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Abstract

This paper presents a novel approach for ex-
ploiting the global context for the task of
word sense disambiguation (WSD). This is
done by using topic features constructed us-
ing the latent dirichlet allocation (LDA) al-
gorithm on unlabeled data. The features are
incorporated into a modified naı̈ve Bayes
network alongside other features such as
part-of-speech of neighboring words, single
words in the surrounding context, local col-
locations, and syntactic patterns. In both the
English all-words task and the English lex-
ical sample task, the method achieved sig-
nificant improvement over the simple naı̈ve
Bayes classifier and higher accuracy than the
best official scores on Senseval-3 for both
task.

1 Introduction

Natural language tends to be ambiguous. A word
often has more than one meanings depending on the
context. Word sense disambiguation (WSD) is a nat-
ural language processing (NLP) task in which the
correct meaning (sense) of a word in a given context
is to be determined.

Supervised corpus-based approach has been the
most successful in WSD to date. In such an ap-
proach, a corpus in which ambiguous words have
been annotated with correct senses is first collected.
Knowledge sources, or features, from the context of
the annotated word are extracted to form the training
data. A learning algorithm, like the support vector

machine (SVM) or näıve Bayes, is then applied on
the training data to learn the model. Finally, in test-
ing, the learnt model is applied on the test data to
assign the correct sense to any ambiguous word.

The features used in these systems usually in-
clude local features, such as part-of-speech (POS)
of neighboring words, local collocations , syntac-
tic patterns and global features such as single words
in the surrounding context (bag-of-words) (Lee and
Ng, 2002). However, due to the data scarcity prob-
lem, these features are usually very sparse in the
training data. There are, on average, 11 and 28
training cases per sense in Senseval 2 and 3 lexi-
cal sample task respectively, and 6.5 training cases
per sense in the SemCor corpus. This problem is
especially prominent for the bag-of-words feature;
more than hundreds of bag-of-words are usually ex-
tracted for each training instance and each feature
could be drawn from any English word. A direct
consequence is that the global context information,
which the bag-of-words feature is supposed to cap-
ture, may be poorly represented.

Our approach tries to address this problem by
clustering features to relieve the scarcity problem,
specifically on the bag-of-words feature. In the pro-
cess, we construct topic features, trained using the
latent dirichlet allocation (LDA) algorithm. We train
the topic model (Blei et al., 2003) on unlabeled data,
clustering the words occurring in the corpus to a pre-
defined number of topics. We then use the resulting
topic model to tag the bag-of-words in the labeled
corpus with topic distributions. We incorporate the
distributions, called the topic features, using a sim-
ple Bayesian network, modified from naı̈ve Bayes
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model, alongside other features and train the model
on the labeled corpus. The approach gives good per-
formance on both the lexical sample and all-words
tasks on Senseval data.

The paper makes mainly two contributions. First,
we are able to show that a feature that efficiently
captures the global context information using LDA
algorithm can significantly improve the WSD ac-
curacy. Second, we are able to obtain this feature
from unlabeled data, which spares us from any man-
ual labeling work. We also showcase the potential
strength of Bayesian network in the WSD task, ob-
taining performance that rivals state-of-arts meth-
ods.

2 Related Work

Many WSD systems try to tackle the data scarcity
problem. Unsupervised learning is introduced pri-
marily to deal with the problem, but with limited
success (Snyder and Palmer, 2004). In another ap-
proach, the learning algorithm borrows training in-
stances from other senses and effectively increases
the training data size. In (Kohomban and Lee,
2005), the classifier is trained using grouped senses
for verbs and nouns according to WordNet top-level
synsets and thus effectively pooling training cases
across senses within the same synset. Similarly,
(Ando, 2006) exploits data from related tasks, using
all labeled examples irrespective of target words for
learning each sense using the Alternating Structure
Optimization (ASO) algorithm (Ando and Zhang,
2005a; Ando and Zhang, 2005b). Parallel texts is
proposed in (Resnik and Yarowsky, 1997) as po-
tential training data and (Chan and Ng, 2005) has
shown that using automatically gathered parallel
texts for nouns could significantly increase WSD ac-
curacy, when tested on Senseval-2 English all-words
task.

Our approach is somewhat similar to that of us-
ing generic language features such as POS tags; the
words are tagged with its semantic topic that may be
trained from other corpuses.

3 Feature Construction

We first present the latent dirichlet allocation algo-
rithm and its inference procedures, adapted from the
original paper (Blei et al., 2003).

3.1 Latent Dirichlet Allocation

LDA is a probabilistic model for collections of dis-
crete data and has been used in document model-
ing and text classification. It can be represented
as a three level hierarchical Bayesian model, shown
graphically in Figure 1. Given a corpus consisting of
M documents, LDA models each document using a
mixture overK topics, which are in turn character-
ized as distributions over words.

β

wzθα

N

M

Figure 1: Graphical Model for LDA

In the generative process of LDA, for each doc-
umentd we first draw the mixing proportion over
topicsθd from a Dirichlet prior with parametersα.
Next, for each of theNd wordswdn in documentd, a
topic zdn is first drawn from a multinomial distribu-
tion with parametersθd. Finally wdn is drawn from
the topic specific distribution over words. The prob-
ability of a word tokenw taking on valuei given
that topicz = j was chosen is parameterized using
a matrixβ with βij = p(w = i|z = j). Integrating
out θd’s andzdn’s, the probabilityp(D|α, β) of the
corpus is thus:

M∏
d=1

∫
p(θd|α)

(
Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn|zdn, β)

)
dθd

3.1.1 Inference

Unfortunately, it is intractable to directly solve the
posterior distribution of the hidden variables given a
document, namelyp(θ, z|w, α, β). However, (Blei
et al., 2003) has shown that by introducing a set of
variational parameters,γ andφ, a tight lower bound
on the log likelihood of the probability can be found
using the following optimization procedure:

(γ∗, φ∗) = arg min
γ,φ

D(q(θ, z|γ, φ)‖p(θ, z|w, α, β))
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where

q(θ, z|γ, φ) = q(θ|γ)
N∏

n=1

q(zn|φn),

γ is the Dirichlet parameter forφ and the multino-
mial parameters(φ1 · · ·φN ) are the free variational
parameters. Note hereγ is document specific in-
stead of corpus specific likeα. Graphically, it is rep-
resented as Figure 2. The optimizing values ofγ and
φ can be found by minimizing the Kullback-Leibler
(KL) divergence between the variational distribution
and the true posterior.

γ

θ

φ

z

N

M

Figure 2: Graphical Model for Variational Inference

3.2 Baseline Features

For both the lexical sample and all-words tasks,
we use the following standardbaseline featuresfor
comparison.

POS Tags For each training or testing word,w,
we include POS tags forP words prior to as well as
afterw within the same sentence boundary. We also
include the POS tag ofw. If there are fewer than
P words prior or afterw in the same sentence, we
denote the corresponding feature as NIL.

Local Collocations CollocationCi,j refers to the
ordered sequence of tokens (words or punctuations)
surroundingw. The starting and ending position of
the sequence are denotedi andj respectively, where
a negative value refers to the token position prior to
w. We adopt the same 11 collocation features as
(Lee and Ng, 2002), namelyC−1,−1, C1,1, C−2,−2,
C2,2, C−2,−1, C−1,1, C1,2, C−3,−1, C−2,1, C−1,2,
andC1,3.

Bag-of-Words For each training or testing word,
w, we getG words prior to as well as afterw, within
the same document. These features are position in-
sensitive. The words we extract are converted back
to their morphological root forms.

Syntactic Relations We adopt the same syntactic
relations as (Lee and Ng, 2002). For easy reference,
we summarize the features into Table 1.

POS ofw Features
Noun Parent headwordh

POS ofh
Relative position ofh to w

Verb Left nearest child word ofw, l
Right nearest child word ofw, r
POS ofl
POS ofr
POS ofw
Voice ofw

Adjective Parent headwordh
POS ofh

Table 1: Syntactic Relations Features

The exact values ofP andG for each task are set
according to cross validation result.

3.3 Topic Features

We first select an unlabeled corpus, such as 20
Newsgroups, and extract individual words from it
(excluding stopwords). We choose the number of
topics,K, for the unlabeled corpus and we apply the
LDA algorithm to obtain theβ parameters, where
β represents the probability of a wordwi given a
topic zj , p(wi|zj) = βij . The model essentially
clusters words that occurred in the unlabeled cor-
pus according toK topics. The conditional prob-
ability p(wi|zj) = βij is later used to tag the words
in the unseen test example with the probability of
each topic.

For some variants of the classifiers that we con-
struct, we also use theγ parameter, which is doc-
ument specific. For these classifiers, we may need
to run the inference algorithm on the labeled corpus
and possibly on the test documents. Theγ param-
eter provides an approximation to the probability of
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selecting topici in the document:

p(zi|γ) =
γi∑
K γk

. (1)

4 Classifier Construction

4.1 Bayesian Network

We construct a variant of the naı̈ve Bayes network
as shown in Figure 3. Here,w refers to the word.
s refers to the sense of the word. In training,s is
observed while in testing, it is not. The featuresf1

to fn are baseline features mentioned in Section 3.2
(including bag-of-words) whilez refers to the la-
tent topic that we set for clustering unlabeled corpus.
The bag-of-wordsb are extracted from the neigh-
bours ofw and there areL of them. Note thatL can
be different fromG, which is the number of bag-of-
words in baseline features. Both will be determined
by the validation result.

· · ·

︸ ︷︷ ︸
baselinefeatures

w

s

fnf1

b

z

L

Figure 3: Graphical Model with LDA feature

The log-likelihood of an instance,̀(w, s, F, b)
whereF denotes the set of baseline features, can be
written as

= logp(w) + logp(s|w) +
∑
F

log(p(f |s))

+
∑
L

log

(∑
K

p(zk|s)p(bl|zk)

)
.

The log p(w) term is constant and thus can be ig-
nored. The first portion is normal naı̈ve Bayes. And
second portion represents the additional LDA plate.

We decouple the training process into three separate
stages. We first extract baseline features from the
task training data, and estimate, using normal naı̈ve
Bayes,p(s|w) andp(f |s) for all w, s andf . The
parameters associated withp(b|z) are estimated us-
ing LDA from unlabeled data. Finally we estimate
the parameters associated withp(z|s). We experi-
mented with three different ways of both doing the
estimation as well as using the resulting model and
chose one which performed best empirically.

4.1.1 Expectation Maximization Approach

For p(z|s), a reasonable estimation method is to
use maximum likelihood estimation. This can be
done using the expectation maximization (EM) algo-
rithm. In classification, we just chooses∗ that maxi-
mizes the log-likelihood of the test instance, where:

s∗ = arg max
s

`(w, s, F, b)

In this approach,γ is never used which means the
LDA inference procedure is not used on any labeled
data at all.

4.1.2 Soft Tagging Approach

Classification in this approach is done using the
full Bayesian network just as in the EM approach.
However we do the estimation ofp(z|s) differently.
Essentially, we perform LDA inference on the train-
ing corpus in order to obtainγ for each document.
We then use theγ andβ to obtainp(z|b) for each
word using

p(zi|bl, γ) =
p(bl|zi)p(zi|γ)∑
K p(bl|zk)p(zk|γ)

,

where equation [1] is used for estimation ofp(zi|γ).
This effectively transformsb to a topical distri-

bution which we call a soft tag where each soft
tag is probability distributiont1, . . . , tK on topics.
We then use this topical distribution for estimating
p(z|s). Let si be the observed sense of instancei
and tij1 , . . . , tijK be the soft tag of thej-th bag-of-
word feature of instancei. We estimatep(z|s) as

p(zjk|s) =
∑

si=s tijk∑
si=s

∑
k′ t

ij
k′

(2)

This approach requires us to do LDA inference on
the corpus formed by the labeled training data, but
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not the testing data. This is because we needγ to
get transformed topical distribution in order to learn
p(z|s) in the training. In the testing, we only apply
the learnt parameters to the model.

4.1.3 Hard Tagging Approach

Hard tagging approach no longer assumes thatz is
latent. Afterp(z|b) is obtained using the same pro-
cedure in Section 4.1.2, the topiczi with the high-
estp(zi|b) among allK topics is picked to represent
z. In this way,b is transformed into a single most
“prominent” topic. This topic label is used in the
same way as baseline features for both training and
testing in a simple naı̈ve Bayes model.

This approach requires us to perform the transfor-
mation both on the training as well as testing data,
sincez becomes an observed variable. LDA infer-
ence is done on two corpora, one formed by the
training data and the other by testing data, in order
to get the respective values ofγ.

4.2 Support Vector Machine Approach

In the SVM (Vapnik, 1995) approach, we first form a
training and a testing file using all standard features
for each sense following (Lee and Ng, 2002) (one
classifier per sense). To incorporate LDA feature,
we use the same approach as Section 4.1.2 to trans-
form b into soft tags,p(z|b). As SVM deals with
only observed features, we need to transformb both
in the training data and in the testing data. Compared
to (Lee and Ng, 2002), the only difference is that for
each training and testing case, we have additional
L ∗K LDA features, since there areL bag-of-words
and each has a topic distribution represented byK
values.

5 Experimental Setup

We describe here the experimental setup on the En-
glish lexical sample task and all-words task.

We use MXPOST tagger (Adwait, 1996) for POS
tagging, Charniak parser (Charniak, 2000) for ex-
tracting syntactic relations, SVMlight1 for SVM
classifier and David Blei’s version of LDA2 for LDA
training and inference. All default parameters are
used unless mentioned otherwise. For all standard

1http://svmlight.joachims.org
2http://www.cs.princeton.edu/˜blei/lda-c/

baseline features, we use Laplace smoothing but for
the soft tag (equation [2]), we use a smoothing pa-
rameter value of 2.

5.1 Development Process

5.1.1 Lexical Sample Task

We use the Senseval-2 lexical sample task for
preliminary investigation of different algorithms,
datasets and other parameters. As the dataset is used
extensively for this purpose, only the Senseval-3 lex-
ical sample task is used for evaluation.

Selecting Bayesian Network The best achievable
result, using the three different Bayesian network
approaches, when validating on Senseval-2 test data
is shown in Table 2. The parameters that are used
areP = 3 andG = 3.

EM 68.0
Hard Tagging 65.6
Soft Tagging 68.9

Table 2: Results on Senseval-2 English lexical sam-
ple using different Bayesian network approaches.

From the results, it appears that both the EM and
the Hard Tagging approaches did not yield as good
results as the Soft Tagging approach did. The EM
approach ignores the LDA inference result,γ, which
we use to get our topic prior. This information is
document specific and can be regarded as global
context information. The Hard Tagging approach
also uses less information, as the original topic dis-
tribution is now represented only by the topic with
the highest probability of occurring. Therefore, both
methods have information loss and are disadvan-
taged against the Soft Tagging approach. We use
the Soft Tagging approach for the Senseval-3 lexical
sample and the all-words tasks.

Unlabeled Corpus Selection The unlabeled cor-
pus we choose to train LDA include 20 News-
groups, Reuters, SemCor, Senseval-2 lexical sam-
ple data and Senseval-3 lexical sample data. Al-
though the last three are labeled corpora, we only
need the words from these corpora and thus they can
be regarded as unlabeled too. For Senseval-2 and
Senseval-3 data, we define the whole passage for
each training and testing instance as one document.
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The relative effect using different corpus and com-
binations of them is shown in Table 3, when validat-
ing on Senseval-2 test data using the Soft Tagging
approach.

Corpus |w| K L Senseval-2
20 Newsgroups 1.7M 40 60 67.9
Reuters 1.3M 30 60 65.5
SemCor 0.3M 30 60 66.9
Senseval-2 0.6M 30 40 66.9
Senseval-3 0.6M 50 60 67.6
All 4.5M 60 40 68.9

Table 3: Effect of using different corpus for LDA
training, |w| represents the corpus size in terms of
the number of words in the corpus

The 20 Newsgroups corpus yields the best result
if used individually. It has a relatively larger corpus
size at 1.7 million words in total and also a well bal-
anced topic distribution among its documents, rang-
ing across politics, finance, science, computing, etc.
The Reuters corpus, on the other hand, focuses heav-
ily on finance related articles and has a rather skewed
topic distribution. This probably contributed to its
inferior result. However, we found that the best re-
sult comes from combining all the corpora together
with K = 60 andL = 40.

Results for Optimized Configuration As base-
line for the Bayesian network approaches, we use
näıve Bayes with all baseline features. For the base-
line SVM approach, we chooseP = 3 and include
all the words occurring in the training and testing
passage as bag-of-words feature.

The F-measure result we achieve on Senseval-2
test data is shown in Table 4. Our four systems
are listed as the top four entries in the table. Soft
Tag refers to the soft tagging Bayesian network ap-
proach. Note that we used the Senseval-2 test data
for optimizing the configuration (as is done in the
ASO result). Hence, the result should not be taken
as reliable. Nevertheless, it is worth noting that the
improvement of Bayesian network approach over its
baseline is very significant (+5.5%). On the other
hand, SVM with topic features shows limited im-
provement over its baseline (+0.8%).

Bayes (Soft Tag) 68.9
SVM-Topic 66.0
SVM baseline 65.2
NB baseline 63.4
ASO(best configuration)(Ando, 2006)68.1
Classifier Combination(Florian, 2002)66.5
Polynomial KPCA(Wu et al., 2004) 65.8
SVM(Lee and Ng, 2002) 65.4
Senseval-2 Best System 64.2

Table 4: Results (best configuration) compared to
previous best systems on Senseval-2 English lexical
sample task.

5.1.2 All-words Task

In the all-words task, no official training data is
provided with Senseval. We follow the common
practice of using the SemCor corpus as our training
data. However, we did not use SVM approach in this
task as there are too few training instances per sense
for SVM to achieve a reasonably good accuracy.

As there are more training instances in SemCor,
230, 000 in total, we obtain the optimal configura-
tion using 10 fold cross validation on the SemCor
training data. With the optimal configuration, we
test our system on both Senseval-2 and Senseval-3
official test data.

For baseline features, we setP = 3 andB = 1. We
choose a LDA training corpus comprising 20 News-
groups and SemCor data, with number of topicsK
= 40 and number of LDA bag-of-wordsL = 14.

6 Results

We now present the results on both English lexical
sample task and all-words task.

6.1 Lexical Sample Task

With the optimal configurations from Senseval-2,
we tested the systems on Senseval-3 data. Table 5
shows our F-measure result compared to some of the
best reported systems. Although SVM with topic
features shows limited success with only a0.6%
improvement, the Bayesian network approach has
again demonstrated a good improvement of3.8%
over its baseline and is better than previous reported
best systems except ASO(Ando, 2006).
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Bayes (Soft Tag) 73.6
SVM-topic 73.0
SVM baseline 72.4
NB baseline 69.8
ASO(Ando, 2006) 74.1
SVM-LSA (Strapparava et al., 2004) 73.3
Senseval-3 Best System(Grozea, 2004)72.9

Table 5: Results compared to previous best systems
on Senseval-3 English lexical sample task.

6.2 All-words Task

The F-measure micro-averaged result for our sys-
tems as well as previous best systems for Senseval-2
and Senseval-3 all-words task are shown in Table 6
and Table 7 respectively. Bayesian network with soft
tagging achieved2.6% improvement over its base-
line in Senseval-2 and1.7% in Senseval-3. The re-
sults also rival some previous best systems, except
for SMUaw (Mihalcea, 2002) which used additional
labeled data.

Bayes (Soft Tag) 66.3
NB baseline 63.7
SMUaw (Mihalcea, 2002) 69.0
Simil-Prime (Kohomban and Lee, 2005)66.4
Senseval-2 Best System 63.6
(CNTS-Antwerp (Hoste et al., 2001))

Table 6: Results compared to previous best systems
on Senseval-2 English all-words task.

Bayes (Soft Tag) 66.1
NB baseline 64.6
Simil-Prime (Kohomban and Lee, 2005) 66.1
Senseval-3 Best System 65.2
(GAMBL-AW-S(Decadt et al., 2004))
Senseval-32nd Best System (SenseLearner64.6
(Mihalcea and Faruque, 2004))

Table 7: Results compared to previous best systems
on Senseval-3 English all-words task.

6.3 Significance of Results

We perform theχ2-test, using the Bayesian network
and its näıve Bayes baseline (NB baseline) as pairs,

to verify the significance of these results. The result
is reported in Table 8. The results are significant at
90% confidence level, except for the Senseval-3 all-
words task.

Senseval-2 Senseval-3
All-word 0.0527 0.2925
Lexical Sample <0.0001 0.0002

Table 8: P value forχ2-test significance levels of
results.

6.4 SVM with Topic Features

The results on lexical sample task show that SVM
benefits less from the topic feature than the Bayesian
approach. One possible reason is that SVM base-
line is able to use all bag-of-words from surround-
ing context while näıve Bayes baseline can only use
very few without decreasing its accuracy, due to the
sparse representation. In this sense, SVM baseline
already captures some of the topical information,
leaving a smaller room for improvement. In fact, if
we exclude the bag-of-words feature from the SVM
baseline and add in the topic features, we are able
to achieve almost the same accuracy as we did with
both features included, as shown in Table 9. This
further shows that the topic feature is a better rep-
resentation of global context than the bag-of-words
feature.

SVM baseline 72.4
SVM baseline - BAG + topic 73.5
SVM-topic 73.6

Table 9: Results on Senseval-3 English lexical sam-
ple task

6.5 Results on Different Parts-of-Speech

We analyse the result obtained on Senseval-3 En-
glish lexical sample task (using Senseval-2 optimal
configuration) according to the test instance’s part-
of-speech, which includes noun, verb and adjec-
tive, compared to the naı̈ve Bayes baseline. Ta-
ble 10 shows the relative improvement on each part-
of-speech. The second column shows the number
of testing instances belonging to the particular part-
of-speech. The third and fourth column shows the
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Figure 4: Accuracy with varing L and K on
Senseval-2 all-words task

accuracy achieved by naı̈ve Bayes baseline and the
Bayesian network. Adjectives show no improve-
ment while verbs show a moderate+2.2% improve-
ment. Nouns clearly benefit from topical informa-
tion much more than the other two parts-of-speech,
obtaining a+5.7% increase over its baseline.

POS Total NB baseline Bayes (Soft Tag)
Noun 1807 69.5 75.2
Verb 1978 71.1 73.5
Adj 159 57.2 57.2
Total 3944 69.8 73.6

Table 10: Improvement with different POS on
Senseval-3 lexical sample task

6.6 Sensitivity to L and K

We tested on Senseval-2 all-words task using differ-
ent L and K. Figure 4 is the result.

6.7 Results on SemEval-1

We participated in SemEval-1 English coarse-
grained all-words task (task 7), English fine-grained
all-words task (task 17, subtask 3) and English
coarse-grained lexical sample task (task 17, subtask
1), using the method described in this paper. For
all-words task, we use Senseval-2 and Senseval-3

all-words task data as our validation set to fine tune
the parameters. For lexical sample task, we use the
training data provided as the validation set.

We achieved 88.7%, 81.6% and 57.6% for coarse-
grained lexical sample task, coarse-grained all-
words task and fine-grained all-words task respec-
tively. The results ranked first, second and fourth in
the three tasks respectively.

7 Conclusion and Future Work

In this paper, we showed that by using LDA algo-
rithm on bag-of-words feature, one can utilise more
topical information and boost the classifiers accu-
racy on both English lexical sample and all-words
task. Only unlabeled data is needed for this improve-
ment. It would be interesting to see how the feature
can help on WSD of other languages and other nat-
ural language processing tasks such as named-entity
recognition.
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