
Proceedings of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 1044–1050,
Prague, June 2007. c©2007 Association for Computational Linguistics

Dependency Parsing and Domain Adaptation with LR Models and
Parser Ensembles

Kenji Sagae1 and Jun’ichi Tsujii 1,2,3

1Department of Computer Science
University of Tokyo

Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
2School of Computer Science, University of Manchester

3National Center for Text Mining
{sagae,tsujii}@is.s.u-tokyo.ac.jp

Abstract

We present a data-driven variant of the LR
algorithm for dependency parsing, and ex-
tend it with a best-first search for probabil-
istic generalized LR dependency parsing.
Parser actions are determined by a classifi-
er, based on features that represent the cur-
rent state of the parser. We apply this pars-
ing framework to both tracks of the CoNLL
2007 shared task, in each case taking ad-
vantage of multiple models trained with
different learners. In the multilingual track,
we train three LR models for each of the
ten languages, and combine the analyses
obtained with each individual model with a
maximum spanning tree voting scheme. In
the domain adaptation track, we use two
models to parse unlabeled data in the target
domain to supplement the labeled out-of-
domain training set, in a scheme similar to
one iteration of co-training.

1 Introduction

There are now several approaches for multilingual
dependency parsing, as demonstrated in the
CoNLL 2006 shared task (Buchholz and Marsi,
2006). The dependency parsing approach pre-
sented here extends the existing body of work
mainly in four ways:
1. Although stepwise1 dependency parsing has

commonly been performed using parsing algo-

1 Stepwise parsing considers each step in a parsing algo-
rithm separately, while all-pairs parsing considers entire

rithms designed specifically for this task, such
as those described by Nivre (2003) and Yamada
and Matsumoto (2003), we show that this can
also be done using the well known LR parsing
algorithm (Knuth, 1965), providing a connec-
tion between current research on shift-reduce
dependency parsing and previous parsing work
using LR and GLR models;

2. We generalize the standard deterministic step-
wise framework to probabilistic parsing, with
the use of a best-first search strategy similar to
the one employed in constituent parsing by Rat-
naparkhi (1997) and later by Sagae and Lavie
(2006);

3. We provide additional evidence that the parser
ensemble approach proposed by Sagae and La-
vie (2006a) can be used to improve parsing ac-
curacy, even when only a single parsing algo-
rithm is used, as long as variation can be ob-
tained, for example, by using different learning
techniques or changing parsing direction from
forward to backward (of course, even greater
gains may be achieved when different algo-
rithms are used, although this is not pursued
here); and, finally,

4. We present a straightforward way to perform
parser domain adaptation using unlabeled data
in the target domain.

We entered a system based on the approach de-

scribed in this paper in the CoNLL 2007 shared

trees. For a more complete definition, see the CoNLL-
X shared task description paper (Buchholz and Marsi,
2006).

1044

task (Nivre et al., 2007), which differed from the
2006 edition by featuring two separate tracks, one
in multilingual parsing, and a new track on domain
adaptation for dependency parsers. In the multi-
lingual parsing track, participants train dependency
parsers using treebanks provided for ten languages:
Arabic (Hajic et al., 2004), Basque (Aduriz et al.
2003), Catalan (Martí et al., 2007), Chinese (Chen
et al., 2003), Czech (Böhmova et al., 2003), Eng-
lish (Marcus et al., 1993; Johansson and Nugues,
2007), Greek (Prokopidis et al., 2005), Hungarian
(Czendes et al., 2005), Italian (Montemagni et al.,
2003), and Turkish (Oflazer et al., 2003). In the
domain adaptation track, participants were pro-
vided with English training data from the Wall
Street Journal portion of the Penn Treebank (Mar-
cus et al., 1993) converted to dependencies (Jo-
hansson and Nugues, 2007) to train parsers to be
evaluated on material in the biological (develop-
ment set) and chemical (test set) domains (Kulick
et al., 2004), and optionally on text from the
CHILDES database (MacWhinney, 2000; Brown,
1973).

 Our system’s accuracy was the highest in the
domain adaptation track (with labeled attachment
score of 81.06%), and only 0.43% below the top
scoring system in the multilingual parsing track
(our average labeled attachment score over the ten
languages was 79.89%). We first describe our ap-
proach to multilingual dependency parsing, fol-
lowed by our approach for domain adaptation. We
then provide an analysis of the results obtained
with our system, and discuss possible improve-
ments.

2 A Probabilistic LR Approach for De-
pendency Parsing

Our overall parsing approach uses a best-first
probabilistic shift-reduce algorithm based on the
LR algorithm (Knuth, 1965). As such, it follows a
bottom-up strategy, or bottom-up-trees, as defined
in Buchholz and Marsi (2006), in contrast to the
shift-reduce dependency parsing algorithm de-
scribed by Nivre (2003), which is a bottom-up/top-
down hybrid, or bottom-up-spans. It is unclear
whether the use of a bottom-up-trees algorithm has
any advantage over the use of a bottom-up-spans
algorithm (or vice-versa) in practice, but the avail-
ability of different algorithms that perform the
same parsing task could be advantageous in parser

ensembles. The main difference between our pars-
er and a traditional LR parser is that we do not use
an LR table derived from an explicit grammar to
determine shift/reduce actions. Instead, we use a
classifier with features derived from much of the
same information contained in an LR table: the top
few items on the stack, and the next few items of
lookahead in the remaining input string. Addition-
ally, following Sagae and Lavie (2006), we extend
the basic deterministic LR algorithm with a best-
first search, which results in a parsing strategy sim-
ilar to generalized LR parsing (Tomita, 1987;
1990), except that we do not perform Tomita’s
stack-merging operations.

The resulting algorithm is projective, and non-
projectivity is handled by pseudo-projective trans-
formations as described in (Nivre and Nilsson,
2005). We use Nivre and Nilsson’s PATH
scheme2.

For clarity, we first describe the basic variant of
the LR algorithm for dependency parsing, which is
a deterministic stepwise algorithm. We then show
how we extend the deterministic parser into a best-
first probabilistic parser.

2.1 Dependency Parsing with a Data-Driven
Variant of the LR Algorithm

The two main data structures in the algorithm are a
stack S and a queue Q. S holds subtrees of the fi-
nal dependency tree for an input sentence, and Q
holds the words in an input sentence. S is initia-
lized to be empty, and Q is initialized to hold every
word in the input in order, so that the first word in
the input is in the front of the queue.3

The parser performs two main types of actions:
shift and reduce. When a shift action is taken, a
word is shifted from the front of Q, and placed on
the top of S (as a tree containing only one node, the
word itself). When a reduce action is taken, the

2 The PATH scheme was chosen (even though Nivre and
Nilsson report slightly better results with the HEAD
scheme) because it does not result in a potentially qua-
dratic increase in the number of dependency label types,
as observed with the HEAD and HEAD+PATH
schemes. Unfortunately, experiments comparing the
use of the different pseudo-projectivity schemes were
not performed due to time constraints.
3 We append a “virtual root” word to the beginning of
every sentence, which is used as the head of every word
in the dependency structure that does not have a head in
the sentence.

1045

two top items in S (s1 and s2) are popped, and a
new item is pushed onto S. This new item is a tree
formed by making the root s1 of a dependent of the
root of s2, or the root of s2 a dependent of the root
of s1. Depending on which of these two cases oc-
cur, we call the action reduce-left or reduce-right,
according to whether the head of the new tree is to
the left or to the right its new dependent. In addi-
tion to deciding the direction of a reduce action,
the label of the newly formed dependency arc must
also be decided.

Parsing terminates successfully when Q is emp-
ty (all words in the input have been processed) and
S contains only a single tree (the final dependency
tree for the input sentence). If Q is empty, S con-
tains two or more items, and no further reduce ac-
tions can be taken, parsing terminates and the input
is rejected. In such cases, the remaining items in S
contain partial analyses for contiguous segments of
the input.

2.2 A Probabilistic LR Model for Dependen-
cy Parsing

In the traditional LR algorithm, parser states are
placed onto the stack, and an LR table is consulted
to determine the next parser action. In our case,
the parser state is encoded as a set of features de-
rived from the contents of the stack S and queue Q,
and the next parser action is determined according
to that set of features. In the deterministic case
described above, the procedure used for determin-
ing parser actions (a classifier, in our case) returns
a single action. If, instead, this procedure returns a
list of several possible actions with corresponding
probabilities, we can then parse with a model simi-
lar to the probabilistic LR models described by
Briscoe and Carroll (1993), where the probability
of a parse tree is the product of the probabilities of
each of the actions taken in its derivation.

To find the most probable parse tree according
to the probabilistic LR model, we use a best-first
strategy. This involves an extension of the deter-
ministic shift-reduce into a best-first shift-reduce
algorithm. To describe this extension, we first in-
troduce a new data structure Ti that represents a
parser state, which includes a stack Si, a queue Qi,
and a probability Pi. The deterministic algorithm
is a special case of the probabilistic algorithm
where we have a single parser state T0 that contains
S0 and Q0, and the probability of the parser state is
1. The best-first algorithm, on the other hand,

keeps a heap H containing multiple parser states
T0... Tm. These states are ordered in the heap ac-
cording to their probabilities, which are determined
by multiplying the probabilities of each of the
parser actions that resulted in that parser state. The
heap H is initialized to contain a single parser state
T0, which contains a stack S0, a queue Q0 and prob-
ability P0 = 1.0. S0 and Q0 are initialized in the
same way as S and Q in the deterministic algo-
rithm. The best-first algorithm then loops while H
is non-empty. At each iteration, first a state Tcurrent
is popped from the top of H. If Tcurrent corresponds
to a final state (Qcurrent is empty and Scurrent contains
a single item), we return the single item in Scurrent
as the dependency structure corresponding to the
input sentence. Otherwise, we get a list of parser
actions act0...actn (with associated probabilities
Pact0...Pactn) corresponding to state Tcurrent. For
each of these parser actions actj, we create a new
parser state Tnew by applying actj to Tcurrent, and set
the probability Tnew to be Pnew = Pcurrnet * Pactj.
Then, Tnew is inserted into the heap H. Once new
states have been inserted onto H for each of the n
parser actions, we move on to the next iteration of
the algorithm.

3 Multilingual Parsing Experiments

For each of the ten languages for which training
data was provided in the multilingual track of the
CoNLL 2007 shared task, we trained three LR
models as follows. The first LR model for each
language uses maximum entropy classification
(Berger et al., 1996) to determine possible parser
actions and their probabilities4. To control overfit-
ting in the MaxEnt models, we used box-type in-
equality constraints (Kazama and Tsujii, 2003).
The second LR model for each language also uses
MaxEnt classification, but parsing is performed
backwards, which is accomplished simply by re-
versing the input string before parsing starts. Sa-
gae and Lavie (2006a) and Zeman and Žabokrtský
(2005) have observed that reversing the direction
of stepwise parsers can be beneficial in parser
combinations. The third model uses support vector
machines5 (Vapnik, 1995) using the polynomial

4 Implementation by Yoshimasa Tsuruoka, available at
http://www-tsujii.is.s.u-tokyo.ac.jp/~tsuruoka/maxent/
5 Implementation by Taku Kudo, available at
http://chasen.org/~taku/software/TinySVM/ and all vs.
all was used for multi-class classification.

1046

kernel with degree 2. Probabilities were estimated
for SVM outputs using the method described in
(Platt, 1999), but accuracy improvements were not
observed during development when these esti-
mated probabilities were used instead of simply the
single best action given by the classifier (with
probability 1.0), so in practice the SVM parsing
models we used were deterministic.

At test time, each input sentence is parsed using
each of the three LR models, and the three result-
ing dependency structures are combined according
to the maximum-spanning-tree parser combination
scheme6 (Sagae and Lavie, 2006a) where each de-
pendency proposed by each of the models has the
same weight (it is possible that one of the more
sophisticated weighting schemes proposed by Sa-
gae and Lavie may be more effective, but these
were not attempted). The combined dependency
tree is the final analysis for the input sentence.

Although it is clear that fine-tuning could pro-
vide accuracy improvements for each of the mod-
els in each language, the same set of meta-
parameters and features were used for all of the ten
languages, due to time constraints during system
development. The features used were7:

• For the subtrees in S(1) and S(2)

• the number of children of the root word of
the subtrees;

• the number of children of the root word of
the subtree to the right of the root word;

• the number of children of the root word of
the subtree to the left of the root word;

• the POS tag and DEPREL of the rightmost
and leftmost children;

• The POS tag of the word immediately to the
right of the root word of S(2);

• The POS tag of the word immediately to the
left of S(1);

6 Each dependency tree is deprojectivized before the
combination occurs.
7 S(n) denotes the nth item from the top of the stack
(where S(1) is the item on top of the stack), and Q(n)
denotes the nth item in the queue. For a description of
the features names in capital letters, see the shared task
description (Nivre et al., 2007).

• The previous parser action;

• The features listed for the root words of the
subtrees in table 1.

In addition, the MaxEnt models also used selected
combinations of these features. The classes used
to represent parser actions were designed to encode
all aspects of an action (shift vs. reduce, right vs.
left, and dependency label) simultaneously.

Results for each of the ten languages are shown
in table 2 as labeled and unlabeled attachment
scores, along with the average labeled attachment
score and highest labeled attachment score for all
participants in the shared task. Our results shown
in boldface were among the top three scores for
those particular languages (five out of the ten lan-
guages).

 S(1) S(2) S(3) Q(0) Q(1) Q(3)
WORD x x x x x
LEMMA x x x
POS x x x x x x
CPOS x x x
FEATS x x x

Table 1: Additional features.

Language LAS UAS Avg
LAS

Top
LAS

Arabic 74.71 84.04 68.34 76.52
Basque 74.64 81.19 68.06 76.94
Catalan 88.16 93.34 79.85 88.70
Chinese 84.69 88.94 76.59 84.69
Czech 74.83 81.27 70.12 80.19
English 89.01 89.87 80.95 89.61
Greek 73.58 80.37 70.22 76.31
Hungarian 79.53 83.51 71.49 80.27
Italian 83.91 87.68 78.06 84.40
Turkish 75.91 82.72 70.06 79.81
ALL 79.90 85.29 65.50 80.32

Table 2: Multilingual results.

4 Domain Adaptation Experiments

In a similar way as we used multiple LR models in
the multilingual track, in the domain adaptation
track we first trained two LR models on the out-of-

1047

domain labeled training data. The first was a for-
ward MaxEnt model, and the second was a back-
ward SVM model. We used these two models to
perform a procedure similar to a single iteration of
co-training, except that selection of the newly (au-
tomatically) produced training instances was done
by selecting sentences for which the two models
produced identical analyses. On the development
data we verified that sentences for which there was
perfect agreement between the two models had
labeled attachment score just above 90 on average,
even though each of the models had accuracy be-
tween 78 and 79 over the entire development set.

Our approach was as follows:

1. We trained the forward MaxEnt and backward
SVM models using the out-of-domain labeled
training data;

2. We then used each of the models to parse the
first two of the three sets of domain-specific
unlabeled data that were provided (we did not
use the larger third set)

3. We compared the output for the two models,
and selected only identical analyses that were
produced by each of the two separate models;

4. We added those analyses (about 200k words in
the test domain) to the original (out-of-
domain) labeled training set;

5. We retrained the forward MaxEnt model with
the new larger training set; and finally

6. We used this model to parse the test data.

Following this procedure we obtained a labeled
attachment score of 81.06, and unlabeled attach-
ment score of 83.42, both the highest scores for
this track. This was done without the use of any
additional resources (closed track), but these re-
sults are also higher than the top score for the open
track, where the use of certain additional resources
was allowed. See (Nivre et al., 2007).

5 Analysis and Discussion

One of the main assumptions in our use of differ-
ent models based on the same algorithm is that
while the output generated by those models may
often differ, agreement between the models is an
indication of correctness. In our domain adapta-
tion approach, this was clearly true. In fact, the

approach would not have worked if this assump-
tion was false. Experiments on the development
set were encouraging. As stated before, when the
parsers agreed, labeled attachment score was over
90, even though the score of each model alone was
lower than 79. The domain-adapted parser had a
score of 82.1, a significant improvement. Interes-
tingly, the ensemble used in the multilingual track
also produced good results on the development set
for the domain adaptation data, without the use of
the unlabeled data at all, with a score of 81.9 (al-
though the ensemble is more expensive to run).

The different models used in each track were
distinct in a few ways: (1) direction (forward or
backward); (2) learner (MaxEnt or SVM); and (3)
search strategy (best-first or deterministic). Of
those differences, the first one is particularly inter-
esting in single-stack shift-reduce models, as ours.
In these models, the context to each side of a (po-
tential) dependency differs in a fundamental way.
To one side, we have tokens that have already been
processed and are already in subtrees, and to the
other side we simply have a look-ahead of the re-
maining input sentence. This way, the context of
the same dependency in a forward parser may dif-
fer significantly from the context of the same de-
pendency in a backward parser. Interestingly, the
accuracy scores of the MaxEnt backward models
were found to be generally just below the accuracy
of their corresponding forward models when tested
on development data, with two exceptions: Hunga-
rian and Turkish. In Hungarian, the accuracy
scores produced by the forward and backward
MaxEnt LR models were not significantly differ-
ent, with both labeled attachment scores at about
77.3 (the SVM model score was 76.1, and the final
combination score on development data was 79.3).
In Turkish, however, the backward score was sig-
nificantly higher than the forward score, 75.0 and
72.3, respectively. The forward SVM score was
73.1, and the combined score was 75.8. In expe-
riments performed after the official submission of
results, we evaluated a backward SVM model
(which was trained after submission) on the same
development set, and found it to be significantly
more accurate than the forward model, with a score
of 75.7. Adding that score to the combination
raised the combination score to 77.9 (a large im-
provement from 75.8). The likely reason for this
difference is that over 80% of the dependencies in
the Turkish data set have the head to the right of

1048

the dependent, while only less than 4% have the
head to the left. This means that the backward
model builds much more partial structure in the
stack as it consumes input tokens, while the for-
ward model must consume most tokens before it
starts making attachments. In other words, context
in general in the backward model has more struc-
ture, and attachments are made while there are still
look-ahead tokens, while the opposite is generally
true in the forward model.

6 Conclusion

Our results demonstrate the effectiveness of even
small ensembles of parsers that are relatively
similar (using the same features and the same
algorithm). There are several possible extensions
and improvements to the approach we have
described. For example, in section 3 we mention
the use of different weighting schemes in
dependency voting. We list additional ideas that
were not attempted due to time constraints, but that
are likely to produce improved results.

One of the simplest improvements to our ap-
proach is simply to train more models with no oth-
er changes to our set-up. As mentioned in section
5, the addition of a backward SVM model did im-
prove accuracy on the Turkish set significantly,
and it is likely that improvements would also be
obtained in other languages. In addition, other
learning approaches, such as memory-based lan-
guage processing (Daelemans and Van den Bosch,
2005), could be used. A drawback of adding more
models that became obvious in our experiments
was the increased cost of both training (for exam-
ple, the SVM parsers we used required significant-
ly longer to train than the MaxEnt parsers) and
run-time (parsing with MBL models can be several
times slower than with MaxEnt, or even SVM). A
similar idea that may be more effective, but re-
quires more effort, is to add parsers based on dif-
ferent approaches. For example, using MSTParser
(McDonald and Pereira, 2005), a large-margin all-
pairs parser, in our domain adaptation procedure
results in significantly improved accuracy (83.2
LAS). Of course, the use of different approaches
used by different groups in the CoNLL 2006 and
2007 shared tasks represents great opportunity for
parser ensembles.

Acknowledgements

We thank the shared task organizers and treebank
providers. We also thank the reviewers for their
comments and suggestions, and Yusuke Miyao for
insightful discussions. This work was supported in
part by Grant-in-Aid for Specially Promoted Re-
search 18002007.

References

A. Abeillé, editor. 2003. Treebanks: Building and Using
Parsed Corpora. Kluwer.

A. Berger, S. A. Della Pietra, and V. J. Della Pietra.
1996. A maximum entropy approach to
naturallanguage processing. Computational
Linguistics, 22(1):39–71.

I. Aduriz, M. J. Aranzabe, J. M. Arriola, A. Atutxa, A.
Diaz de Ilarraza, A. Garmendia and M. Oronoz.
2003. Construction of a Basque Dependency Tree-
bank. In Proc. of the 2nd Workshop on Treebanks
and Linguistic Theories (TLT), pages 201–204.

A. Böhmová, J. Hajic, E. Hajicová and B. Hladká. 2003.
The PDT: a 3-level annotation scenario. In Abeillé
(2003), chapter 7, 103–127.

E. Briscoe and J. Carroll. 1993. Generalized Probabilis-
tic LR Parsing of Natural Language (Corpora) with
Unification-Based Grammars. In Computational Lin-
guistics, 19(1), pages 25-59.

R. Brown. 1973. A First Language: The Early Stages.
Harvard University Press.

S. Buchholz and E. Marsi. 2006. CoNLL-X Shared Task
on Multilingual Dependency Parsing. In Proc. of the
Tenth Conference on Computational Natural
Language Learning (CoNLL-X). New York, NY.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C.
Huang and Z. Gao. 2003. Sinica Treebank: Design
Criteria, Representational Issues and Implementation.
In Abeillé (2003), chapter 13, pages 231–248.

D. Csendes, J. Csirik, T. Gyimóthy, and A. Kocsor.
2005. The Szeged Treebank. Springer.

W. Daelemans and A. Van den Bosch. 2005. Memory-
based language processing. Cambridge University
Press.

J. Hajic, O. Smrz, P. Zemánek, J. Snaidauf and E.
Beska. 2004. Prague Arabic Dependency Treebank:
Development in Data and Tools. In Proc. of the
NEMLAR Intern. Conf. on Arabic Language Re-
sources and Tools, pages 110–117.

1049

R. Johansson and P. Nugues. 2007. Extended
constituent-to-dependency conversion for English. In
Proc. of the 16th Nordic Conference on
Computational Linguistics (NODALIDA).

J. Kazama, and J. Tsujii. 2003. Evaluation and
extension of maximum entropy models with ine-
quality constraints. In Proceedings of EMNLP 2003.

D. Knuth. 1965. On the translation of languages from
left to right, Information and Control 8, 607-639.

S. Kulick, A. Bies, M. Liberman, M. Mandel, R. Mc-
Donald, M. Palmer, A. Schein, and L. Ungar. 2004.
Integrated annotation for biomedical information ex-
traction. In Proc. of the Human Language
Technology Conference and the Annual Meeting of
the North American Chapter of the Association for
Computational Linguistics (HLT/NAACL).

B. MacWhinney. 2000. The CHILDES Project: Tools
for Analyzing Talk. Lawrence Erlbaum.

R. McDonald, K.Crammer, and F. Pereira. 2005. On-
line large-margin training of dependency parsers. In
Proc. of the 43rd Annual Meeting of the Association
for Computational Linguistics, 2005

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: the
Penn Treebank. Computational Linguistics,
19(2):313–330.

M. A. Martí, M. Taulé, L. Màrquez and M. Bertran.
2007. CESS-ECE: A Multilingual and Multilevel
Annotated Corpus. Available for download from:
http://www.lsi.upc.edu/~mbertran/cess-ece/.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari,
O. Corazzari, A. Lenci, A. Zampolli, F. Fanciulli, M.
Massetani, R. Raffaelli, R. Basili, M. T. Pazienza, D.
Saracino, F. Zanzotto, N. Nana, F. Pianesi, and R.
Delmonte. 2003. Building the Italian Syntactic-
Semantic Treebank. In Abeillé (2003), chapter 11,
pages 189–210.

J. Nivre. 2003. An efficient algorithm for dependency
parsing. In Proc. of the Eighth International
Workshop on Parsing Technologies (IWPT’03).
Nancy, France.

J. Nivre, and J. Nilsson. 2005. Pseudo-Projective
Dependency Parsing. In Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics (ACL), 99-106. Ann Arbor, MI.

J. Nivre, J. Hall, S. Kübler, R. McDonald, J. Nilsson, S.
Riedel, and D. Yuret. 2007. The CoNLL 2007 shared
task on dependency parsing. In Proc. of the CoNLL
2007 Shared Task. Joint Conf. on Empirical Methods

in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL).

K. Oflazer, B. Say, D. Zeynep Hakkani-Tür, and G. Tür.
2003. Building a Turkish treebank. In Abeillé (2003),
chapter 15, pages 261–277.

J. Platt. 1999. Probabilistic Outputs for Support Vector
Machines and Comparisons to Regularized
Likelihood Methods. In Advances in Large Margin
Classiers, MIT Press.

P. Prokopidis, E. Desypri, M. Koutsombogera, H.
Papageorgiou, and S. Piperidis. 2005. Theoretical
and practical issues in the construction of a Greek
depen- dency treebank. In Proc. of the 4th Workshop
on Treebanks and Linguistic Theories (TLT), pages
149–160.

A. Ratnaparkhi. 1997. A linear observed time statistical
parser based on maximum entropy models. In
Proceedings of the Second Conference on Empirical
Methods in Natural Language Processing. Prov-
idence, RI

K. Sagae, and A. Lavie. 2006. A best-first probabilistic
shift-reduce parser. Proceedings of the 43rd Meeting
of the Association for Computational Linguistics -
posters (ACL'06). Sydney, Australia.

K. Sagae, and A. Lavie. 2006a. Parser combination by
reparsing. Proceedings of the 2006 Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics - short papers (HLT-NAACL'06). New
York, NY.

M. Tomita. 1987. An efficient augmented context-free
parsing algorithm. Computational Linguistics, 13:31–
46.

M. Tomita. 1990. The generalized LR parser/compiler -
version 8.4. In Proceedings of the International
Conference on Computational Linguistics
(COLING’90), pages 59–63. Helsinki, Finland.

V. N. Vapnik. 1995. The Nature of Statistical Learning
Theory. Springer-Verlag.

H. Yamada, and Y. Matsumoto. 2003. Statistical
dependency analysis with support vector machines.
In Proceedings of the Eighth International Workshop
on Parsing Technologies (IWPT’03). Nancy, France.

D. Zeman, Z. Žabokrtský. 2005. Improving Parsing Ac-
curacy by Combining Diverse Dependency Parsers.
In Proceedings of the International Workshop on
Parsing Technologies (IWPT 2005). Vancouver, Brit-
ish Columbia.

1050

