this domain.  

1 Introduction 

As Natural Language Processing (NLP) technol-
ogy advances and more text becomes available, it 
is being applied more and often in specialized do-
mains. Part of Speech (POS) tagging is often a 
fundamental component to these NLP applications 
and hence its accuracy can have a significant im-
pact on the application’s success. The success that 
the taggers have attained is often not replicated 
when the domain is changed. Degradation of accu-
racy in a new domain can be overcome by devel-
oping an annotated corpus for that specific domain, 
e.g., as in the Biology domain. However, this solu-
tion is feasible only if there is sufficient interest in 
the use of NLP technology in that domain, and 
there are sufficient funding and resources. In con-
trast, our approach is to use existing resources, and 

rapidly develop taggers for new domains without 
using the time and effort to develop annotated data. 

In this work, we use the Wall Street Journal 
(WSJ) corpus (Marcus et al, 1993) and large 
amounts of domain-specific raw text to develop 
taggers. We evaluate our methodology in the Biol-
ogy domain and show the resulting performance is 
competitive with some taggers built with super-
vised learning for that domain. Also, we note that 
the accuracy of taggers trained on the WSJ corpus 
drops off considerably when applied to this domain. 
Smith et al. (2005) report that the Brill tagger 
(1995) has an accuracy of 86.8% on 1000 sen-
tences taken from Medline, and that the Xerox tag-
ger (Cutting et al .1992) has an accuracy of 93.1% 
on the same sentences. They attribute this drop off 
to the fact that only 57.8% of the 10,000 most fre-
quent words can be found in WSJ corpus. This ob-
servation provides further impetus to developing 
lexicon for taggers in the new domains.  

In the next section, we discuss our general ap-
proach. The details of the EM training of the HMM 
tagger are given in Section 3. Section 4 provides 
details of how a domain specific lexicon is created. 
Next, we discuss the evaluation of our models and 
analysis based on the results. Section 6 discusses 
related work and those works from which we have 
taken some ideas. Section 7 has some concluding 
remarks.  

2 Basic Methodology 

Inadequate treatment of domain-specific vocabu-
lary is often the primary cause in the degradation 
of performance when a tagger trained in one genre 
of text is ported to a new domain. The significance 
of out-of-vocabulary words has been noted in re-
duced accuracy of NLP components in the Biology 
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domain (e.g., Lease and Charniak, 2005; Smith et 
al. 2004). The handling of domain-specific vocabu-
lary is the focus of our approach.  

It is quite common to use suffix information in 
the prediction of POS tags for occurrences of new 
words. However, its effectiveness may be limited 
in English, which is not a highly inflected language. 
However, even for English, we find that not only 
can suffix information be used online during tag-
ging, but also the presence or absence of morpho-
logically related words can provide considerable 
information to pre-build a lexicon that associates 
possible tags with words.  

Consider the example of the word “broaden”. 
While the suffix “en” may be utilized to predict the 
likelihood of verbal tags (VB and VBP) for the 
word during tagging, if we were to build a lexicon 
offline, the existence of the words “broadened”, 
“broadening”, “broadens” and “broad” give further 
evidence to treat “broaden” as a verb. This type of 
information has been used before in (Cucerzan and 
Yarowsky, 2000).  

In the above example, the presence or absence 
of words with the suffix morphemes suggests POS 
tag information in two ways: 1) The presence of a 
suffix morpheme in a word suggests a POS tag or a 
small set of POS tags for the word. This is the type 
of information most taggers use to predict tags for 
unknown words during the tagging process; 2) The 
presence of the morpheme can also indicate possi-
ble tags for the words it attaches to. For example, 
the derivational morpheme “ment” indicates “gov-
ernment” is likely to be an NN and also that the 
word it attaches to, “govern” is likely to be a verb. 
Inflectional and derivational morphemes don’t at-
tach to words of just any POS category; they are 
particular. Thus, we can propose the possibility of 
JJ (adjective) to “broad” and VB or VBP to “gov-
ern” (based on the fact the derivational morphemes 
“en” and “ment” attach to them) even though by 
themselves they don’t have any suffix information 
that might be indicative of JJ and VB or VBP.  

Additional suffixes (that may or may not be 
taken from a standard list of English inflectional 
and derivational morphemes) can also be used. As 
an example, the suffix “ate” can be associated with 
a small set of tags: VB or VBP (“educate”, “cre-
ate”), JJ (“adequate”, “appropriate”), and NN 
(“candidate”, “climate”). Note the possibility or 
impossibility of the addition of “tion” and “ly” can 
help distinguish between the verbal and adjectival 

situations. In contrast, most taggers that use just 
suffix information during the tagging process will 
need strong contextual information (i.e., tags of 
nearby words) in making their prediction for each 
occurrence, as such suffixes can be associated with 
multiple tags. 

To utilize such information, we need a diction-
ary of words in the domain for which we are inter-
ested in building a tagger. Such a dictionary will 
allow us to propose possible tags for a domain 
word such as “phosphorylate”. If we can verify 
whether words like “phosphorylation”, “phos-
phorylates”, and “phosphorylately,” are available 
in the domain then we can obtain considerable in-
formation regarding the possible tags that can be 
associated with “phosphorylate”. But we cannot 
assume the availability of a dictionary of words in 
the domain. However, it would suffice to have a 
large text corpus, which we call Text-Lex. We use 
it as a proxy for a domain dictionary by obtaining a 
list of words and their relative frequency of ap-
pearance in the domain.  

Rather than using manually developed rules that 
assign possible tags for words based on the pres-
ence or absence of related words, we wish to apply 
a more empirical methodology. Since this sort of 
information is specific to a language rather than a 
domain, we can use an annotated corpus in another 
domain to provide exemplars. We use the WSJ 
(Marcus et al. 1993) corpus, a POS annotated cor-
pus, for this purpose.  For example, we can see that 
“phosphorylate” in the Biology domain and “cre-
ate” in the WSJ corpus are similar in the sense both 
take on “tion”, “ed”, and “ing” suffixes but not 
“ly” for instance. Since the WSJ corpus would 
provide POS tag information for “create”, we can 
use it to inform us for “phosphorylate”. 

The above method forms the basis for our de-
termination of the set of tags that are to be associ-
ated with the domain words. However, the actual 
tag to be assigned for an occurrence in text de-
pends on the context of use. We capture this in-
formation by using a first-order HMM tagger 
model. For the transitional probabilities, we begin 
by using WSJ-based probabilities as a starting 
point and then adjust to the new domain by using a 
domain specific text and using EM training. EM 
also allows for adjusting lexical probabilities de-
rived using WSJ words as exemplars. We call the 
domain specific text used for training of our HMM 
tagger as Text-EM. While this could be the same 
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as Text-Lex, we distinguish the two since Text-EM 
could be smaller than Text-Lex. From Text-Lex, 
we only extract a list of words and their frequency 
of occurrences. In contrast, we use Text-EM as a 
text and hence as a sequence of words.  

In this work, the set of suffixes that we use is 
adapted those found in a GRE preparation web-
page (DeForest, 2000). A few additional suffixes 
were obtained from the online English Dictionary 
AllWords.com (2005). In the future we expect to 
consider automatic mining of useful suffixes from 
a domain. Furthermore, prefixes are also useful for 
our purposes. However apart from a few prefixes 
used in hyphenated words, we haven’t yet incorpo-
rated prefix information in a systematic way into 
our framework.  

In this paper, our evaluation domain is molecu-
lar biology. Large amounts of text are easily avail-
able in the form of Medline abstracts. We use only 
about 1% of the Medline text database for Text-
Lex. Another reason for selecting this evaluation 
domain is that we have a considerable amount 
POS-annotated text in this domain, and the most 
recent techniques of supervised POS tag learning 
have been used in developing taggers for this do-
main. This allows us to evaluate our tagger using 
the annotated text for evaluation as well as to com-
pare our tagger with others developed for this do-
main. The POS-annotated text we use is the well-
known GENIA (Tateisi et al, 2003) corpus that 
was developed at University of Tokyo.  

3 Expectation Maximization Training 

Our tagger is a first-order Hidden Markov Model 
(HMM) tagger that is trained using Expectation 
Maximization (EM) since we do not assume exis-
tence of annotated data in the new domain.1 Al-
though we use the GENIA corpus, we take only the 
raw text and strip off the annotated information for 
obtaining the Text-EM. Our HMM is based on bi-
gram modeling and hence our transitional prob-
abilities correspond to P(t | t’) where t and t’ are 
POS tags. The emissions that label the transition 
edges will be discussed in the next section and in-
clude domain words as well as certain types of 
“coded words”.  

                                                 
1 We considered a 2nd order model as well, but early work 
showed negligible advantage predicting to the same training 
set. Following Wang and Schuurmans (2005) we chose to 
focus on quality of estimation over model complexity. 

The initial transitional probabilities are not ran-
domly chosen but rather taken from the WSJ cor-
pus. If we take the transitional probabilities as a 
representation of syntactic preferences, then EM 
learning using Text-EM may be taken as adjust-
ment of the grammatical preferences in the WSJ 
corpus to those in the new domain. In order to ad-
just the grammatical preference to the new domain, 
we start from smoothed WSJ bigram probabilities. 
If we started from unsmoothed WSJ bigram prob-
abilities, then EM would not allow us to account 
for transitions that are not observed in the WSJ 
corpus. For example, in scientific text, transition 
from RRB (the right round bracket) to VBG may 
be possible, while it does not occur in the WSJ 
corpus. Hence, we smooth the WSJ bigram prob-
abilities with WSJ unigram probabilities.  

We compute smoothed initial bigram probabili-
ties as 

P(t | t’) = λ PWSJ(t | t’) + (1-λ) PWSJ(t), 
where λ=0.9. We felt employing techniques sug-
gested in (Brants, 2000) gave too high a preference 
for unigram probabilities.  

The initial emit probability is obtained from the 
domain text Text-Lex. The process is described in 
the next section. This information is derived purely 
from suffix and suffix distribution, or from ortho-
graphic information and does not account for the 
actual context of occurrences in the domain text. 
We take this suffix-based (and orthographic-based) 
emit probabilities as reasonable initial lexical 
probabilities. EM training will adjust them as nec-
essary.  

We made one minor modification to the stan-
dard forward-backward EM algorithm. We dampen 
the change in transitional and emit probabilities for 
each iteration. Significant differences in lexical 
probabilities between the new domain and WSJ 
can make undue changes in transitional probabili-
ties and this in turn can further lead the lexical 
probabilities to head in the wrong direction. By 
adding a damping factor, we can prevent the unsu-
pervised training to spiral out of control. Hence we 
let the new transitional probability be given by  

P(t | t’) = λ PNEW(t | t’) + (1-λ) POLD(t | t’)  
where POLD represents the transitional probability 
in the previous iteration and PNEW represents the 
probability by standard use of forward-backward 
algorithm. We use a damping factor of 0.5 for both 
transitional and emit probabilities. For the emit 
probabilities, this has the effect of moderating POS 
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preferences derived from the training data and pre-
serving words and POSes from the lexicon for use 
in the test set. 

Even with the damping factor, EM learning fol-
lowed the pattern of ‘Early Maximum’ described 
by Elworthy (1994), where with good initial esti-
mates EM learning only improves accuracy for a 
few iterations.  For our EM training, we fixed it-
eration 2 as our ‘best’ EM trained model. 

4 Development of the Lexicon and Initial 
Probabilities 

As noted earlier, we use a domain text, Text-Lex, 
to develop the initial lexical probabilities for the 
HMM. The essential process is as follows. Let a 
word w appear a sufficient number of times in 
Text-Lex (at least 5 times). We look in Text-Lex 
for related words in order to assign a feature vector 
with this word. Each feature is written as –x+y, 
where x and y represent suffixes or the empty 
string (here represented as _).  

Features: The feature –x+y represents the word 
formed by replacing some suffix x in w by some 
suffix y. Consider the word “creation”. “–ion+_” 
corresponds to the stem word “create” and “–
ion+ion” corresponds to the word “creation” itself. 
The feature “–ion+ed” captures information about 
the word “created” whereas the feature “-_+s” cor-
responds to word “creations”. 

Now consider a word like “history”. While this 
might have non-zero values for “-y+ic” (historic) 
or “-_+s” (histories), we are likely to set zero value 
for “–ory+_” (unless “hist” or “histe” is found in 
Text-Lex). This zero value represents the fact that 
although “history” has “ory” as a suffix, it has no 
stem. Such a distinction (whether or not there is a 
stem) bears much information for suffixes like 
“ate” and “ory”.  

We use suffix classes rather than actual suffixes 
as we believe this provides a more appropriate 
level of abstraction. Given a word w with a suffix 
x (for a word with no suffix from our list of suf-
fixes, x is taken to be _. i.e., empty string), we ex-
amine whether removal of x from w leads to an-
other word by using a few basic variations that can 
be found in any rudimentary exposition on English 
morphology. For example, for the suffix “ed”, we 
attempt to replace “ied” with “y” which relates 
“purified” with “purify” and recognizes the spell-
ing alternation of i/y. Thus for the word “purify” 

the feature “-+ed” represents the presence of “pu-
rified” since “+ed” represents the suffix class 
rather than the actual suffix. Similarly, we also 
consider removal of a suffix and, if necessary, add-
ing an “e” to see if such a word exists. This allows 
us to relate “creation” with “create” or “activate” 
with “active”. Also doubling of a few consonants 
is attempted to relate “occurrence” and “occur”. 
Finally, when a word could have two suffixes, the 
word is considered to always have the longer func-
tional suffix. Hence, we consider “government” to 
have “ment” suffix rather than “ent” suffix.  

Feature Vectors: There are two different types 
of vectors we use for any word, one called Bin (for 
binary count) and other called RFreq (for relative 
frequency). In the Bin vector associated with 
“creation”, all these four features will get the 
value one, assuming that the four corresponding 
words are found in Text-Lex. On the other hand, 
assuming “creatory” is not found in Text-Lex, the 
feature “-ion+ory” would get a zero value.  

For RFreq vector, instead of ones and zeros, we 
first start with the frequency of occurrences of each 
word and then normalize so that the sum of all fea-
ture values is one. Thus, for example, a word with 
4 features having non-zero frequencies of 10, 20, 
30 and 40 will have the respective values set to 0.1, 
0.2, 0.3 and 0.4. A word with four features having 
non-zero frequency, which are 1, 2, 3 and 4, will 
also have same 4 relative frequency values.  

Our intuition is that the Bin vector is helpful in 
determining the set of tags that can be associated 
with a word and that the RFreq vector can aug-
ment this information regarding the likelihood of 
these tags. For example, a one for the “-ing+_” 
feature in a Bin vector (thus disqualifying a word 
like “during”) may be sufficient to predict VBG, JJ 
and NN tags. However, this may not suffice to 
provide the ordering of likelihood among these 
tags for this word. On the other hand, it seems to 
be the case that when the “ing” form appears far 
more often than the “ed” form, then the NN tag is 
most likely. But if the “ed” form is more frequent, 
then VBG is most likely. Examples in the WSJ 
corpus include “smoking”, “marketing”, “index-
ing”, and “restructuring” for the first kind, and 
“calling”, “counting”, “advising”, and “noting” for 
the second kind.  

Exemplars in WSJ: Given a word w from Text-
Lex, we look for similar words from the WSJ cor-
pus. Even though the set of words used in this cor-
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pus may differ substantially from the domain text, 
our hypothesis is that words with similar suffix 
distribution will have similar POS tag assignments 
regardless of the domain. We follow Cucerzan and 
Yarowsky (2000) in using the kNN method for 
finding similar words, but we differ in details of 
the construction of the feature vectors and distance 
computation. For the word w we create the Bin and 
RFreq vectors based on distribution of words in 
Text-Lex. Following the same method, we create 
the Bin and RFreq vectors for a word v in the WSJ 
corpus by using the distributions in the WSJ cor-
pus. Then we compute BinDist(w,v) as the number 
of features in which the two Bin vectors  differ. A 
similar RFDist is defined as a weighted sum of 
two distances: the first distance is L1-norm dis-
tance based on values of features for which both 
words have non-zero values for and the second 
distance is based on values of features for which 
one word has a zero value and other does not. 
Thus, if the two words’ RFreq vectors are 

! 
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! 

RFDist(w,v) = RFsame(w,v) + "RFdiff (w,v)

 
For RFDist(.), we used δ =2. Given a word w, 

we find the 5 nearest neighbors from the WSJ cor-
pus and use their average lexical probabilities to 
obtain the lexical probabilities for w. We investi-
gate the use of Bin vector information and RFreq 
vector information for computing the distances 
(i.e., BinDist(.) and RFDist(.)) as well as a hybrid 
measure that combines these two distances.  

We also considered smoothing the lexical prob-
abilities obtained in the above fashion. Let w be a 
word for which the above method suggests tags 
t1,…,tn in order of likelihood (t1 is most probable).  
Then we consider sqrt-score(ti)= 

! 

n +1" i . We 
then assign probabilities based on this score after 
normalizing them so that the probabilities for the n 
tags will sum to 1. Thus, for example, if a word w 
has three possible tags, no matter what the original 
lexical probabilities were determined to be, if t1 is 

determined to be most probable, then P(t1|w) will 
be 0.418 by this method. The second most prob-
able tag will be assigned 0.341.   

The intuition behind this square root smoothing 
method is that this smoothing may be appropriate 
for low frequency words, where empirical prob-
abilities based purely on a kNN basis may not be 
entirely appropriate if the new domain is very dif-
ferent. The drawback of course is that if there is 
sufficient information, we lose useful information 
by such flattening. And when a tag is significantly 
more probable for a word then we lose this vital 
information. For example, the word “high” is 
mostly annotated as JJ in WSJ corpus but RB and 
NN are also possible. Square root smoothing will 
flatten this distribution considerably. Nevertheless, 
we wish to investigate whether this method of 
smoothing the distribution is enough in conjunc-
tion with EM. EM adjusts the probability from 
observing the number and context of occurrences 
in the domain text.2  

Coded Words: No matter how large Text-Lex 
is, there will be words that do not appear a suffi-
cient number of times (we take this number to be 
5). We aggregate such words according to their 
suffixes, if they correspond to one of the prede-
fined suffixes. Then each word with suffix x is 
considered to be an instance of a “coded” word 
SFX-x. If a word does not have any of these suf-
fixes then they fall into the coded class unknown. 
For each such coded word, we assign the tags and 
probabilities based on similarly aggregated words 
in the WSJ corpus. 

We have two other broad classes of words that 
we treat differently. Coded words are formed based 
on orthographic characteristics, which include but 
are not limited to Greek letters, Roman numerals, 
digits, upper or lower case single letters, upper 
case letter sequences, cardinals, certain prefix 
words, and their combinations.  Since they are rela-
tively easy to tag, we do not use the WSJ corpus 
for them but handle it programmatically. Finally, if 
a word occurs often in WSJ or is assigned tags 
such as CD, FW, MD, PRP, DT, WDT, etc. (tags 
which can’t be predicted by means of suffix or suf-
fix-related words), we add this word together with 
the tags and probability into the domain lexicon 
that we are building.  

                                                 
2 We also considered linear and square functions for smooth-
ing while reporting only the sqrt results in section 5. 
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5 Evaluation and Analysis 

As noted earlier, our evaluation is on molecular 
biology text. For Text-Lex, we used 133,666 ti-
tles/abstracts of research papers, a small fraction of 
the Medline database available from the National 
Library of Medicine. These abstracts were con-
tained in just five of the 500 compressed data files 
in the 2006 version of the Medline database. These 
abstracts cover topics more broadly in Biomedicine 
and not just molecular biology.  On the other hand, 
we use for Text-EM, text which can be regarded to 
be in a subfield of molecular biology.  

Text-EM is the text from the GENIA corpus 
(version 3.02) described in (Tateisi et al. 2003). 
This corresponds to about 2000 abstracts, which 
are annotated with POS tag information (using the 
same tags used in the WSJ corpus). We use a 5-
fold cross-validation, i.e., 5 partitions are formed 
and experiments conducted 5 times and results av-
eraged. For each test partition, the remainder parti-
tions are used for “training”. In our case, this is 
unsupervised since we use EM and hence we to-
tally disregard the POS tag information that is as-
sociated with the words. We note that both the text 
for EM training as well as for testing come from 
the same domain.   

We first evaluate the process of building the 
lexicon. This time we consider the entire GENIA 
corpus and not any partition. We first considered 
all words in the GENIA corpus for which we can 
expect our kNN method to assign a tag. Hence all 
words that would be treated as coded words are 
ignored. For each such word, we consider the tags 
assigned to them in the GENIA corpus and form 
pairs <w,t>.  We are interested in the word type 
and not token and hence we will not have any mul-
tiple occurrences of a pair <w,t>. Our kNN method 
identifies 96.3% of these pairs; we can think of this 
as recall. This makes our approach effective, espe-
cially given the fact that the kNN method only as-
signs 1.92 tags on an average to these words in the 
GENIA corpus. Next considering all words appear-
ing in the GENIA corpus, our lexicon includes a 
correct tag in 99.0% of the cases on a word-token 
basis. These results are summarized below. 
 

Characteristic Statistic 
kNN Recall (word-type) 96.3% 
Average Number Tags/Word 1.92 tags 
Lexicon Recall (word-token) 99.0% 

We now turn to the evaluation of the accuracy of 
our HMM. As mentioned earlier, these results are 
based on 5-fold cross-validation experiments. The 
best results (95.77%) were obtained for the case 
where we took the lexical probabilities directly 
from kNN using only RFDist and by discarding all 
tags assigned with probability less than 0.02.3  

These results compare favorably to other taggers 
developed for the Biology domain. The MedPost 
tagger (see Section 6) achieved an accuracy of 
94.1% when we applied it to the GENIA abstracts. 
The PennBioIE tagger (see Section 6) achieved an 
accuracy of 95.1%. Note that output from the 
PennBioIE tagger is not fully compatible with 
GENIA annotation due to some differences in its 
tokenization.  Even if the differences in accuracies 
can be discounted due to tokenization or even sys-
tematic differences in annotation between the train-
ing and test corpora, our main point is that our re-
sults compare favorably (our tagger competitive) 
with taggers that were developed for the Biomedi-
cine domain using supervised training.   

These results are summarized in the table below. 
 
POS Tagger %Accuracy 
Our HMM (5-fold) 95.77% 
MedPost 94.1% 
PennBioIE 95.1% 
GENIA supervised 98.26% 
 
MedPost seems intended to cover all of Bio-

medicine, since its lexicon is based on the 10,000 
most frequently occurring words from Medline and 
for which the set of possible tags were manually 
specified. The PennBioIE tagger was developed 
using 315 Medline abstracts using another subfield 
of molecular biology. 

None of these accuracies however are as high as 
those of the GENIA tagger (Tsuruoka et al. 2005) 
which was trained (supervised) using GENIA cor-
pus and uses a machine learning model more so-
phisticated than the simple first-order HMM tagger 
we use. This model considers more features includ-
ing words to the right. The best results (98.26%) 
were obtained when lexicon from three different 
sources were aggregated.   

                                                 
3 Banko and Moore (2004) showed only slight improvement in 
tag accuracy between .01 and .1 cutoffs with a lexicon built 
from annotated data. We opted for the .02 cutoff because of 
our ‘noisier’ lexicon. 
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Returning to the results for our taggers, we also 
tried BinDist in the kNN method, with and without 
square root smoothing. These results were typi-
cally less than the above-mentioned result. We also 
compared using a square root smooth on RFDist 
obtaining results approximately 1% lower than 
without the square root smooth. 

We next present some examples that illustrate 
strengths and weaknesses of the current model. An 
example that shows that EM training makes good 
adjustment to the domain is the improvement in 
tagging of verbal categories. We conducted a de-
tailed error analysis on one of the cross-validation 
partitions and noted that the accuracy on all verbal 
POS tags improved after EM training. A notewor-
thy case is the improvement in tagging of VBP 
originally misclassified as VB. Since most English 
words that are VB can also be VBP, and since they 
are annotated more frequently in WSJ as VB, the 
initial lexicon usually has a higher probability as-
signed to VB for most words. As EM training pro-
gresses, we noted that the frequency of VBP 
mistagged as VB decreases. Similarly, misclassifi-
cations of VBG as NN also drops in the final 
model (by 40.3% on Text-EM) as compared to the 
initial model based on WSJ transitional probabili-
ties and initial lexicon derived using WSJ words as 
exemplars. 

Previously, in the context of parsing Biomedical 
text, Lease and Charniak (2004) mention the oc-
currences of sequences of multiple NN is more 
frequent in the GENIA corpus than in the WSJ 
corpus and that it could lead to parsing errors. We 
didn’t observe this problem here, but rather the 
contrary situation where many JJs were initially 
mistagged as NN.  About 22% of these misclassifi-
cations are corrected after EM training.  

While our model adjusts well in these cases to 
the new domain, sometimes the drift leads to worse 
performance. An example is in the misclassifica-
tion of VBN as JJ. The most frequent word for 
which this misclassification occurs in the word 
“activated”. These misclassifications occur in the 
context such as “the activated cells”. The use of 
VBN rather than JJ is hard to determine on basis of 
just surface features and perhaps has to do more 
with the meaning of the word. In supervised set-
ting, if sufficient such cases were annotated then 
this would be learned. But in an unsupervised set-
ting this turns out to be a problem case. Despite the 
fact that RFDist predicted VBN as most probable 

tag for “activated”, EM training makes this situa-
tion worse.  

Analysis of words with most frequent errors re-
vealed many cases from orthographic coded words. 
Many occurrences of single lower case letters 
(which could have LS, SYM or NN tags) were la-
beled as LS whereas the GENIA tagging used NN. 
Our model tagged “+/-” always as SYM whereas 
because of the context of use, GENIA annotations 
were CC. (In fact, GENIA does not appear to use 
the SYM tag.) Similarly, “<” and “>” were often 
mistagged as SYM by our model whereas based on 
context they are annotated as JJR.  

6 Related Work 

The impact of out-of-vocabulary words on NLP 
applications has been noted before. The degrada-
tion in performance of components, which were 
trained on the WSJ corpus, but used on biomedical 
text has been noted (Lease and Charniak, 2004, 
Smith et al, 2005). Smith et al. (2005) use this ob-
servation in the design of their POS tagger, Med-
Post, by building a Markov model with a lexicon 
containing the 10,000 most frequent words from 
Medline, and using annotated text from the Bio-
medical text for supervised training.  

There are many unsupervised approaches to 
POS tagging. We focus now on those that are most 
closely related to our work and contain ideas that 
have influenced this work. There have been many 
uses of EM training to build HMM taggers 
(Kupiec, 1992; Elworthy, 1994; Banko and Moore, 
2004; Wang and Schuurmans, 2005). Banko and 
Moore (2004) achieved better accuracy by restrict-
ing the set of possible tags that are associated with 
words. By eliminating possibilities that may appear 
rarely with a word, they reduce the chances of un-
supervised training spiraling along an unlikely 
path.  We believe by using our approach we con-
siderably reduce the set of tags to what is appropri-
ate for each word. Further, we too remove any tag 
associated with low probability by kNN method.  
Usually these tags are noise introduced by some 
inappropriate exemplar.  

Wang and Schuurman (2005) suggest that EM 
algorithm be modified such that at any iteration the 
unigram tag probability be held constant to the true 
probability for each tag. Again, this might serve to 
stop a drift in unsupervised methods towards mak-
ing a tag’s probability become larger than it should 
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be. However, the true probability cannot be known 
ahead of time and certainly not in a new domain. 
While a WSJ bigram probability need not reflect 
the corresponding preferences in the new domain, 
our use of starting from WSJ probabilities and then 
damping changes to transition probabilities was 
motivated by a similar concern of not letting a drift 
towards making some (bigram) tags too frequent 
during EM iterations.  

Using suffixation patterns for purposes of pre-
dicting POS tags has been considered before. Al-
though as far as we know, we are the first to apply 
it for domain adaptation purposes. Schone and Ju-
rafsky (2001) consider clusters of words (obtained 
by some “perfect” clustering algorithm) and then 
compute a measure of how “affixy” a cluster is. 
For example, a cluster containing words “climb” 
and “jump” may be related by suffixing operation 
+s to a cluster that contains words “climbs” and 
“jumps”. The percentage of words in a cluster that 
are so related provides a measure of how “affixy” a 
cluster. This together with five other attributes of 
clusters (such as whether words in a cluster pre-
cede those of another cluster, optionality) and lan-
guage universals induce POS tags for these clusters 
from corpora. This method does not use POS 
tagged corpora (although in the reported experi-
ment the initial “perfect” clusters were obtained 
from the Brown corpus using the POS tag informa-
tion). In contrast, we use the POS tagged WSJ cor-
pus to assist in the induction of tag information for 
our lexicon. In this respect, our method is closer to 
the approach of Cucerzan and Yarowsky (2000). 
Our use of the kNN method to identify tags and 
their probabilities for words was inspired by this 
work.  However, their use of kNN method was in 
the context of supervised learning. The method 
was applied for handling words unseen in the train-
ing data. The estimated probabilities were used 
during the tagging process. Instead of just applying 
the method for unknown words, i.e., words not 
present in the training data, our approach is to cre-
ate the entire lexicon in the new domain. As Lease 
and Charniak (2004), among others, have noted, 
the distribution of NN tag sequences as well as tag 
distributions in the Biomedical domain could differ 
from WSJ text. Since our aim is to adjust to the 
new domain, we employed unsupervised learning 
in the form of EM training, unlike the supervised 
tagging model development approach of Cucerzan 
and Yarowsky. Another significant difference is 

that their method determines nearest neighbors not 
only on the basis of suffix-related words but also 
on the basis of nearby words context. Since our 
motivation, on the other hand, is to move to a new 
domain, we didn’t consider detection of similarity 
on the basis of word contexts. In contrast, we have 
shown that the approach of identifying words on 
the basis of suffixation patterns and using them as 
exemplars can be applied effectively even when 
the domain of application is substantially different 
from the text (the WSJ corpus) providing the ex-
emplars. 

7 Conclusions 

As NLP technology continues to be applied in new 
domains, it becomes more important to consider 
the issue of portability to new domains. To cope 
with domain-specific vocabulary and also different 
use of vocabulary in a new domain, we exploited 
suffix information of words. While use of suffix 
information per se has been employed in many ex-
isting POS taggers, its use is often limited to an 
online manner, where each word is examined inde-
pendently from the existence of its morphologi-
cally related words. As shown in (Cucerzan and 
Yarowsky, 2000), such information can provide 
considerable information to build a lexicon that 
associates possible tags with words. However, we 
use this information only to provide the initial val-
ues. We apply EM algorithm to adjust these initial 
probabilities to the new domain.  

The results in Section 5 show that we achieve 
good performance in the evaluation domain, which 
is comparable with two recently developed taggers 
for this domain. We also show in section 5 exam-
ples of how EM unlearns some WSJ bias and ad-
justs to the new domain. While we introduce a 
damping factor to slow down changes in iterations 
of EM training, we believe there is scope for fur-
ther improvement to minimize drift. Furthermore, 
there is scope to improve our kNN method as dis-
cussed at the end of Section 5. In the future, we 
also expect to consider methods that may auto-
matically mine suffixes in a new domain and use 
these domain-specific suffixes. We used the kNN 
method to associate words in the new domain with 
possible POS tags.  

Despite the often-stated notion that English is 
not morphologically rich, we find that suffix-based 
methods can still help make significant inroads. 
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Our method offers the chance to develop good tag-
gers for specialized domains. For example, the 
GENIA corpus and PennBioIE corpus are speciali-
zations within molecular biology, but taggers de-
veloped on one corpus degrades in performance on 
the other. Using our method, we could use differ-
ent Text-EM for these specializations even if we 
retain Medline as Text-Lex. In the same way, we 
could develop a tagger for the medical domain, 
which has a distinct vocabulary from biology.  
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