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Abstract

One may need to build a statistical parser for a new language,
using only a very small labeled treebank together with raw
text. We argue that bootstrapping a parser is most promising
when the model uses a rich set of redundant features, as in re-
cent models for scoring dependency parses (McDonald et al.,
2005). Drawing on Abney’s (2004) analysis of the Yarowsky
algorithm, we perform bootstrapping by entropy regulariza-
tion: we maximize a linear combination of conditional likeli-
hood on labeled data and confidence (negative Rényi entropy)
on unlabeled data. In initial experiments, this surpassed EM
for training a simple feature-poor generative model, and also
improved the performance of a feature-rich, conditionally esti-
mated model where EM could not easily have been applied. For
our models and training sets, more peaked measures of con-
fidence, measured by Rényi entropy, outperformed smoother
ones. We discuss how our feature set could be extended with
cross-lingual or cross-domain features, to incorporate knowl-
edge from parallel or comparable corpora during bootstrapping.

1 Motivation

In this paper, we address the problem of bootstrap-
ping new statistical parsers for new languages, gen-
res, or domains.

Why is this problem important? Many applica-
tions of multilingual NLP require parsing in order
to extract information, opinions, and answers from
text, and to produce improved translations. Yet
an adequate labeled training corpus—a large tree-
bank of manually constructed parse trees of typi-
cal sentences—is rarely available and would be pro-
hibitively expensive to develop.

We show how it is possible to train instead from
a small hand-labeled treebank in the target domain,
together with a large unannotated collection of in-
domain sentences. Additional resources such as
parsers for other domains or languages can be in-
tegrated naturally.

Dependency parsing is important as a key com-
ponent in leading systems for information extrac-
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tion (Weischedel, 2004)! and question answering
(Peng et al., 2005). These systems rely on edges
or paths in dependency parse trees to define their ex-
traction patterns and classification features. Parsing
is also key to the latest advances in machine transla-
tion, which translate syntactic phrases (Galley et al.,
2006; Marcu et al., 2006; Cowan et al., 2006).

2 Our Approach

Our approach rests on three observations:

e Recent “feature-based” parsing models are an
excellent fit for bootstrapping, because the
parse is often overdetermined by many redun-
dant features.

e The feature-based framework is flexible
enough to incorporate other sources of guid-
ance during training or testing—such as the
knowledge contained in a parser for another
language or domain.

e Maximizing a combination of likelihood on la-
beled data and confidence on unlabeled data is
a principled approach to bootstrapping.

2.1 Feature-Based Parsing

McDonald et al. (2005) introduced a simple, flexi-
ble framework for scoring dependency parses. Each
directed edge e in the dependency tree is described
with a high-dimensional feature vector f(e). The
edge’s score is the dot product f(e) - 8, where 6 is a
learned weight vector. The overall score of a depen-
dency tree is the sum of the scores of all edges in the
tree.

IRalph Weischedel (p.c.) reports that this system’s perfor-

mance degrades considerably when only phrase chunking is
available rather than full parsing.
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Given an n-word input sentence, the parser begins
by scoring each of the O(n?) possible edges, and
then seeks the highest-scoring legal dependency tree
formed by any n — 1 of these edges, using an O(n?)
dynamic programming algorithm (Eisner, 1996) for
projective trees. For non-projective parsing, O(n?),
or with some trickery O(n?), greedy algorithms ex-
ist (Chu and Liu, 1965; Edmonds, 1967; Gabow et
al., 1986).

The feature function f may pay attention to many
properties of the directed edge e. Of course, features
may consider the parent and child words connected
by e, and their parts of speech.” But some features
used by McDonald et al. (2005) also consider the
parts of speech of words adjacent to the parent and
child, or between the parent and child, as well as the
number of words between the parent and child. In
general, these features are not available in a genera-
tive model such as a PCFG.

Although feature-based models are often trained
purely discriminatively, we will see in §2.6 how to
train them to model conditional probabilities.

2.2 Feature-Based Parsing and Bootstrapping

The above parsing model is robust, thanks to its
many features. On the Penn Treebank WSJ sections
02-21, for example, McDonald’s parser extracts 5.5
million feature types from supervised edges alone,
with about 120 feature tokens firing per edge. The
highest-scoring parse tree represents a consensus
among all features on all prospective edges. Even if
a prospective edge has some discouraging features
(i.e., with negative or zero weights), it may still have
a relatively high score thanks to its other features.
Furthermore, even if the edge has a low total score,
it may still appear in the consensus parse if the al-
ternatives are even worse or are incompatible with
other high-scoring edges.

Put another way, the parser is not able to include
high-scoring features or edges independently of one
another. Selecting a good feature means accepting
all other features on that edge. It also means reject-
ing various other edges, because of the global con-
straints that a legal parse tree must give each word
only one parent and must be free of cycles and, in

Note that since we are not trying to predict parts of speech,

we treat the output of one or more automatic taggers as yet more
inputs to edge feature functions.
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the projective case, crossings.

Our observation is that this situation is ideal for
so-called “bootstrapping,” ‘“co-training,” or “min-
imally supervised” learning methods (Yarowsky,
1995; Blum and Mitchell, 1998; Yarowsky and Wi-
centowski, 2000). Such methods should thrive when
the right answer is overdetermined owing to redun-
dant features and/or global constraints.

Concretely, suppose we start by training a super-
vised parser on only 100 examples, using some reg-
ularization method to prevent overfitting to this set.
While many features might truly be relevant to the
task, only a few appear often enough in this small
training set to acquire significantly positive or nega-
tive weights.

Even this lightly trained parser may be quite sure
of itself on some test sentences in a large unanno-
tated corpus, when one parse scores far higher than
all others. More generally, the parser may be sure
about part of a sentence: it may be certain that a par-
ticular edge is present (or absent), because that edge
tends to be present (or absent) in all high-scoring
parses.

Retraining the feature weights @ on these high-
confidence edges can learn about additional features
that are correlated with an edge’s success or failure.
For example, it may now learn strong weights for
lexically specific features that were never observed
in the supervised training set. The retrained parser
may now be able to confidently parse even more of
the unannotated examples; so we can iterate the pro-
cess.

Our hope is that the model identifies new good
and bad edges at each step, and does so correctly.
The more features and global constraints the model
has,

e the more power it will have to discriminate
among edges even when O is insufficiently
trained. (Some feature weights may be too
weak (i.e., too close to zero) because the initial
labeled set is small.)

o the more robust it will be against errors even
when 6 is incorrectly trained. (Some feature
weights may be too strong or have the wrong
sign, because of overfitting or mistaken parses
during bootstrapping.)



In the former case, strong features lend their strength
to weak ones. In the latter case, a conflict among
strong features weakens the ones that depart from
the consensus, or discounts the example sentence if
there is no consensus.

Previous work on parser bootstrapping has not
been able to exploit this redundancy among features,
because it has used PCFG-like models with far fewer
features (Steedman et al., 2003).

2.3 Adaptation and Projection via Features

The previous section assumed that we had a small
supervised treebank in the target language and do-
main (plus a large unsupervised corpus). We now
consider other, more dubious, knowledge sources
that might supplement or replace this small tree-
bank. In each case, we can use these knowledge
sources to derive features that may—or may not—
prove trustworthy during bootstrapping.

Parses from a different domain. One might have
a treebank for a different domain or genre of the tar-
get language.

One could simply include these trees in the ini-
tial supervised training, and hope that bootstrapping
corrects any learned weights that are inappropriate
to the target domain, as discussed above. In fact,
McClosky et al. (2006) found a similar technique to
be effective—though only in a model with a large
feature space (“PCFG + reranking”), as we would
predict.

However, another approach is to train a separate
out-of-domain parser, and use this to generate addi-
tional features on the supervised and unsupervised
in-domain data (Blitzer et al., 2006). Bootstrapping
now teaches us where to trust the out-of-domain
parser. If our basic model has 100 features, we could
add features 101 through 200, where for example
fi123(€) = fa3 - logPr(e) and Pr(e) is the poste-
rior edge probability according to the out-of-domain
parser. Learning that this feature has a high weight
means learning to trust the out-of-domain parser’s
decision on edges where in-domain feature 23 fires.
Even more sensibly, we could add features such as
fa01(e) = 310, fi(e) - 6;, where f and 6 are the fea-
ture and weight vectors for the out-of-domain parser.
Learning that this feature has a high weight means
learning to trust the out-of-domain parser’s feature
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weights for a particular class of features (those num-
bered 1 through 10). This addresses the intuition that
some linguistic phenomena remain stable across do-
mains.

Parses of translations. Suppose we have transla-
tions into English of some of our supervised or unsu-
pervised sentences. Good probabilistic dependency
parsers already exist for English, so we run one over
the English translation. We can now derive many
additional features on candidate edges on the tar-
get sentence. For example, dependency edges in the
target language of the form c Po% p (this denotes
a child-to-parent dependency with label possessor)

might often correspond to dependency paths in the
. . bj

English translation of the form p’ © of 22 ¢/. To

discover whether this is so, we define a feature 7 by

fi(e 25 p) Elog Z (Pr(c aligns with ¢)
¢’ - Pr(p aligns with p/)

Pr(p 2 of poby )

ey

where ¢, p’ range over word tokens in the English
translation, “of” is a literal English word, and the
probabilities are posteriors provided by a probabilis-
tic aligner and a probabilistic English parser. Note
that this is a single feature (not a feature family pa-
rameterized by c, p). It scores any candidate edge on
whether itisa 223 edge that seems to align to an
English &% of pobs path.

This method is inspired by Hwa et al. (2005),
who bootstrapped parsers for Spanish and Chinese
by projecting dependencies from English transla-
tions and training a new parser on the resulting noisy
treebank. They used only 1-best translations, 1-best
alignments, dependency paths of length 1, and no
labeled data in Spanish or Chinese.

Hwa et al. (2005) used a manually written post-
processor to correct some of the many incorrect pro-
jections. By contrast, our framework uses the pro-
jected dependencies only as one source of features.
They may be overridden by other features in particu-
lar cases, and will be given a high weight only if they
tend to agree with other features during bootstrap-
ping. A similar soft projection of dependencies was
used in supervised machine translation by Smith and
Eisner (2006), who used a source sentence’s depen-
dency paths to bias the generation of its translation.



Note that these bilingual features will only fire
on those supervised or unsupervised sentences for
which we have an English translation. In particu-
lar, they will usually be unavailable on the test set.
However, we hope that they will seed and facilitate
the bootstrapping process, by helping us confidently
parse some unsupervised sentences that we would
not be able to confidently parse without an English
translation.

Parses of comparable English sentences. World
knowledge can be useful in parsing. Suppose
you see a French sentence that contains mangeons
and pommes, and you know that manger=eat and
pomme=apple. You might reasonably guess that
pommes is the direct object of mangeons, because
you know that apple is a plausible direct object for
eat. We can discover this last bit of world knowl-
edge from comparable English text. Translation dic-
tionaries can themselves be induced from compara-
ble corpora (Schafer and Yarowsky, 2002; Schafer,
2006; Klementiev and Roth, 2006), or extracted
from bitext or digitized versions of human-readable
dictionaries if these are available.

The above inference pattern can be captured by
features similar to those in equation (1). For exam-
ple, one can define a feature j by

e bj
P p) Elog Pr(pf T2 of &2 ¢

| p’ translates p, ¢ translates c)

file ()

where each event in the event space is a pair (¢/, p/)
of same-sentence tokens in comparable English text,
all pairs being equally likely. Thus, to estimate
Pr(- | -), the denominator counts same-sentence
token pairs (¢, p’) in the comparable English cor-
pus that translate into the types (c,p), and the nu-

merator counts such pairs that are also related by

bj . .
a & of &2 path. Since the lexical transla-

tions and dependency paths are typically not labeled
in the English corpus, a given pair must be counted
fractionally according to its posterior probability of
satisfying these conditions, given models of contex-
tual translation and English parsing.’

3Similarly, Jansche (2005) imputes “missing” trees by using
comparable corpora.
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2.4 Bootstrapping as Optimization

Section 2.2 assumed a relatively conventional kind
of bootstrapping, where each iteration retrains the
model on the examples where it is currently most
confident. This kind of “confidence thresholding”
has been popular in previous bootstrapping work (as
cited in §2.2). It attempts to maintain high accu-
racy while gradually expanding coverage. The as-
sumption is that throughout the training procedure,
the parser’s confidence is a trustworthy guide to its
correctness. Different bootstrapping procedures use
different learners, smoothing methods, confidence
measures, and procedures for “forgetting” the label-
ings from previous iterations.

In his analysis of Yarowsky (1995), Abney (2004)
formulates several variants of bootstrapping. These
are shown to increase either the likelihood of the
training data, or a lower bound on that likelihood. In
particular, Abney defines a function K that is an up-
per bound on the negative log-likelihood, and shows
his bootstrapping algorithms locally minimize K.

We now present a generalization of Abney’s K
function and relate it to another semi-supervised
learning technique, entropy regularization (Brand,
1999; Grandvalet and Bengio, 2005; Jiao et al.,
2006). Our experiments will tune the feature weight
vector, @, to minimize our function. We will do so
simply by applying a generic function minimization
method (stochastic gradient descent), rather than by
crafting a new Yarowsky-style or Abney-style itera-
tive procedure for our specific function.

Suppose we have examples x; and correspond-
ing possible labelings y; .. We are trying to learn
a parametric model pg(y;r | z:). If p(yix | ;) is
a “labeling distribution” that reflects our uncertainty
about the true labels, then our expected negative log-
likelihood of the model is

K £ =35 pyir | xi)logpe(yik | i)

ik

- D(Yi k| Ti
= D Byl log (g1x|:)
Pk P

0 (Vi k|7i)D(Yi k|7i)
= >_D(Billpe) + H(pi) 3)

where f;(-) = p(- | ;) and pg;(-) < po(- | ).
Note that K is a function not only of 8 but also



of the labeling distribution p; a learner might be al-
lowed to manipulate either in order to decrease K.

The summands of K in equation (3) can be di-
vided into two cases, according to whether z; is la-
beled or not. For the labeled examples {z; : i € L},
the labeling distribution p; is a point distribution that
assigns all probability to the true, known label y;".
Then H (p;) = 0. The total contribution of these ex-
amples to K simplifies to Y ,c; —logpe(y; | i),
i.e., just the negative log-likelihood on the labeled
data.

But what is the labeling distribution for the unla-
beled examples {x; : i ¢ L}? Abney simply uses
a uniform distribution over labels (e.g., parses), to
reflect that the label is unknown. If his bootstrap-
ping algorithm “labels” z;, then ¢ moves into L and
H (p;) is thereby reduced from maximal to 0. As a
result, a method that labels the most confident ex-
amples may reduce K, and Abney shows that his
method does so.

Our approach is different: we will take the label-
ing distribution p; to be our actual current belief
Pe,i» and manipulate it through changing @ rather
than L. L remains the original set of supervised ex-
amples. The total contribution of the unsupervised
examples to K then simplifies to >,/ H(pe,i)-

We have no reason to believe that these two con-
tributions (supervised and unsupervised) should be
weighted equally. We thus introduce a multiplier ~
to form the actual objective function that we mini-
mize with respect to 0:*

N
— logpei(yi) +7>_ H(pe.) )
i€L igL

One may regard ~y as a Lagrange multiplier that is
used to constrain the classifier’s uncertainty H to
be low, as presented in the work on entropy regular-
ization (Brand, 1999; Grandvalet and Bengio, 2005;
Jiao et al., 2006).

Conventional bootstrapping retrains on the most
confident unsupervised examples, making them

“This function is not necessarily convex in 6, because of the
addition of the entropy term (Jiao et al., 2006). One might try an
annealing strategy: start -y at zero (where the function is convex)
and gradually increase it, hoping to “ride” the global maximum.
Although we could increase ~ until the entropy term dominates
the minimizations and we approach a completely deterministic

classifier, it is preferable to use some labeled heldout data to
evaluate a stopping criterion.
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more confident. Gradient descent on equation (4)
essentially does the same, since unsupervised exam-
ples contribute to (4) only through H, and the shape
of the H function means that it is most rapidly de-
creased by making the most confident unsupervised
examples more confident.

Besides favoring models that are self-confident on
the unlabeled data, the objective function (4) also ex-
plicitly asks the model to continue to get the correct
answers on the initial supervised corpus. 1/v con-
trols the strength of this request. One could obtain
a similar effect in conventional bootstrapping by up-
weighting the initial labeled corpus when retraining.

2.5 Online Learning

Minimizing equation (4) for parsing is more com-
putationally intensive than in many other applica-
tions of bootstrapping, such as word sense disam-
biguation or document classification. With millions
of features, our objective could take many iterations
to converge to a local optimum, if we were only to
update our parameter vector @ after each iteration
through a large unsupervised corpus.

For many machine learning problems over large
datasets, online learning methods such as stochas-
tic gradient descent (SGD) have been empirically
observed to converge in fewer iterations (Bottou,
2003). In SGD, instead of taking an optimiza-
tion step in the direction of the gradient calculated
over all unsupervised training examples, we parse
each example, calculate the gradient of the objective
function evaluated on that example alone, and then
take a small step downhill. The update rule is thus

04+ — 9 . VFO (1) 5)

where () is the parameter vector at time ¢, F'(*) (@)
is the objective function specialized to the time-¢ ex-
ample, and > 0 is a learning rate that we choose.
We check for convergence after each pass through
the example set.

2.6 Algorithms and Complexity

To evaluate equation (4), we need a conditional
model of trees given a sentence x;. We define one
by exponentiating and normalizing the tree scores:
Po.i(yik) = exp(Leey, , fle) - 0)/Zi.

With exponentially many parses of x;, does our
objective function (4) now have prohibitive com-



putational complexity? The complexity is actually
similar to that of the inside algorithm for parsing.
In fact, the first term of (4) for projective parsing
is found by running the O(n?) inside algorithm on
supervised data,’> and its gradient is found by the
corresponding O(n3) outside algorithm. For non-
projective parsing, the analogy to the inside algo-
rithm is the O(n?) “matrix-tree algorithm,” which is
dominated asymptotically by a matrix determinant
(Smith and Smith, 2007; Koo et al., 2007; McDon-
ald and Satta, 2007). The gradient of a determinant
may be computed by matrix inversion, so evaluating
the gradient again has the same O(n3) complexity
as evaluating the function.

The second term of (4) is the Shannon entropy
of the posterior distribution over parses. Computing
this for projective parsing takes O(n?) time, using a
dynamic programming algorithm that is closely re-
lated to the inside algorithm (Hwa, 2000).° For non-
projective parsing, unfortunately, the runtime rises
to O(n*), since it requires determinants of n distinct
matrices (each incorporating a log factor in a dif-
ferent column; we omit the details). The gradient
evaluation in both cases is again about as expensive
as the function evaluation.

A convenient speedup is to replace Shannon en-
tropy with Rényi entropy. The family of Rényi en-
tropy measures is parameterized by o

1

o log <Z p(y)a> (6)

In our setting, where p = pg ;, the events y are the
possible parses y; ;. of x;. Observe that under our
definition of p, 3>, p(y)* = {32, exp[>Pce, f(e) -
(aB)]}/Z¢. We already have Z; from running the
inside algorithm, and we can find the numerator by
running the inside algorithm again with 6 scaled
by a. Thus with Rényi entropy, all computations
and their gradients are O(n®)—even in the non-
projective case.

Rényi entropy is also a theoretically attractive
generalization. It can be shown that lim,_,; R, (p)

Ra(p) =

>The numerator of pg ;(y;) (see definition above) is trivial
since y; is a single known parse. But the denominator Z; is a
normalizing constant that sums over all parses; it is found by a
dependency-parsing variant of the inside algorithm, following
(Eisner, 1996).

%See also (Mann and McCallum, 2007) for similar results on
conditional random fields.
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is in fact the Shannon entropy H(p) and that
limy o0 Ro(p) = —logmax, p(y), i.e. the nega-
tive log probability of the modal or “Viterbi” label
(Arndt, 2001; Karakos et al., 2007). The o« = 2
case, widely used as a measure of purity in decision
tree learning, is often called the “Gini index.” Fi-
nally, when o = 0, we get the log of the number
of labels, which equals the H (uniform distribution)
that Abney used in equation (3).

3 Evaluation

For this paper, we performed some initial bootstrap-
ping experiments on small corpora, using the fea-
tures from (McDonald et al., 2005). After discussing
experimental setup (§3.1), we look at the correlation
of confidence with accuracy and with oracle likeli-
hood, and at the fine-grained behaviour of models’
dependency edge posteriors (§3.2). We then com-
pare our confidence-maximizing bootstrapping to
EM, which has been widely used in semi-supervised
learning (§3.4). Section 3.3 presents overall boot-
strapping accuracy.

3.1 Experimental Design

We bootstrapped non-projective parsers for lan-
guages assembled for the CoNLL dependency pars-
ing competitions (Buchholz and Marsi, 2006). We
selected German, Spanish, and Czech (Brants et
al., 2002; Civit Torruella and Marti Antonin, 2002;
Bohmova et al., 2003). After removing sentences
more than 60 words long, we randomly divided each
corpus into small seed sets of 100 and 1000 trees;
development and test sets of 200 trees each; and an
unlabeled training set from the rest.

These treebanks contain strict dependency trees,
in the sense that their only nodes are the words and
a distinguished root node. In the Czech dataset,
more than one word can attach to the root; also, the
trees in German, Spanish, and Czech may be non-
projective. We use the MSTParser implementa-
tion described in McDonald et al. (2005) for fea-
ture extraction. Since our seed sets are so small, we
extracted features from all edges in both the seed
and the unlabeled parts of our training data, not just
the edges annotated as correct. Since this produced
many more features, we pruned our features to those
with at least 10 occurrences over all edges.



Correlation of
100-tree model | 1000-tree model
Rényi o Acc.  Xent. Acc. Xent.
(uniform, Abney) 0 -0.254  0.980 | -0.180 0.937
S| -0.256  0.981 | -0.203 0.955
(Shannon) 1| -0.260 0.983 | -0.220 0.964
(Gini) 2 | -0.266 0985 | -0.250 0.977
51 -0.291 0992 | -0.304 0.990
7 | -0.301 0.993 | -0.341 0.991
(Viterbi) oo | -0.317 0995 | -0.326 0.992
Xent. | -0.391 1.000 | -0.410 1.000

Table 1: Correlation, on development sentences, of Rényi en-
tropy with model accuracy and with cross-entropy (“Xent.”).
Since these are measures of uncertainty, we see a negative cor-
relation. As o increases, we place more confidence in high-
probability parses and correlate better with accuracy.

We used stochastic gradient descent first to min-
imize equation (4) on the labeled seed sets. Then
we continued to optimize over the labeled and unla-
beled data together. We tested for convergence using
accuracy on development data.

3.2 Empirically Evaluating Entropy

Bootstrapping assumes that where the parser is con-
fident, it tends to be correct. Standard bootstrapping
methods retrain directly on confident links; simi-
larly, our approach tries to make the parser even
more confident on those links.

Is this assumption really true empirically? Yes:
not only does confidence on unlabeled data correlate
with cross-entropy, but both confidence and cross-
entropy correlate well with accuracy. As we will
see, some confidence measures correlate better than
others. In particular, measures that are more peaked
around the one-best prediction of the parser, as in
Viterbi re-estimation, perform well.

If we train a non-projective German parser on
small seed sets of 100 and 1000 trees, only, how well
does its own confidence predict its performance?
For 200 points—labeled development sentences—
we measured the linear correlation of various Rényi
entropies (6), normalized by sentence length, with
tree accuracy (Table 1). We also measured how these
normalized Rényi entropies correlate with the pos-
terior log-probability the model assigns to the true
parse (the cross-entropy).

Since Rényi entropy is a measure of uncertainty,
we see a negative correlation with accuracy. This
correlation strengthens as we raise « to co, SO we
might expect Viterbi re-estimation, or a differen-
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Figure 1: Posterior probability of correct and incorrect edges
in German test data under various models. We show the distri-
bution of posterior probabilities for correct edges, known from
an oracle, in black and incorrect edges in gray. In the upper
row, learning on an initial supervised set raises the posterior
probability of correct edges while dragging along some incor-
rect edges. In the lower row, we see that adding unlabeled data
with R> entropy continues the pattern of the supervised learner.
R (Viterbi) training induces a second mode in correct pos-
terior probabilities near 1 although it does shift more incorrect
edges closer to 1.

1.0
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|

Precision
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—— Supervised iteration 1
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————— Bootstrapping with R
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Figure 2: Precision-recall curves for selecting edges according
to their posterior probabilities: better bootstrapping puts more
area under the curve.

tiable objective function with a very high «, to per-
form best on held-out data. Note also that the cross-
entropy, which looks at the true labels on the held-
out data, does not itself correlate very much bet-
ter with accuracy than the best unsupervised confi-
dence measures. Finally, we see that Rényi entropies
with higher o are more stable: when calculated for a
model trained on more data, they improve their cor-
relation with accuracy.

From tree confidence, we now turn to edge confi-
dence: what is the posterior probability that a model
assigns to each of the n? edges in the dependency
graph? Figure 1 shows smoothed histograms of true
edges (black) and false edges (gray) in held-out data,
according to the posterior probabilities we assign to



them. Since there are many more false edges, the
figures are cropped to zoom in on the distribution of
true edges. As we start training on the labeled seed
set, the posterior probabilities of true edges move to-
wards one; many false edges also get greater mass,
but not to the same extent. As we add unlabeled
data, we can see the different learning strategies of
different confidence measures. Ry gradually moves
a few true and many fewer false edges towards 1,
while R, (Viterbi) learning is so confident as to in-
duce a bimodal distribution in the posteriors of true
edges. Figure 2 visualizes the same data as four
precision-recall curves, which show how noisy the
highest-confidence edges are, across a range of con-
fidence thresholds. Although the very high precision
end stays stable after 10 iterations on the seed set,
the addition of unlabeled data puts more area under
the curve. Again, R, dominates Rs.

3.3 Bootstrapping Results

We performed bootstrapping experiments on the full
CoNLL sets for Czech, German, and Spanish us-
ing the non-projective model from McDonald et al.
(2005). Performance confirms the results of our
analysis above (Table 2). Adding unlabeled data im-
proves performance over that of the seed set, with
the exception of the Czech data with Rg bootstrap-
ping. As we saw in §3.2, bootstrapping with R,
dominates bootstrapping with o confidence. For
comparison, we also show the results obtained by
supervised training on the combined seed and unla-
beled sets. Recall that we did not use the tree anno-
tations to perform feature selection; models trained
with only supported features ought to perform better.

Although we see statistically significant improve-
ments (at the .05 level on a paired permutation test),
the quality of the parsers is still quite poor, in con-
trast to other applications of bootstrapping which
“rival supervised methods” (Yarowsky, 1995). Al-
most certainly, the CoNLL datasets, comprising at
most some tens of thousands of sentences per lan-
guage, are too small to afford qualitative improve-
ments. Also, at these relatively small training sizes,
our preliminary attempts to leverage comparable En-
glish corpora did not improve performance.

What features were learned, and how dependent
is performance on the seed set? We analyzed the
performance of German bootstrapping on a develop-
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% accuracy
Seedtrees | a =0 2 o)
Czech 100 56.1 548 58.3
1000 68.1 682 682
71468 77.9 - -
German 100 609 624 65.3
1000 74.6 745 75.0
37745 86.0 - -
Spanish 100 63.6 64.1 0644
2786 76.6 - -

Table 2: Dependency accuracy of the McDonald model on 200
test sentences. When o = 0, training only occurs on the super-
vised seed data. As « increases, we train based on confidence
in our model’s analysis of the unlabeled data. Boldface results
are the best in their rows in a permutation test at the .05 level.

ment set (Table 3). Using the parameters at the last
iteration of supervised training on the seed set as a
baseline, we tried updating to their bootstrapped val-
ues the weights of only those features that occurred
in the seed set. This achieved nearly the same ac-
curacy as updating all the features. As one would
expect, using only the non-seed features’ weights
performs abysmally. This might be the case sim-
ply because the seed set is likely to contain fre-
quently occurring features. If, however, we use only
the features occurring in an alternate training set of
the same size (100 sentences), we get much worse
performance. These results indicate that our boot-
strapped parser is still heavily dependent on the fea-
tures that happened to fire in the seed set; we have
not “forgotten” our initial conditions. Similar exper-
iments show that unlexicalized features contribute
the most to bootstrapping performance. Since in
our log-linear models features have been trained to
work together, we must not put too much weight on
these ablation results. These experiments do, how-
ever, suggest that bootstrapping improved our results
by refining the values of known, non-lexicalized fea-
tures.

3.4 Comparison with EM

Perhaps the most popular statistical method for
learning from incomplete data is the EM algorithm
(Dempster et al., 1977). Since we cannot try EM on
McDonald’s conditional model, we ran some pilot
experiments using the generative dependency model
with valence (DMV) of Klein and Manning (2004).
As in their experiments, and unlike the other exper-
iments in the current paper, we restricted ourselves



Updated M feat. acc. | Updated | M feat. acc.
all 15,5 64.3 | none 0 609
seed 1.4 64.1 | non-seed 14.1 447
non-lexical 3.5 64.4 | lexical 120 599
non-bilex. 12.6  64.4 | bilexical 29 61.0

Table 3: Using all features, dependency accuracy on German
development data rose to 64.3% on bootstrapping. We show the
contribution of different feature splits to the performance of this
final model. For example, although this model was trained by
updating all 15.5M feature weights, it performs as well if we
then keep only the 1.4M features that appeared at least once in
the seed set, zeroing out the weights of the others. We do as well
as the full feature set if we keep only the 3.5M non-lexicalized
features.

% accuracy
train | Bulg. German Spanish
supervised | ML 74.2 80.0 71.3
CL 71.5 79.3 75.0
semi- EM 58.6 58.8 68.4
supervised | Conf. 80.0 80.5 76.7

Table 4: Dependency accuracy of the DMV model (Klein and
Manning, 2004). Maximizing confidence using R (Shannon)
entropy improved performance over its own conditional like-
lihood (CL) baseline and over maximum likelihood (ML). EM
degraded its ML baseline. Since these models were only trained
and tested on sentences of 10 words or fewer, accuracy is much
higher than the full results in Table 2.

to sentences of ten words or fewer and to part-of-
speech sequences alone, without any lexical infor-
mation. Since the DMV models projective trees, we
ran experiments on three CoNLL corpora that had
augmented their primary non-projective parses with
alternate projective annotations: Bulgarian (Simov
et al., 2005), German, and Spanish.

We performed supervised maximum likelihood
and conditional likelihood estimation on a seed set
of 100 sentences for each language. These models
respectively initialized EM and confidence training
on unlabeled data. We see (Table 4) that EM de-
grades the performance of its ML baseline. Meri-
aldo (1994) saw a similar degradation over small
(and large) seed sets in HMM POS tagging. We
tried fixing and not fixing the feature expectations on
the seed set during EM and show the former, better
numbers. Confidence maximization improved over
both its own conditional likelihood initializer and
also over ML. We selected optimal smoothing pa-
rameters for all models and optimal « (equation (6))
and v (equation (4)) for the confidence model on la-
beled held-out data.
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4 Future Work

We hypothesize that qualitatively better bootstrap-
ping results will require much larger unlabeled data
sets. In scaling up bootstrapping to larger unla-
beled training sets, we must carefully weight trade-
offs between expanding coverage and introducing
noise from out-of-domain data. We could also bet-
ter exploit the data we have with richer models of
syntax. In supervised dependency parsing, second-
order edge features provide improvements (McDon-
ald and Pereira, 2006; Riedel and Clarke, 2006);
moreover, the feature-based approach is not limited
to dependency parsing. Similar techniques could
score parses in other formalisms, such as CFG or
TAG. In this case, f extracts features from each
of the derivation tree’s rewrite rules (CFG) or ele-
mentary trees (TAG). In lexicalized formalisms, f
will still be able to score lexical dependencies that
are implicitly represented in the parse. Finally, we
want to investigate whether larger training sets will
provide traction for sparser cross-lingual and cross-
domain features.

5 Conclusions

Feature-rich dependency models promise to help
bootstrapping by providing many redundant features
for the learner, and they can also cleanly incorporate
cross-domain and cross-language information.

We explored bootstrapping feature-rich non-
projective dependency parsers for Czech, German,
and Spanish. Our bootstrapping method maximizes
a linear combination of likelihood and confidence.
In initial experiments on small datasets, this sur-
passed EM for training a simple feature-poor gener-
ative model, and also improved the performance of
a feature-rich, conditionally estimated model where
EM could not easily have been applied. For our
models and training sets, more peaked measures
of confidence, measured by Rényi entropy, outper-
formed smoother ones.
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