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Abstract

We present our system used in the CoNLL
2007 shared task on multilingual parsing.
The system is composed of three compo-
nents: a k-best maximum spanning tree
(MST) parser, a tree labeler, and a reranker
that orders the k-best labeled trees. We
present two techniques for training the
MST parser: tree-normalized and graph-
normalized conditional training. The tree-
based reranking model allows us to explic-
itly model global syntactic phenomena. We
describe the reranker features which include
non-projective edge attributes. We provide
an analysis of the errors made by our system
and suggest changes to the models and fea-
tures that might rectify the current system.

1 Introduction

Reranking the output of a k-best parser has been
shown to improve upon the best results of a state-
of-the-art constituency parser (Charniak and John-
son, 2005). This is primarily due to the ability to
incorporate complex structural features that cannot
be modeled under a CFG. Recent work shows that
k-best maximum spanning tree (MST) parsing and
reranking is also viable (Hall, 2007). In the current
work, we explore the k-best MST parsing paradigm
along with a tree-based reranker. A system using
the parsing techniques presented in this paper was
entered in the CoNLL 2007 shared task competi-
tion (Nivre et al., 2007). This task evaluated pars-
ing performance on 10 languages: Arabic, Basque,

Catalan, Chinese, Czech, English, Greek, Hungar-
ian, Italian, and Turkish using data originating from
a wide variety of dependency treebanks, and trans-
formations of constituency-based treebanks (Hajič
et al., 2004; Aduriz et al., 2003; Martı́ et al., 2007;
Chen et al., 2003; Böhmová et al., 2003; Marcus et
al., 1993; Johansson and Nugues, 2007; Prokopidis
et al., 2005; Csendes et al., 2005; Montemagni et al.,
2003; Oflazer et al., 2003).

We show that oracle parse accuracy1 of the out-
put of our k-best parser is generally higher than the
best reported results. We also present the results
of a reranker based on a rich set of structural fea-
tures, including features explicitly targeted at mod-
eling non-projective configurations. Labeling of the
dependency edges is accomplished by an edge la-
beler based on the same feature set as used in train-
ing the k-best MST parser.

2 Parser Description

Our parser is composed of three components: a k-
best MST parser, a tree-labeler, and a tree-reranker.
Log-linear models are used for each of the com-
ponents independently. In this section we give an
overview of the models, the training techniques, and
the decoders.

2.1 MST Parsing, Reranking, and Labeling
The connection between the maximum spanning
tree problem and dependency parsing stems from
the observation that a dependency parse is simply an
oriented spanning tree on the graph of all possible

1The oracle accuracy for a set of hypotheses is the maximal
accuracy for any of the hypotheses.
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dependency links (the fully connected dependency
graph). Unfortunately, by mapping the problem to
a graph, we assume that the scores associated with
edges are independent, and thus, are limited to edge-
factored models.

Edge-factored models are severely limited in their
capacity to predict structure. In fact, they can only
directly model parent-child links. In order to allevi-
ate this, we use a k-best MST parser to generate a
set of candidate hypotheses. Then, we rerank these
trees using a model based on rich structural features
that model features such as valency, subcategoriza-
tion, ancestry relationships, and sibling interactions,
as well as features capturing the global structure of
dependency trees, aimed primarily at modeling lan-
guage specific non-projective configurations.

We assign dependency labels to entire trees, rather
than predicting the labels during tree construction.
Given that we have a reranking process, we can la-
bel the k-best tree hypotheses output from our MST
parser, and rerank the labeled trees. We have ex-
plored both labeled and unlabeled reranking. In the
latter case, we simply label the maximal unlabeled
tree.

2.1.1 MST Training
McDonald et al. (2005) present a technique for

training discriminative models for dependency pars-
ing. The edge-factored models we use for MST
parsing are closely related to those described in the
previous work, but allow for the efficient compu-
tation of normalization factors which are required
for first and second-order (gradient-based) training
techniques.

We consider two estimation procedures for
parent-prediction models. A parent-prediction
model assigns a conditional score s(g|d) for ev-
ery parent-child pair (we denote the parent/governor
g, and the child/dependent d), where s(g|d) =
s(g, d)/

∑
g′ s(g′, d). In our work, we compute

probabilities p(g|d) based on conditional log-linear
models. This is an approximation to a generative
model that predicts each node once (i.e.,

∏
d p(d|g)).

In the graph-normalized model, we assume that
the conditional distributions are independent of one
another. In particular, we find the model parameters
that maximize the likelihood of p(g∗|d), where g∗

is the correct parent in the training data. We per-

form the optimization over the entire training set,
tying the feature parameters. In particular, we per-
form maximum entropy (MaxEnt) estimation over
the conditional distribution using second-order gra-
dient descent optimization techniques.2 An advan-
tage of the parent-prediction model is that we can
frame the estimation problem as that of minimum-
error training with a zero-one loss term:

p(e, g|d) =
exp(

∑
i λifi(e, g, d))

Zd
(1)

where e ∈ {0, 1} is the error term (e is 1 for
the correct parent and 0 for all other nodes) and
Zd =

∑
j exp(

∑
i λifi(ej , gj , d)) is the normaliza-

tion constant for node d. Note that the normaliza-
tion factor considers all graphs with in-degree zero
for the root node and in-degree one for other nodes.

At parsing time, of course, our parent predictions
are constrained to produce a (non-projective) tree
structure. We can sum over all non-projective span-
ning trees by taking the determinant of the Kirchhoff
matrix of the graph defined above, minus the row
and column corresponding to the root node (Smith
and Smith, 2007). Training graph-normalized and
tree-normalized models under identical conditions,
we find tree normalization wins by 0.5% to 1% ab-
solute dependency accuracy. Although tree normal-
ization also shows a (smaller) advantage in k-best
oracle accuracy, we do not believe it would have a
large effect on our reranking results.

2.1.2 Reranker Training
The reranker is based on a conditional log-linear

model subject to the MaxEnt constraints using the
same second-order optimization procedures as the
graph-normalized MST models. The primary dif-
ference here is that there is no single correct tree in
the set of k candidate parse trees. Instead, we have
k trees that are generated by our k-best parser, each
with a score assigned by the parser. If we are per-
forming labeled reranking, we label each of these
hypotheses with l possible labelings, each with a
score assigned by the labeler.

As with the parent-prediction, graph-normalized
model, we perform minimum-error training. The

2For the graph-normalized models, we use L-BFGS opti-
mization provided through the TAO/PETSC optimization li-
brary (Benson et al., 2005; Balay et al., 2004).
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optimization is achieved by assuming the oracle-best
parse(s) are correct and the remaining hypotheses
are incorrect. Furthermore, the feature values are
scaled according to the relative difference between
the oracle-best score and the score assigned to the
non-oracle-best hypothesis.

Note that any reranker could be used in place of
our current model. We have chosen to keep the
reranker model closely related to the MST parsing
model so that we can share feature representations
and training procedures.

2.1.3 Labeler Training
We used the same edge features to train a sep-

arate log-linear labeling model. Each edge feature
was conjoined with a potential label, and we then
maximized the likelihood of the labeling in the train-
ing data. Since this model is also edge-factored, we
can store the labeler scores for each of the n2 po-
tential edges in the dependency tree. In the submit-
ted system, we simply extracted the Viterbi predic-
tions of the labeler for the unlabeled trees selected
by the reranker. We also (see below) ran experiments
where each entry in the k-best lists input as training
data to the reranker was augmented by its l-best la-
belings. We hoped thereby to inject more diversity
into the resulting structures.

2.1.4 Model Features
Our MST models are based on the features de-

scribed in (Hall, 2007); specifically, we use features
based on a dependency nodes’ form, lemma, coarse
and fine part-of-speech tag, and morphological-
string attributes. Additionally, we use surface-string
distance between the parent and child, buckets of
features indicating if a particular form/lemma/tag
occurred between or next to the parent and child, and
a branching feature indicating whether the child is
to the left or right of the parent. Composite features,
combining the above features are also included (e.g.,
a single feature combining branching, parent & child
form, parent & child tag).

The tree-based reranker includes the features de-
scribed in (Hall, 2007) as well as features based on
non-projective edge attributes explored in (Havelka,
2007a; Havelka, 2007b). One set of features mod-
els relationships of nodes with their siblings, in-
cluding valency and subcategorization. A second

set of features models global tree structure and in-
cludes features based on a node’s ancestors and the
depth and size of its subtree. A third set of fea-
tures models the interaction of word order and tree
structure as manifested on individual edges, i.e., the
features model language specific projective and non-
projective configurations. They include edge-based
features corresponding to the global constraints of
projectivity, planarity and well-nestedness, and for
non-projective edges, they furthermore include level
type, level signature and ancestor-in-gap features.
All features allow for an arbitrary degree of lexical-
ization; in the reported results, the first two sets of
features use coarse and fine part-of-speech lexical-
izations, while the features in the third set are used
in their unlexicalized form due to time limitations.

3 Results and Analysis

Hall (2007) shows that the oracle parsing accuracy
of a k-best edge-factored MST parser is consid-
erably higher than the one-best score of the same
parser, even when k is small. We have verified that
this is true for the CoNLL shared-task data by evalu-
ating the oracle rates on a randomly sampled devel-
opment set for each language.

In order to select optimal model parameters for
the MST parser, the labeler, and reranker, we sam-
pled approximately 200 sentences from each train-
ing set to use as a development test set. Training the
reranker requires a jackknife n-fold training proce-
dure where n−1 partitions are used to train a model
that parses the remaining partition. This is done n
times to generate k-best parses for the entire training
set without using models trained on the data they are
run on.

For lack of space, we report only results on the
CoNLL evaluation data set here, but note that the
trends observed on the evaluation data are identical
to those observed on our development sets.

In Table 1 we present results for labeled (and un-
labeled) dependency accuracy on the CoNLL 2007
evaluation data set. We report the oracle accu-
racy for different sized k-best hypothesis sets. The
columns are labeled by the number of trees output
from the MST parser, k;3 and by the number of al-

3All results are reported for the graph-normalized training
technique.
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Language Oracle Accuracy New CoNLL07 CoNLL07
k = 1, l = 1 k = 10, l = 5 k = 50, l = 1 k = 50, l = 2 Reranked Reported Best

Arabic (83.10) (85.56) (86.96) (83.67) 73.40 (83.45) 76.52 (86.09)
Basque 67.92 (76.88) 76.25 (82.19) 69.93 (84.99) 76.81 (77.76) 69.80 (78.52) 76.92 (82.80)
Catalan 82.28 (87.82) 85.11 (90.87) 86.82 (92.68) 86.82 (89.43) 82.38 (87.80) 88.70 (93.40)
Chinese 73.86 (85.58) 91.32 (93.39) 82.39 (95.80) 92.21 (87.87) 82.77 (87.91) 84.69 (88.94)
Czech 74.05 (80.21) 78.58 (85.08) 80.97 (87.60) 80.97 (82.20) 72.27 (78.47) 80.19 (86.28)
English 82.21 (83.63) 85.95 (87.59) 87.99 (89.75) 87.99 (85.31) 81.93 (83.21) 89.61 (90.63)
Greek 72.21 (81.16) 78.58 (84.89) 74.13 (86.95) 79.48 (81.81) 74.21 (82.04) 76.31 (84.08)
Hungarian 71.68 (78.57) 79.70 (83.03) 74.32 (85.12) 80.75 (80.05) 74.20 (79.34) 80.27 (83.55)
Italian 77.92 (83.16) 85.05 (87.54) 80.30 (89.66) 86.42 (84.71) 80.69 (84.81) 84.40 (87.91)
Turkish 75.34 (83.63) 83.96 (89.65) 77.78 (92.40) 84.98 (84.13) 77.42 (85.18) 79.81 (86.22)

Table 1: Labeled (unlabeled) attachment accuracy for k-best MST oracle results and reranked data on the evaluation set. The
1-best results (k = 1, l = 1) represent the performance of the MST parser without reranking. The New Reranked field shows recent
unlabeled reranking results of 50-best trees using a modified feature set. For arabic, we only report unlabeled accuracy for different
k and l.

ternative labelings for each tree, l. When k = 1,
the score is the best achievable by the edge-factored
MST parser using our models. As k increases, the
oracle parsing accuracy increases. The most ex-
treme difference between the one-best accuracy and
the 50-best oracle accuracy can be seen for Turkish
where there is a difference of 9.64 points of accu-
racy (8.77 for the unlabeled trees). This means that
the reranker need only select the correct tree from
a set of 50 to increase the score by 9.64%. As our
reranking results show, this is not as simple as it may
appear.

We report the results for our CoNLL submission
as well as recent results based on alternative param-
eters optimization on the development set. We re-
port the latest results only for unlabeled accuracy of
reranking 50-best MST output.

4 Conclusion

Our submission to the CoNLL 2007 shared task
on multilingual parsing supports the hypothesis that
edge-factored MST parsing is viable given an effec-
tive reranker. The reranker used in our submission
was unable to achieve the oracle rates. We believe
this is primarily related to a relatively impoverished
feature set. Due to time constraints, we have not
been able to train lexicalized reranking models. The
introduction of lexicalized features in the reranker
should influence the selection of better trees, which
we know exist in the k-best hypothesis sets.
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