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Abstract

In text categorization, term selection is an
important step for the sake of both cate-
gorization accuracy and computational ef-
ficiency. Different dimensionalities are ex-
pected under different practical resource re-
strictions of time or space. Traditionally
in text categorization, the same scoring or
ranking criterion is adopted for all target
dimensionalities, which considers both the
discriminability and the coverage of a term,
such as x? or IG. In this paper, the poor ac-
curacy at a low dimensionality is imputed to
the small average vector length of the docu-
ments. Scalable term selection is proposed
to optimize the term set at a given dimen-
sionality according to an expected average
vector length. Discriminability and cover-
age are separately measured; by adjusting
the ratio of their weights in a combined cri-
terion, the expected average vector length
can be reached, which means a good com-
promise between the specificity and the ex-
haustivity of the term subset. Experiments
show that the accuracy is considerably im-
proved at lower dimensionalities, and larger
term subsets have the possibility to lower
the average vector length for a lower com-
putational cost. The interesting observations
might inspire further investigations.

1 Introduction

sms@tsinghua.edu.cn

(Sebastiani, 2002). A typical text categorization pro-
cess usually involves these phases: document in-
dexing, dimensionality reduction, classifier learn-
ing, classification and evaluation. The vector space
model is frequently used for text representation
(document indexing); dimensions of the learning
space are called terms, or features in a general ma-
chine learning context. Term selection is often nec-
essary because:

e Many irrelevant terms have detrimental effect
on categorization accuracy due to overfitting
(Sebastiani, 2002).

e Some text categorization tasks have many rel-
evant but redundant features, which also hurt
the categorization accuracy (Gabrilovich and
Markovitch, 2004).

e Considerations on computational cost:

(1) Many sophisticated learning machines are
very slow at high dimensionalities, such as
LLSF (Yang and Chute, 1994) and SVMs.
(ii) In Asian languages, the term set is often
very large and redundant, which causes the
learning and the predicting to be really slow.
(iii) In some practical cases the computational
resources (time or space) are restricted, such as
hand-held devices, real-time applications and
frequently retrained systems. (iv) Some deeper
analysis or feature reconstruction techniques
rely on matrix factorization (e.g. LSA based
on SVD), which might be computationally in-
tractable while the dimensionality is large.

Sometimes an aggressive term selection might be

Text categorization is a classical text information needed particularly for (iii) and (iv). But it is no-
processing task which has been studied adequately table that the dimensionality is not always directly
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connected to the computational cost; this issue will
be touched on in Section 6. Although we have
many general feature selection techniques, the do-
main specified ones are preferred (Guyon and Elis-
seeff, 2003). Another reason for ad hoc term se-
lection techniques is that many other pattern clas-
sification tasks has no sparseness problem (in this
study the sparseness means a sample vector has
few nonzero elements, but not the high-dimensional
learning space has few training samples). As a ba-
sic motivation of this study, we hypothesize that the
low accuracy at low dimensionalities is mainly due
to the sparseness problem.

Many term selection techniques were presented
and some of them have been experimentally tested
to be high-performing, such as Information Gain, x?
(Yang and Pedersen, 1997; Rogati and Yang, 2002)
and Bi-Normal Separation (Forman, 2003). Every-
one of them adopt a criterion scoring and ranking
the terms; for a target dimensionality d, the term se-
lection is simply done by picking out the top-d terms
from the ranked term set. These high performing cri-
teria have a common characteristic — both discrim-
inability and coverage are implicitly considered.

e discriminability: how unbalanced is the distri-

bution of the term among the categories.

e coverage: how many documents does the term

occur in.

(Borrowing the terminologies from document index-
ing, we can say the specificity of a term set corre-
sponds to the discriminability of each term, and the
exhaustivity of a term set corresponds to the cov-
erage of each term.) The main difference among
these criteria is to what extent the discriminability is
emphasized or the coverage is emphasized. For in-
stance, empirically /G prefers high frequency terms
more than x? does, which means /G emphasizes the
coverage more than x? does.

The problem is, these criteria are nonparametric
and do the same ranking for any target dimensional-
ity. Small term sets meet the specificity—exhaustivity
dilemma. If really the sparseness is the main rea-
son of the low performance of a small term set, the
specificity should be moderately sacrificed to im-
prove the exhaustivity for a small term set; that is
to say, the term selection criterion should consider
coverage more than discriminability. Contrariwise,
coverage could be less considered for a large term
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set, because we need worry little about the sparse-
ness problem and the computational cost might de-
crease.

The remainder of this paper is organized as fol-
lows: Section 2 describes the document collections
used in this study, as well as other experiment set-
tings; Section 3 investigates the relation between
sparseness (measured by average vector length) and
categorization accuracy; Section 4 explains the basic
idea of scalable term selection and proposed a poten-
tial approach; Section 5 carries out experiments to
evaluate the approach, during which some empirical
rules are observed to complete the approach; Sec-
tion 6 makes some further observations and discus-
sions based on Section 5; Section 7 gives a conclud-
ing remark.

2 Experiment Settings

2.1 Document Collections

Two document collections are used in this study.

CE (Chinese Encyclopedia): This is from the
electronic version of the Chinese Encyclopedia. We
choose a Chinese corpus as the primary document
collection because Chinese text (as well as other
Asian languages) has a very large term set and a
satisfying subset is usually not smaller than 50000
(Li et al., 2006); on the contrary, a dimensional-
ity lower than 10000 suffices a general English text
categorization (Yang and Pedersen, 1997; Rogati
and Yang, 2002). For computational cost reasons
mentioned in Section 1, Chinese text categorization
would benefit more from an high-performing ag-
gressive term selection. This collection contains 55
categories and 71674 documents (9:1 split to train-
ing set and test set). Each documents belongs to
only one category. Each category contains 399—
3374 documents. This collection was also used by
Li et al. (2006).

20NG (20 Newsgroups'): This classical English
document collection is chosen as a secondary in this
study to testify the generality of the proposed ap-
proach. Some figures about this collection are not
shown in this paper as the figures about CE, viz. Fig-
ure 1-4 because they are similar to CE’s.

"http://people.csail.mit.edu/jrennie/
20Newsgroups



2.2 Other Settings

For CE collection, character bigrams are chosen to
be the indexing unit for its high performance (Li et
al., 2006); but the bigram term set suffers from its
high dimensionality. This is exactly the case we tend
to tackle. For 20NG collection, the indexing units
are stemmed? words. Both term set are df-cut by
the most conservative threshold (df > 2). The sizes
of the two candidate term sets are |7cg| = 1067717
and ‘7-20NG| = 30220.

Term weighting is done by tfidf(t;,d;) =
log(tf (ti,d;) + 1) - log (%)3, in which ¢; de-
notes a term, d; denotes a document, Ny denotes the
total document number.

The classifiers used in this study are support
vector machines (Joachims, 1998; Gabrilovich and
Markovitch, 2004; Chang and Lin, 2001). The ker-
nel type is set to linear, which is fast and enough
for text categorization. Also, Brank et al. (2002)
pointed out that the complexity and sophistication of
the criterion itself is more important to the success
of the term selection method than its compatibility
in design with the classifier.

Performance is evaluated by microaveraged F-
measure. For single-label tasks, microaveraged pre-
cision, recall and F; have the same value.

x? is used as the term selection baseline for its
popularity and high performance. (IG was also re-
ported to be good. In our previous experiments, 2
is generally superior to /G.) In this study, features
are always selected globally, which means the maxi-
mum are computed for category-specific values (Se-
bastiani, 2002).

3 Average Vector Length (AVL)

In this study, vector length (how many different
terms does the document hold after term selection)
is used as a straightforward sparseness measure for a
document (Brank et al., 2002). Generally, document
sizes have a lognormal distribution (Mitzenmacher,
2003). In our experiment, vector lengths are also
found to be nearly lognormal distributed, as shown
in Figure 1. If the correctly classified documents

2Stemming by Porter’s Stemmer (http: //www.
tartarus.org/ martin/PorterStemmer/).
3In our experiments this form of #fidf always outperforms

the basic #fidf (t:, d;) = if (t:, d;) - log (%) form.
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Figure 1: Vector Length Distributions (smoothed),
on CE Document Collection
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Figure 2: Error Rate vs. Vector Length (smoothed),
on CE Collection, 5000 Dimensions by x>

and the wrongly classified documents are separately
investigated, they both yield a nearly lognormal dis-
tribution.

Also in Figure 1, wrongly classified documents
shows a relatively large proportion at low dimen-
sionalities. Figure 2 demonstrates this with more
clarity. Thus the hypothesis formed in Section 1 is
confirmed: there is a strong correlation between the
sparseness degree and the categorization error rate.

Therefore, it is quite straightforward a thought to
measure the “sparseness of a term subset” (or more
precisely, the exhaustivity) by the corresponding av-
erage vector length (AVL) of all documents.* In the

“Due to the lognormal distribution of vector length, it seems
more plausible to average the logarithmic vector length. How-

ever, for a fixed number of documents , log 2 1dj] should hold

D]
a nearly fixed ratio to %, in which |D| denotes the doc-

ument number and |d;| denotes the document vector length.




remainder of this paper, (log) AVL is an important
metric used to assess and control the sparseness of a
term subset.

4 Scalable Term Selection (STS)

Since the performance droping down at low dimen-
sionalities is attributable to low AVLs in the previous
section, a scalable term selection criterion should
automatically accommodate its favor of high cov-
erage to different target dimensionalities.

4.1 Measuring Discriminability and Coverage

The first step is to separately measure the discrim-
inability and the coverage of a term. A basic guide-
line is that these two metrics should not be highly
(positive) correlated; intuitively, they should have a
slight negative correlation. The correlation of the
two metrics can be visually estimated by the joint
distribution figure. A bunch of term selection met-
rics were explored by Forman (2003). df (document
frequency) is a straightforward choice to measure
coverage. Since df follows the Zipf’s law (inverse
power law), log(df) is adopted. High-performing
term selection criterion themselves might not be
good candidates for the discriminability metric be-
cause they take coverage into account. For exam-
ple, Figure 3 shows that y? is not satisfying. (For
readability, the grayness is proportional to the log
probability density in Figure 3, Figure 4 and Fig-
ure 12.) Relatively, probability ratio (Forman, 2003)
is a more straight metric of discriminability.

P(tiley) _ df(ti c4)/df (cq)
P(tile=)  df(ti;c-)/df (c-)

It is a symmetric ratio, so log(PR) is likely to be
more appropriate. For multi-class categorization,
a global value can be assessed by PRmax(ti) =
max. PR(t;, c), like x2,, for x? (Yang and Ped-
ersen, 1997; Rogati and Yang, 2002; Sebastiani,
2002); for brief, PR denotes PR, hereafter. The
joint distribution of log(PR) and log(df) is shown in
Figure 12. We can see that the distribution is quite
even and they have a slight negative correlation.

PR(tZ', C) =

4.2 Combined Criterion

Now we have the two metrics: log(PR) for discrim-
inability and log(df) for coverage, and a parametric
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Figure 4: (log(df),log(PR)) Distribution, on CE

term selection criterion comes forth:

A 11— -
C(ts; A) = <]og(PR(ti)) * log(df(ti))>

A weighted harmonic averaging is adopted here be-
cause either metric’s being foo small is a severe
detriment. A € [0,1] is the weight for log(PR),
which denotes how much the discriminability is
emphasized. When the dimensionality is fixed, a
smaller A leads to a larger AVL and a larger A\ leads
to a smaller AVL. The optimal A should be a function



of the expected dimensionality (k):

X (k) = arginax Fi(Sr(N))

in which the term subset Si(\) € 7 is selected by
C(o;A) , |Sk| = k, and F} is the default evaluation

criterion. Naturally, this optimal A leads to a corre-
sponding optimal AVL:

AVL* (k) — \*(k)

For a concrete implementation, we should have an
(empirical) function to estimate A* or AVL*:

AVL® (k) = AVL* (k)

In the next section, the values of AVL* (as well as \*)
for some k-s are figured out by experimental search;
then an empirical formula, AVL®(k), comes forth. It
is interesting and inspiring that by adding the “cor-
pus AVL” as a parameter this formula is universal
for different document collections, which makes the
whole idea valuable.

5 Experiments and Implementation

5.1 Experiments

The expected dimensionalities (k) chosen for exper-
imentation are
CE: 500, 1000, 2000, 4000, ..., 32000, 64000;
20NG: 500, 1000, 2000, ..., 16000, 30220.°

For a given document collection and a given target
dimensionality, there is a corresponding AVL for a A,
and vice versa (for the possible value range of AVL).
According to the observations in Section 5.2, AVL
other than ) is the direct concern because it is more
intrinsic, but X is the one that can be tuned directly.
So, in the experiments, we vary AVL by tuning A to
produce it, which means to calculate A(AVL).

AVL()) is a monotone function and fast to cal-
culate. For a given AVL, the corresponding A can
be quickly found by a Newton iteration in [0,1]. In
fact, AVL(\) is not a continuous function, so A is
only tuned to get an acceptable match, e.g. within
+0.1.

3STS is tested to the whole 7" on 20NG but not on CE, be-
cause (i) Zcg is too large and time consuming for training and
testing, and (ii) x? was previously tested on larger %k and the
performance (F}) is not stable while & > 64000.
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For each k, by the above way of fitting A,
we manually adjust AVL (only in integers) until
F1(Sk(M(AVL))) peaks. By this way, Figure 5-11
are manually tuned best-performing results as obser-
vations for figuring out the empirical formulas.

Figure 5 shows the F peaks at different dimen-
sionalities. Comparing to %2, STS has a consid-
erable potential superiority at low dimensionalities.
The corresponding values of AVL* are shown in Fig-
ure 6, along with the AVLs of y2-selected term sub-
sets. The dotted lines show the trend of AVL*; at the
overall dimensionality, |7cg| = 1067717, they have
the same AVL = 898.5. We can see that log(AVL")
is almost proportional to log(k) when & is not too
large. The corresponding values of A\* are shown in
Figure 7; the relation is nearly linear between A* and
log(k).

Now it is necessary to explain why an empirical
AVL° (k) derived from the straight line in Figure 6
can be used instead of AVL*(k) in practice. One
important but not plotted property is that the per-
formance of STS is not very sensitive to a small
value change of AVL. For instance, at k = 4000,
AVL* = 120 and the F} peak is 85.8824%, and
for AVL = 110 and 130 the corresponding F} are
85.8683% and 85.6583%; at the same k, the I
of x? selection is 82.3950%. This characteristic of
STS guarantee that the empirical AVL® (k) has a very
close performance to AVL*(k); due to the limited
space, the performance curve of AVL®(k) will not
be plotted in Section 5.2.

Same experiments are done on 20NG and the re-
sults are shown in Figure 8, Figure 9 and Figure 10.
The performance improvements is not as signifi-
cant as on the CE collection; this will be discussed
in Section 6.2. The conspicuous relations between
AVL*, \* and k remain the same.

5.2 Algorithm Completion

In Figure 6 and Figure 9, the ratios of log(AVL*(k))
to log(k) are not the same on CE and 20NG. Tak-
ing into account the corpus AVL (the AVL produced
by the whole term set): AVL7,, = 898.5286 and

log(AVL* (k
AVL7c = 82.1605, we guess %

pable of keeping the same ratio to log(k) for both
CE and 20NG. This hypothesis is confirmed (not for

too high dimensionalities) by Figure 11; Section 6.2

1s ca-
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contains some discussion on this.
From the figure, we get the value of this ratio (the
base of log is set to e):

_ log(AVL*(k))/log(AVLy)
log (k)

which should be a universal constant for all text cat-
egorization tasks.

So the empirical estimation of AVL*(k) is given
by

=0.085

AVL° (k) = exp(ylog(AVLT) - log(k))
= AvLy' "

and the final STS criterion is

C(tik) = (i MAVLS (k)
= ((ti MAVLy ey

in which A(o) can be calculated as in Section 5.1.
The target dimensionality, &, is involved as a param-
eter, so the approach is named scalable term selec-
tion. As stated in Section 5.1, AVL®(k) has a very
close performance to AVL*(k) and its performance
is not plotted here.

6 Further Observation and Discussion

6.1 Comparing the Selected Subsets

An investigation shows that for a quite large range
of )\, term rankings by ((¢;; \) and x2(¢;) have a
strong correlation (the Spearman’s rank correlation
coefficient is bigger than 0.999). In order to com-
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x2 on Various Dimensionalities, on CE
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x? on Various Dimensionalities, on 20NG

pare the two criteria’s preferences for discriminabil-
ity and coverage, the selected subsets of different
dimensionalities are shown in Figure 12 (the cor-
responding term density distribution was shown in
Figure 4) and Figure 13. For different dimension-



alities, the selection areas of STS are represented by
boundary lines, and the selection areas of x? are rep-
resented by different grayness.

In Figure 12, STS shows its superiority at low di-
mensionalities by more emphasis on the coverage
of terms. In Figure 13, STS shows its superior-
ity at high dimensionalities by more emphasis on
the discriminability of terms; lower coverage yields
smaller index size and lower computational cost.
At any dimensionality, STS yields a relatively fixed
bound for either discriminability or coverage, other
than a compromise between them like x?; this is at-
tributable to the harmonic averaging.

6.2 Adaptability of STS

There are actually two kinds of sparseness in a (vec-
torized) document collection:
collection sparseness: the high-dimensional learn-
ing space contains few training samples;
document sparseness: a document vector has few
nonzero dimensions.
In this study, only the document sparseness is inves-
tigated. The collection sparseness might be a back-
room factor influencing the actual performance on
different document collections. This might explain
why the explicit characteristics of STS are not the
same on CE to 20NG: (comparing with x?2, see Fig-
ure 5, Figure 6, Figure 8 and Figure 9)

CE. The significant F; improvements at low di-
mensionalities sacrifice the short of AVL. In some
learning process implementations, it is AVL other
than k that determines the computational cost; in
many other cases, k is the determinant. Further
more, possible post-processing, like matrix factor-
ization, might benefit from a low £.

20NG. The F; improvements at low dimension-
alities is not quite significant, but AVL remains a
lower level. For higher k, there is less difference in
F1, but the smaller AVL yield lower computational
cost than 2.

Nevertheless, STS shows a stable behavior for
various dimensionalities and quite different docu-
ment collections. The existence of the universal
constant v empowers it to be adaptive and practi-
cal. As shown in Figure 11, STS draws the rela-
tive log AVL* (k) to the same straight line, vlog(k),
for different document collections. This might
means that the relative AVL is an intrinsic demand
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for the term subset size k.

7 Conclusion

In this paper, Scalable Term Selection (STS) is pro-
posed and supposed to be more adaptive than tra-
ditional high-performing criteria, viz. X2’ 1G, BNS,
etc. The basic idea of STS is to separately measure
discriminability and coverage, and adjust the relative
importance between them to produce a optimal term
subset of a given size. Empirically, the constant re-
lation between target dimensionality and the optimal
relative average vector length is found, which turned
the idea into implementation.

STS showed considerable adaptivity and stability
for various dimensionalities and quite different doc-
ument collections. The categorization accuracy in-
creasing at low dimensionalities and the computa-
tional cost decreasing at high dimensionalities were
observed.

Some observations are notable: the loglinear rela-
tion between optimal average vector length (AVL*)
and dimensionality (k), the semi-loglinear relation
between weight A and dimensionality, and the uni-
versal constant . For a future work, STS needs to be
conducted on more document collections to check if
«y is really universal.

In addition, there could be other implementations
of the general STS idea, via other metrics of discrim-
inability and coverage, other weighted combination
forms, or other term subset evaluations.
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