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Abstract

We describe a two-stage optimization of the
MaltParser system for the ten languages in
the multilingual track of the CoNLL 2007
shared task on dependency parsing. The
first stage consists in tuning a single-parser
system for each language by optimizing pa-
rameters of the parsing algorithm, the fea-
ture model, and the learning algorithm. The
second stage consists in building an ensem-
ble system that combines six different pars-
ing strategies, extrapolating from the opti-
mal parameters settings for each language.
When evaluated on the official test sets, the
ensemble system significantly outperforms
the single-parser system and achieves the
highest average labeled attachment score.

1 Introduction

In the multilingual track of the CoNLL 2007 shared
task on dependency parsing, a single parser must be
trained to handle data from ten different languages:
Arabic (Hajič et al., 2004), Basque (Aduriz et al.,
2003), Catalan, (Martı́ et al., 2007), Chinese (Chen
et al., 2003), Czech (Böhmová et al., 2003), English
(Marcus et al., 1993; Johansson and Nugues, 2007),
Greek (Prokopidis et al., 2005), Hungarian (Csendes
et al., 2005), Italian (Montemagni et al., 2003), and
Turkish (Oflazer et al., 2003).1 Our contribution is
a study in multilingual parser optimization using the
freely available MaltParser system, which performs

1For more information about the task and the data sets, see
Nivre et al. (2007).

deterministic, classifier-based parsing with history-
based feature models and discriminative learning,
and which was one of the top performing systems
in the CoNLL 2006 shared task (Nivre et al., 2006).

In order to maximize parsing accuracy, optimiza-
tion has been carried out in two stages, leading to
two different, but related parsers. The first of these is
a single-parser system, similar to the one described
in Nivre et al. (2006), which parses a sentence deter-
ministically in a single left-to-right pass, with post-
processing to recover non-projective dependencies,
and where the parameters of the MaltParser system
have been tuned for each language separately. We
call this system Single Malt, to emphasize the fact
that it consists of a single instance of MaltParser.
The second parser is an ensemble system, which
combines the output of six deterministic parsers,
each of which is a variation of the Single Malt parser
with parameter settings extrapolated from the first
stage of optimization. It seems very natural to call
this system Blended.

Section 2 summarizes the work done to optimize
the Single Malt parser, while section 3 explains how
the Blended parser was constructed from the Single
Malt parser. Section 4 gives a brief analysis of the
experimental results, and section 5 concludes.

2 The Single Malt Parser

The parameters available in the MaltParser system
can be divided into three groups: parsing algorithm
parameters, feature model parameters, and learn-
ing algorithm parameters.2 Our overall optimization

2For a complete documentation of these parameters, see
http://w3.msi.vxu.se/users/nivre/research/MaltParser.html.
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strategy for the Single Malt parser was as follows:

1. Define a good baseline system with the same
parameter settings for all languages.

2. Tune parsing algorithm parameters once and
for all for each language (with baseline settings
for feature model and learning algorithm pa-
rameters).

3. Optimize feature model and learning algorithm
parameters in an interleaved fashion for each
language.

We used nine-fold cross-validation on 90% of the
training data for all languages with a training set size
smaller than 300,000 tokens and an 80%–10% train-
devtest split for the remaining languages (Catalan,
Chinese, Czech, English). The remaining 10% of
the data was in both cases saved for a final dry run,
where the parser was trained on 90% of the data for
each language and tested on the remaining (fresh)
10%. We consistently used the labeled attachment
score (LAS) as the single optimization criterion.

Below we describe the most important parameters
in each group, define baseline settings, and report
notable improvements for different languages during
development. The improvements for each language
from step 1 (baseline) to step 2 (parsing algorithm)
and step 3 (feature model and learning algorithm)
can be tracked in table 1.3

2.1 Parsing Algorithm
MaltParser implements several parsing algorithms,
but for the Single Malt system we stick to the one
used by Nivre et al. (2006), which performs labeled
projective dependency parsing in linear time, using a
stack to store partially processed tokens and an input
queue of remaining tokens. There are three basic
parameters that can be varied for this algorithm:

1. Arc order: The baseline algorithm is arc-
eager, in the sense that right dependents are
attached to their head as soon as possible, but
there is also an arc-standard version, where the
attachment of right dependents has to be post-
poned until they have found all their own de-
pendents. The arc-standard order was found

3Complete specifications of all parameter settings for all
languages, for both Single Malt and Blended, are available at
http://w3.msi.vxu.se/users/jha/conll07/.

to improve parsing accuracy for Chinese, while
the arc-eager order was maintained for all other
languages.

2. Stack initialization: In the baseline version
the parser is initialized with an artificial root
node (with token id 0) on the stack, so that arcs
originating from the root can be added explic-
itly during parsing. But it is also possible to ini-
tialize the parser with an empty stack, in which
case arcs from the root are only added implic-
itly (to any token that remains a root after pars-
ing is completed). Empty stack initialization
(which reduces the amount of nondeterminism
in parsing) led to improved accuracy for Cata-
lan, Chinese, Hungarian, Italian and Turkish.4

3. Post-processing: The baseline parser performs
a single left-to-right pass over the input, but it
is possible to allow a second pass where only
unattached tokens are processed.5 Such post-
processing was found to improve results for
Basque, Catalan, Czech, Greek and Hungarian.

Since the parsing algorithm only produces projective
dependency graphs, we may use pseudo-projective
parsing to recover non-projective dependencies, i.e.,
projectivize training data and encode information
about these transformations in extended arc labels
to support deprojectivization of the parser output
(Nivre and Nilsson, 2005). Pseudo-projective pars-
ing was found to have a positive effect on over-
all parsing accuracy only for Basque, Czech, Greek
and Turkish. This result can probably be explained
in terms of the frequency of non-projective depen-
dencies in the different languages. For Basque,
Czech, Greek and Turkish, more than 20% of the
sentences have non-projective dependency graphs;
for all the remaining languages the corresponding

4For Arabic, Basque, Czech, and Greek, the lack of im-
provement can be explained by the fact that these data sets allow
more than one label for dependencies from the artificial root.
With empty stack initialization all such dependencies are as-
signed a default label, which leads to a drop in labeled attach-
ment score. For English, however, empty stack initialization did
not improve accuracy despite the fact that dependencies from
the artificial root have a unique label.

5This technique is similar to the one used by Yamada and
Matsumoto (2003), but with only a single post-processing pass
parsing complexity remains linear in string length.
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Attributes
Tokens FORM LEMMA CPOSTAG POSTAG FEATS DEPREL
S: Top + + + + + +
S: Top−1 +
I: Next + + + + +
I: Next+1 + +
I: Next+2 +
I: Next+3 +
G: Head of Top +
G: Leftmost dependent of Top +
G: Rightmost dependent of Top +
G: Leftmost dependent of Next +

Figure 1: Baseline feature model (S = Stack, I = Input, G = Graph).

figure is 10% or less.6

The cumulative improvement after optimization
of parsing algorithm parameters was a modest 0.32
percentage points on average over all ten languages,
with a minimum of 0.00 (Arabic, English) and a
maximum of 0.83 (Czech) (cf. table 1).

2.2 Feature Model
MaltParser uses a history-based feature model for
predicting the next parsing action. Each feature of
this model is an attribute of a token defined relative
to the current stack S, input queue I, or partially built
dependency graph G, where the attribute can be any
of the symbolic input attributes in the CoNLL for-
mat: FORM, LEMMA, CPOSTAG, POSTAG and
FEATS (split into atomic attributes), as well as the
DEPREL attribute of tokens in the graph G. The
baseline feature model is depicted in figure 1, where
rows denote tokens, columns denote attributes, and
each cell containing a plus sign represents a model
feature.7 This model is an extrapolation from many
previous experiments on different languages and
usually represents a good starting point for further
optimization.

The baseline model was tuned for each of the ten
languages using both forward and backward feature

6In fact, for Arabic, which has about 10% sentences with
non-projective dependencies, it was later found that, with an
optimized feature model, it is beneficial to projectivize the train-
ing data without trying to recover non-projective dependencies
in the parser output. This was also the setting that was used for
Arabic in the dry run and final test.

7The names Top and Next refer to the token on top of the
stack S and the first token in the remaining input I, respectively.

selection. The total number of features in the tuned
models varies from 18 (Turkish) to 56 (Hungarian)
but is typically between 20 and 30. This feature se-
lection process constituted the major development
effort for the Single Malt parser and also gave the
greatest improvements in parsing accuracy, but since
feature selection was to some extent interleaved with
learning algorithm optimization, we only report the
cumulative effect of both together in table 1.

2.3 Learning Algorithm
MaltParser supports several learning algorithms but
the best results have so far been obtained with sup-
port vector machines, using the LIBSVM package
(Chang and Lin, 2001). We use a quadratic kernel
K(xi, xj) = (γxT

i xj + r)2 and LIBSVM’s built-
in one-versus-one strategy for multi-class classifica-
tion, converting symbolic features to numerical ones
using the standard technique of binarization. As our
baseline settings, we used γ = 0.2 and r = 0 for
the kernel parameters, C = 0.5 for the penalty para-
meter, and ε = 1.0 for the termination criterion. In
order to reduce training times during development,
we also split the training data for each language into
smaller sets and trained separate multi-class classi-
fiers for each set, using the POSTAG of Next as the
defining feature for the split.

The time spent on optimizing learning algorithm
parameters varies between languages, mainly due
to lack of time. For Arabic, Basque, and Catalan,
the baseline settings were used also in the dry run
and final test. For Chinese, Greek and Hungarian,
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Development Dry Run Test Test: UAS
Language Base PA F+L SM B SM B SM B
Arabic 70.31 70.31 71.67 70.93 73.09 74.75 76.52 84.21 85.81
Basque 73.86 74.44 76.99 77.18 80.12 74.97 76.92 80.61 82.84
Catalan 85.43 85.51 86.88 86.65 88.00 87.74 88.70 92.20 93.12
Chinese 83.85 84.39 87.64 87.61 88.61 83.51 84.67 87.60 88.70
Czech 75.00 75.83 77.74 77.91 82.17 77.22 77.98 82.35 83.59
English 85.44 85.44 86.35 86.35 88.74 85.81 88.11 86.77 88.93
Greek 72.67 73.04 74.42 74.89 78.17 74.21 74.65 80.66 81.22
Hungarian 74.62 74.64 77.40 77.81 80.04 78.09 80.27 81.71 83.55
Italian 81.42 81.64 82.50 83.37 85.16 82.48 84.40 86.26 87.77
Turkish 75.12 75.80 76.49 75.87 77.09 79.24 79.79 85.04 85.77
Average 77.78 78.10 79.81 79.86 82.12 79.80 81.20 84.74 86.13

Table 1: Development results for Single Malt (Base = baseline, PA = parsing algorithm, F+L = feature model
and learning algorithm); dry run and test results for Single Malt (SM) and Blended (B) (with corrected test
scores for Blended on Chinese). All scores are labeled attachment scores (LAS) except the last two columns,
which report unlabeled attachment scores (UAS) on the test sets.

slightly better results were obtained by not splitting
the training data into smaller sets; for the remain-
ing languages, accuracy was improved by using the
CPOSTAG of Next as the defining feature for the
split (instead of POSTAG). With respect to the SVM
parameters (γ, r, C, and ε), Arabic, Basque, Cata-
lan, Greek and Hungarian retain the baseline set-
tings, while the other languages have slightly dif-
ferent values for some parameters.

The cumulative improvement after optimization
of feature model and learning algorithm parameters
was 1.71 percentage points on average over all ten
languages, with a minimum of 0.69 (Turkish) and a
maximum of 3.25 (Chinese) (cf. table 1).

3 The Blended Parser

The Blended parser is an ensemble system based
on the methodology proposed by Sagae and Lavie
(2006). Given the output dependency graphs Gi

(1 ≤ i ≤ m) of m different parsers for an input sen-
tence x, we construct a new graph containing all the
labeled dependency arcs proposed by some parser
and weight each arc a by a score s(a) reflecting its
popularity among the m parsers. The output of the
ensemble system for x is the maximum spanning
tree of this graph (rooted at the node 0), which can
be extracted using the Chu-Liu-Edmonds algorithm,
as shown by McDonald et al. (2005). Following

Sagae and Lavie (2006), we let s(a) =
∑m

i=1 wc
i ai,

where wc
i is the average labeled attachment score of

parser i for the word class c8 of the dependent of a,
and ai is 1 if a ∈ Gi and 0 otherwise.

The Blended parser uses six component parsers,
with three different parsing algorithms, each of
which is used to construct one left-to-right parser
and one right-to-left parser. The parsing algorithms
used are the arc-eager baseline algorithm, the arc-
standard variant of the baseline algorithm, and the
incremental, non-projective parsing algorithm first
described by Covington (2001) and recently used
for deterministic classifier-based parsing by Nivre
(2007), all of which are available in MaltParser.
Thus, the six component parsers for each language
were instances of the following:

1. Arc-eager projective left-to-right

2. Arc-eager projective right-to-left

3. Arc-standard projective left-to-right

4. Arc-standard projective right-to-left

5. Covington non-projective left-to-right

6. Covington non-projective right-to-left
8We use CPOSTAG to determine the part of speech.

936



root 1 2 3–6 7+
Parser R P R P R P R P R P
Single Malt 87.01 80.36 95.08 94.87 86.28 86.67 77.97 80.23 68.98 71.06
Blended 92.09 74.20 95.71 94.92 87.55 88.12 78.66 83.02 65.29 78.14

Table 2: Recall (R) and precision (P) of Single Malt and Blended for dependencies of different length,
averaged over all languages (root = dependents of root node, regardless of length).

The final Blended parser was constructed by reusing
the tuned Single Malt parser for each language (arc-
standard left-to-right for Chinese, arc-eager left-to-
right for the remaining languages) and training five
additional parsers with the same parameter settings
except for the following mechanical adjustments:

1. Pseudo-projective parsing was not used for the
two non-projective parsers.

2. Feature models were adjusted with respect to
the most obvious differences in parsing strategy
(e.g., by deleting features that could never be
informative for a given parser).

3. Learning algorithm parameters were adjusted
to speed up training (e.g., by always splitting
the training data into smaller sets).

Having trained all parsers on 90% of the training
data for each language, the weights wc

i for each
parser i and coarse part of speech c was determined
by the labeled attachment score on the remaining
10% of the data. This means that the results obtained
in the dry run were bound to be overly optimistic for
the Blended parser, since it was then evaluated on
the same data set that was used to tune the weights.

Finally, we want to emphasize that the time for
developing the Blended parser was severely limited,
which means that several shortcuts had to be taken,
such as optimizing learning algorithm parameters
for speed rather than accuracy and using extrapo-
lation, rather than proper tuning, for other impor-
tant parameters. This probably means that the per-
formance of the Blended system can be improved
considerably by optimizing parameters for all six
parsers separately.

4 Results and Discussion

Table 1 shows the labeled attachment score results
from our internal dry run (training on 90% of the

training data, testing on the remaining 10%) and the
official test runs for both of our systems. It should
be pointed out that the test score for the Blended
parser on Chinese is different from the official one
(75.82), which was much lower than expected due
to a corrupted specification file required by Malt-
Parser. Restoring this file and rerunning the parser
on the Chinese test set, without retraining the parser
or changing any parameter settings, resulted in the
score reported here. This also improved the aver-
age score from 80.32 to 81.20, the former being the
highest reported official score.

For the Single Malt parser, the test results are on
average very close to the dry run results, indicating
that models have not been overfitted (although there
is considerably variation between languages). For
the Blended parser, there is a drop of almost one
percentage point, which can be explained by the fact
that weights could not be tuned on held-out data for
the dry run (as explained in section 3).

Comparing the results for different languages, we
see a tendency that languages with rich morphology,
usually accompanied by flexible word order, get
lower scores. Thus, the labeled attachment score is
below 80% for Arabic, Basque, Czech, Greek, Hun-
garian, and Turkish. By comparison, the more con-
figurational languages (Catalan, Chinese, English,
and Italian) all have scores above 80%. Linguis-
tic properties thus seem to be more important than,
for example, training set size, which can be seen by
comparing the results for Italian, with one of the
smallest training sets, and Czech, with one of the
largest. The development of parsing methods that
are better suited for morphologically rich languages
with flexible word order appears as one of the most
important goals for future research in this area.

Comparing the results of our two systems, we
see that the Blended parser outperforms the Single
Malt parser for all languages, with an average im-
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provement of 1.40 percentage points, a minimum of
0.44 (Greek) and a maximum of 2.40 (English). As
shown by McDonald and Nivre (2007), the Single
Malt parser tends to suffer from two problems: error
propagation due to the deterministic parsing strat-
egy, typically affecting long dependencies more than
short ones, and low precision on dependencies orig-
inating in the artificial root node due to fragmented
parses.9 The question is which of these problems is
alleviated by the multiple views given by the compo-
nent parsers in the Blended system. Table 2 throws
some light on this by giving the precision and re-
call for dependencies of different length, treating de-
pendents of the artificial root node as a special case.
As expected, the Single Malt parser has lower preci-
sion than recall for root dependents, but the Blended
parser has even lower precision (and somewhat bet-
ter recall), indicating that the fragmentation is even
more severe in this case.10 By contrast, we see that
precision and recall for other dependencies improve
across the board, especially for longer dependencies,
which probably means that the effect of error propa-
gation is mitigated by the use of an ensemble system,
even if each of the component parsers is determinis-
tic in itself.

5 Conclusion

We have shown that deterministic, classifier-based
dependency parsing, with careful optimization, can
give highly accurate dependency parsing for a wide
range of languages, as illustrated by the performance
of the Single Malt parser. We have also demon-
strated that an ensemble of deterministic, classifier-
based dependency parsers, built on top of a tuned
single-parser system, can give even higher accuracy,
as shown by the results of the Blended parser, which
has the highest labeled attachment score for five lan-
guages (Arabic, Basque, Catalan, Hungarian, and

9A fragmented parse is a dependency forest, rather than a
tree, and is automatically converted to a tree by attaching all
(other) roots to the artificial root node. Hence, children of the
root node in the final output may not have been predicted as
such by the treebank-induced classifier.

10This conclusion is further supported by the observation
that the single most frequent “frame confusion” of the Blended
parser, over all languages, is to attach two dependents with the
label ROOT to the root node, instead of only one. The frequency
of this error is more than twice as high for the Blended parser
(180) as for the Single Malt parser (83).

Italian), as well as the highest multilingual average
score.
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