
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 640–648, Prague, June 2007. c©2007 Association for Computational Linguistics

Semi-Markov Models for Sequence Segmentation
Qinfeng Shi

NICTA, Statistical Machine Learning
Australian National University

Canberra, 2601 ACT
qinfeng.shi@rsise.anu.edu.au

Yasemin Altun
Toyota Technological Institute

1427 E 60th St
Chicago, IL 60637

altun@tti-c.org

Alex Smola
NICTA, Statistical Machine Learning

Australian National University
Canberra, 2601 ACT

Alex.Smola@nicta.com.au

S. V. N. Vishwanathan
NICTA, Statistical Machine Learning

Australian National University
Canberra, 2601 ACT

SVN.Vishwanathan@nicta.com.au

Abstract

In this paper, we study the problem of auto-
matically segmenting written text into para-
graphs. This is inherently a sequence label-
ing problem, however, previous approaches
ignore this dependency. We propose a novel
approach for automatic paragraph segmen-
tation, namely training Semi-Markov mod-
els discriminatively using a Max-Margin
method. This method allows us to model
the sequential nature of the problem and to
incorporate features of a whole paragraph,
such as paragraph coherence which cannot
be used in previous models. Experimental
evaluation on four text corpora shows im-
provement over the previous state-of-the art
method on this task.

1 Introduction

In this paper, we study automatic paragraph segmen-
tation (APS). This task is closely related to some
well known problems such as text segmentation, dis-
course parsing, topic shift detection and is relevant
for various important applications in speech-to-text
and text-to-text tasks.

In speech-to-text applications, the output of a
speech recognition system, such as the output of sys-
tems creating memos and documents for the Parlia-
ment House, is usually raw text without any punc-
tuation or paragraph breaks. Clearly, such text
requires paragraph segmentations. In text-to-text
processing, such as summarization, the output text
does not necessarily retain the correct paragraph

structure and may require post-processing. There
is psycholinguistic evidence as cited by Sporleder
& Lapata (2004) showing that insertion of para-
graph breaks could improve the readability. More-
over, it has been shown that different languages may
have cross-linguistic variations in paragraph bound-
ary placement (Zhu, 1999), which indicates that ma-
chine translation can also benefit from APS. APS
can also recover the paragraph breaks that are often
lost in the OCR applications.

There has been growing interest within the NLP
community for APS in recent years. Previous meth-
ods such as Sporleder & Lapata (2004); Genzel
(2005); Filippova & Strube (2006) treat the problem
as a binary classification task, where each sentence
is labeled as the beginning of a paragraph or not.
They focus on the use of features, such as surface
features, language modeling features and syntactic
features. The effectiveness of features is investi-
gated across languages and/or domains. However,
these approaches ignore the inherent sequential na-
ture of APS. Clearly, consecutive sentences within
the same paragraph depend on each other. More-
over, paragraphs should exhibit certain properties
such as coherence, which should be explored within
an APS system. One cannot incorporate such prop-
erties/features when APS is treated as a binary clas-
sification problem. To overcome this limitation, we
cast APS as a sequence prediction problem, where
the performance can be significantly improved by
optimizing the choice of labeling over whole se-
quences of sentences, rather than individual sen-
tences.

Sequence prediction is one of the most promi-

640

Figure 1: Top: sequence (horizontal line) with seg-
ment boundaries (vertical lines). This corresponds
to a model where we estimate each segment bound-
ary independently of all other boundaries. Middle:
simple semi-Markov structure. The position of the
segment boundaries only depends on the position of
its neighbors, as denoted by the (red) dash arcs. Bot-
tom: a more sophisticated semi-Markov structure,
where each boundary depends on the position of two
of its neighbors. This may occur, e.g., when the de-
cision of where to place a boundary depends on the
content of two adjacent segments. The longer range
interaction is represented by the additional (blue)
arcs.

nent examples of structured prediction. This prob-
lem is generally formalized such that there exists
one variable for each observation in the sequence
and the variables form a Markov chain (HMM). Seg-
mentation of a sequence has been studied as a class
of sequence prediction problems with common ap-
plications such as protein secondary structure pre-
diction, Named Entity Recognition and segmenta-
tion of FAQ’s. The exceptions to this approach
are Sarawagi & Cohen (2004); Raetsch & Sonnen-
burg (2006), which show that Semi-Markov mod-
els (SMMs) (Janssen & Limnois, 1999), which are
a variation of Markov models, are a natural formu-
lation for sequence segmentation. The advantage of
these models, depicted in Figure 1, is their ability
to encode features that capture properties of a seg-
ment as a whole, which is not possible in an HMM
model. In particular, these features can encode simi-
larities between two sequence segments of arbitrary
lengths, which can be very useful in tasks such as
APS.

In this paper, we present a Semi-Markov model

for APS and propose a max-margin training on these
methods. This training method is a generalization of
the Max-Margin methods for HMMs (Altun et al.,
2003b) to SMMs. It follows the recent literature
on discriminative learning of structured prediction
(Lafferty et al., 2001; Collins, 2002; Altun et al.,
2003a; Taskar et al., 2003). Our method inherits the
advantages of discriminative techniques, namely the
ability to encode arbitrary (overlapping) features and
not making implausible conditional independence
assumptions. It also has advantages of SMM mod-
els, namely the ability to encode features at seg-
ment level. We present a linear time inference al-
gorithm for SMMs and outline the learning method.
Experimental evaluation on datasets used previously
on this task (Sporleder & Lapata, 2004) shows im-
provement over the state-of-the art methods on APS.

2 Modeling Sequence Segmentation

In sequence segmentation, our goal is to solve the es-
timation problem of finding a segmentation y ∈ Y ,
given an observation sequence x ∈ X . For exam-
ple, in APS x can be a book which is a sequence
of sentences. In a Semi-Markov model, there ex-
ists one variable for each subsequence of observa-
tions (i. e. multiple observations) and these variables
form a Markov chain. This is opposed to an HMM
where there exists one variable for each observation.
More formally, in SMMs, y ∈ Y is a sequence of
segment labelings si = (bi, li) where bi is a non-
negative integer denoting the beginning of the ith

segment which ends at position bi+1 − 1 and whose
label is given by li (Sarawagi & Cohen, 2004). Since
in APS the label of the segments is irrelevant, we
represent each segment simply by the beginning po-
sition y := {bi}L−1

i=0 with the convention that b0 = 0
and bL = N where N is the number of observations
in x. Here, L denotes the number of segments in y.
So the first segment is [0, b1), and the last segment
is [bL−1, N), where [a, b) denotes all the sentences
from a to b inclusive a but exclusive b.

We cast this estimation problem as finding a dis-
criminant function F (x, y) such that for an obser-
vation sequence x we assign the segmentation that
receives the best score with respect to F ,

y∗(x) := argmax
y∈Y

F (x, y). (1)

641

As in many learning methods, we consider functions
that are linear in some feature representation Φ,

F (x, y;w) = 〈w,Φ(x, y)〉. (2)

Here, Φ(x, y) is a feature map defined over the joint
input/output space as detailed in Section 2.3.

2.1 Max-Margin Training

We now present a maximum margin training for
predicting structured output variables, of which se-
quence segmentation is an instance. One of the ad-
vantages of this method is its ability to incorporate
the cost function that the classifier is evaluated with.
Let ∆(y, ȳ) be the cost of predicting ȳ instead of y.
For instance, ∆ is usually the 0-1 loss for binary and
multiclass classification. However, in segmentation,
this may be a more sophisticated function such as
the symmetric difference of y and ȳ as discussed in
Section 2.2. Then, one can argue that optimizing a
loss function that incorporates this cost can lead to
better generalization properties. One can find a the-
oretical analysis of this approach in Tsochantaridis
et al. (2004).

We follow the general framework of Tsochan-
taridis et al. (2004) and look for a hyperplane that
separates the correct labeling yi of each observa-
tion sequence xi in our training set from all the in-
correct labelings Y −yi with some margin that de-
pends on ∆ additively 1. In order to allow some
outliers, we use slack variables ξi and maximize the
minimum margin, F (xi, yi)−maxy∈Y −yi F (xi, y),
across training instances i. Equivalently,

min
w,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi (3a)

∀i, y 〈w,Φ(xi, yi)− Φ(xi, y)〉 ≥ ∆(yi, y)− ξi.
(3b)

To solve this optimization problem efficiently, one

1There is an alternative formulation that is multiplicative in
∆. We prefer (3) due to computational efficiency reasons.

can investigate its dual given by

min
α

1
2

∑
i,j,y,y′

αiyαjy′
〈
Φ(xi, y),Φ(xj , y

′)
〉

(4)

−
∑
i,y

∆(yi, y)αiy

∀i, y
∑

y

αiy ≤ C, αiy ≥ 0.

Here, there exists one parameter αiy for each train-
ing instance xi and its possible labeling y ∈
Y . Solving this optimization problem presents a
formidable challenge since Y generally scales expo-
nentially with the number of variables within each
variable y. This essentially makes it impossible
to find an optimal solution via enumeration. In-
stead, one may use a column generation algorithm
(Tsochantaridis et al., 2005) to find an approximate
solution in polynomial time. The key idea is to find
the most violated constraints (3b) for the current set
of parameters and satisfy them up to some precision.
In order to do this, one needs to find

argmax
y∈Y

∆(yi, y) + 〈w,Φ(xi, y)〉 , (5)

which can usually be done via dynamic program-
ming. As we shall see, this is an extension of the
Viterbi algorithm for Semi Markov models.

Note that one can express the optimization
and estimation problem in terms of kernels
k((x, y), (x′, y′)) := 〈Φ(x, y),Φ(x′, y′)〉. We refer
the reader to Tsochantaridis et al. (2005) for details.

To adapt the above framework to the segmenta-
tion setting, we need to address three issues: a) we
need to specify a loss function ∆ for segmentation,
b) we need a suitable feature map Φ as defined in
Section 2.3, and c) we need to find an algorithm
to solve (5) efficiently. The max-margin training of
SMMs was also presented in Raetsch & Sonnenburg
(2006)

2.2 Cost Function

To measure the discrepancy between y and some al-
ternative sequence segmentation y′, we simply count
the number of segment boundaries that have a) been
missed and b) been wrongly added. Note that this
definition allows for errors exceeding 100% - for

642

Algorithm 1 Max-Margin Training Algorithm
Input: data xi, labels yi, sample size m, tolerance
ε
Initialize Si = ∅ for all i, and w = 0.
repeat

for i = 1 to m do
w =

∑
i

∑
y∈Si

αiyΦ(xi, y)
y∗ = argmaxy∈Y 〈w,Φ(xi, y)〉+ ∆(yi, y)
ξ = max(0,maxy∈Si 〈w,Φ(xi, y)〉 +
∆(yi, y))
if 〈w,Φ(xi, y

∗)〉+ ∆(yi, y) > ξ + ε then
Increase constraint set Si ← Si ∪ y∗

Optimize (4) wrt αiy,∀y ∈ Si.
end if

end for
until S has not changed in this iteration

instance, if we were to place considerably more
boundaries than can actually be found in a sequence.

The number of errors is given by the symmetric
difference between y and y′, when segmentations
are viewed as sets. This can be written as

∆(y, y′) = |y|+ |y′| − 2|y ∩ y′|

= |y|+
l′∑

i=1

[
1− 2

{
b′i ∈ y

}]
. (6)

Here | · | denotes the cardinality of the set. Eq. (6)
plays a vital role in solving (5), since it allows us to
decompose the loss in y′ into a constant and func-
tions depending on the segment boundaries b′i only.
Note that in the case where we want to segment and
label, we simply would need to check that the posi-
tions are accurate and that the labels of the segments
match.

2.3 Feature Representation

SMMs can extract three kinds of features from the
input/output pairs: a) node features, i. e. features that
encode interactions between attributes of the obser-
vation sequence and the (label of a) segment (rather
than the label of each observation as in HMM), b)
features that encode interactions between neighbor-
ing labels along the sequence and c) edge features,
i. e. features that encode properties of segments. The
first two types of features are commonly used in

other sequence models, such as HMMs and Con-
ditional Random Fields (CRFs). The third feature
type is specific to Semi-Markov models. In particu-
lar, these features can encode properties of a whole
segment or similarities between two sequence seg-
ments of arbitrary lengths. The cost of this express-
ibility is simply a constant factor of the complexity
of Markov models, if the maximum length of a seg-
ment is bounded. This type of features are particu-
larly useful in the face of sparse data.

As in HMMs, we assume stationarity in our model
and sum over the features of each segment to get
Φ(x, y). Then, Φ corresponding to models of the
middle structure given in Figure 1 is given by

Φ(x, ȳ) := (Φ0,

l̄−1∑
i=1

Φ1(n̄i, x),
l̄∑

i=1

Φ2(b̄i−1, b̄i, x)).

We let Φ0 = l̄ − 1, the number of segments. The
node features Φ1 capture the dependency of the cur-
rent segment boundary to the observations, whereas
the edge features Φ2 represent the dependency of the
current segment to the observations. To model the
bottom structure in Figure 1, one can design features
that represent the dependency of the current segment
to its adjacent segments as well as the observations,
Φ3(x, bi−2, bi−1, bi). The specific choices of the fea-
ture map Φ are presented in Section 3.

2.4 Column Generation on SMMs
Tractability of Algorithm 1 depends on the existence
of an efficient algorithm that finds the most violated
constraint (3b) via (5). Both the cost function of Sec-
tion 2.2 and the feature representation of Section 2.3
are defined over a short sequence of segment bound-
aries. Therefore, using the Markovian property, one
can perform the above maximization step efficiently
via a dynamic programming algorithm. This is a
simple extension of the Viterbi algorithm. The infer-
ence given by (1) can be performed using the same
algorithm, setting ∆ to a constant function.

We first state the dynamic programming recursion
for F + ∆ in its generality. We then give the pseu-
docode for Φ3 = ∅.

Denote by T (t−, t+;x) the largest value of
∆(y, p)+F (x, p) for any partial segmentation p that
starts at position 0 and which ends with the segment
[t−, t+). Moreover, let M be a upper bound on the

643

Algorithm 2 Column Generation
Input: sequence x, segmentation y, max-length
of a segment M
Output: score s, segment boundaries y′

Initialize vectors T ∈ Rm and R ∈ Ym to 0
for i = 1 to l do

Ri = argmax
max(0,i−M)≤j<i

Tj + g(j, i)

Ti = TRi + g(Ri, i)
end for
s = Tm + |y|
y′ = {m}
repeat

i = y′first

y′ ← {Ri, y
′}

until i = 0

length of a segment. The recursive step of the dy-
namic program is given by

T (t−, t+;x) = max
max(0,t−−M)≤k<t−

T (k, t−;x)

+ g(k, t−, t+)

where we defined the increment g(k, t−, t+) as

〈Φ0(x),Φ1(x, t+),Φ2(x, t−, t+),Φ3(x, k, t−, t+), w〉
+ 1− 2 {(t−, t+) ∈ y}

where by convention T (i, i′) = −∞ if i < 0 for
all labels. Since T needs to be computed for all val-
ues of t+ − M ≤ t− < t+, we need to compute
O(|x|M) many values, each of which requires an
optimization over M possible values. That is, stor-
age requirements are O(|x|M), whereas the com-
putation scales with O(|x|M2). If we have a good
bound on the maximal sequence length, this can be
dealt with efficiently. Finally, the recursion is set up
by T (0, 0, x) = |y|.

See Algorithm 2 for pseudocode, when Φ3 = ∅.
The segmentation corresponding to (5) is found by
constructing the path traversed by the argument of
the max operation generating T .

3 Features

We now specify the features described in Section 2.3
for APS. Note that the second type of features do
not exist for APS since we ignore the labelings of
segments.

3.1 Node Features Φ1

Node features Φ1(bj , x) represent the information of
the current segment boundary and some attributes of
the observations around it (which we define as the
current, preceding and successive sentences). These
are sentence level features, which we adapt from
Genzel (2005) and Sporleder & Lapata (2004) 2. For
the bj th sentence, x(bj), we use the following fea-
tures

• Length of x(bj).

• Relative Position of x(bj).

• Final punctuation of x(bj).

• Number of capitalized words in x(bj).

• Word Overlap of x(bj) with the next one

Wover(x(bj), x(bj + 1)) =
2 | x(bj) ∩ x(bj + 1) |
| x(bj) | + | x(bj + 1) |

.

• First word of x(bj).

• Bag Of Words (BOW) features: Let the bag of
words of a set of sentences S be

B(S) = (c0, c1, ..., ci, ..., cN−1),

where N is the size of the dictionary and ci is
the frequency of word i in S.

– BOW of x(bj), B({x(bj)})
– BOW of x(bj) and the previous sentence

B({x(bj − 1), x(bj)})
– BOW of x(bj) and the succeeding sen-

tence B({x(bj), x(bj + 1)})
– The inner product of the two items above

• Cosine Similarity of x(bj) and the previous
sentence

CS(x(bj − 1), x(bj))

=
〈B(x(bj − 1)), B(x(bj))〉

| B(x(bj − 1)) | × | B(x(bj)) |
2Due to space limitations, we omit the motivations for these

features and refer the reader to the literature cited above.

644

• Shannon’s Entropy of x(bj) computed by us-
ing a language model as described in Genzel &
Charniak (2003).

• Quotes(Qp, Qc, Qi). Qp and Qc are the number
of pairs of quotes in the previous(Nump) and
current sentence (Numc), Qp = 0.5 × Nump

and Qc = 0.5×Numc.

3.1.1 Edge Features Φ2

Below is the set of features Φ2(bj , bj+1, x) encod-
ing information about the current segment. These
features represent the power of the Semi-Markov
models. Note that Φ3 features also belong to edge
features category. In this paper, we did not use Φ3

feature due to computational issues.

• Length of The Paragraph: This feature ex-
presses the assumption that one would want to
have a balance across the lengths of the para-
graphs assigned to a text. Very long and very
short paragraphs should be uncommon.

• Cosine Similarity of the current paragraph and
neighboring sentences: Ideally, one would like
to measure the similarity of two consecutive
paragraphs and search for a segmentation that
assigns low similarity scores (in order to fa-
cilitate changes in the content). This can be
encoded using Φ3(x, bj−1, bj , bj+1) features.
When such features are computationally expen-
sive, one can measure the similarity of the cur-
rent paragraph with the preceding sentence as

CS(P, x(bj − 1))

=
〈BOW (P), BOW (x(bj − 1))〉

| BOW (P) | × | BOW (x(bj − 1)) |

where P is the set of sentences in the current
paragraph, [bj , bj+1). A similar feature is used
for CS(P, x(bj+1)).

• Shannon’s Entropy of the Paragraph: The mo-
tivation for including features encoding the en-
tropy of the sentences is the observation that the
entropy of paragraph initial sentences is lower
than the others (Genzel & Charniak, 2003).
The motivation for including features encod-
ing the entropy of the paragraphs, on the other
hand, is that the entropy rate should remain

more or less constant across paragraphs, es-
pecially for long texts like books. We ignore
the sentence boundaries and use the same tech-
nique that we use to compute the entropy of a
sentence.

3.2 Feature Rescaling
Most of the features described above are binary.
There are also some features such as the entropy
whose value could be very large. We rescale all the
non-binary valued features so that they do not over-
ride the effect of the binary features. The scaling is
performed as follows:

unew =
u−min(u)

max(u)−min(u)

where unew is the new feature and u is the old fea-
ture. min(u) is the minimum of u, and max(u)
is the maximum of u. An exception to this is the
rescaling of BOW features which is given by

B(x(bj))new = B(x(bj))/〈B(x(bj)), B(x(bj))〉

〈., .〉 denotes the inner product.

4 Experiments

We collected four sets of data for our experiments.
The first corpus, which we call SB, consists of man-
ually annotated text from the book The Adventures
of Bruce-Partington Plans by Arthur Conan-Doyle.
The second corpus, which we call SA, again con-
sists of manually annotated text but from 10 differ-
ent books by Conan-Doyle. Our third corpus con-
sists of German (GER) and English (ENG) texts.
The German data consisting of 12 German novels
was used by Sporleder & Lapata (2006). This data
uses automatically assigned paragraph boundaries,
with the labeling error expected to be around 10%.
The English data contains 12 well known English
books from Project Gutenberg (http://www.
gutenberg.org/wiki/Main Page). For this
dataset the paragraph boundaries were marked man-
ually.

All corpora were approximately split into train-
ing (72%), development (21%), and test set (7%)
(see Table 1). The table also reports the accuracy of
the baseline classifier, denoted as BASE, which ei-
ther labels all sentences as paragraph boundaries or

645

Table 1: Number of sentences and % accuracy of the
baseline classifier (BASE) on various datasets used
in our experiments.

TOTAL TRAIN DEV TEST BASE

SB 59,870 43,678 12,174 3,839 53.70
SA 69,369 50,680 14,204 4,485 58.62
ENG 123,261 88,808 25,864 8,589 63.41
GER 370,990 340,416 98,610 31,964 62.10

non-boundaries, choosing whichever scheme yields
a better accuracy.

We evaluate our system using accuracy, precision,
recall, and the F1-score given by (2× Precision×
Recall)/(Precision+Recall) and compare our re-
sults to Sporleder & Lapata (2006) who used Boos-
Texter (Schapire & Singer, 2000) as a learning al-
gorithm. To the best of our knowledge, BoosTexter
(henceforth called BT) is the leading method pub-
lished for this task so far. In order to evaluate the im-
portance of the edge features and the resultant large-
margin constraint, we also compare against a stan-
dard binary Support Vector Machine (SVM) which
uses node features alone to predict whether each
sentence is the beginning of a paragraph or not. For
a fair comparison, all classifiers used the linear ker-
nel and the same set of node features.

We perform model selection for all three algo-
rithms by choosing the parameter values that achieve
the best F1-score on the development set. For
both the SVM as well as our algorithm, SMM, we
tune the parameter C (see (3a)) which measures the
trade-off between training error and margin. For BT,
we tune the number of Boosting iterations, denoted
by N .

4.1 Results

In our first experiment, we compare the perfor-
mance of our algorithm, SMM, on the English and
German corpus to a standard SVM and BoosTex-
ter. We report these result in Table 2. Our algo-
rithm achieves the best F1-score on the ENG cor-
pus. SMM performs very competitively on the GER
corpus, achieving accuracies close to those of BT.

We observed a large discrepancy between the per-
formance of our algorithm on the development and

Table 2: Test results on ENG and GER data after
model selection.

DATASET ALGO. ACC. REC. PREC. F1

ENG SMM 75.61 46.67 77.78 58.33
SVM 58.54 26.67 40.00 32.00
BT 65.85 33.33 55.56 41.67

GER SMM 70.56 46.81 65.67 54.66
SVM 39.92 100.00 38.68 55.79
BT 72.58 54.26 67.11 60.00

the test datasets. The situation is similar for both
SVM and BT. For instance, BT when trained on
the ENG corpora, achieves an optimal F1-score of
18.67% after N = 100 iterations. For the same N
value, the test performance is 41.67%. We conjec-
ture that this discrepancy is because the books that
we use for training and test are written by differ-
ent authors. While there is some generic informa-
tion about when to insert a paragraph break, it is
often subjective and part of the authors style. To
test this hypothesis, we performed experiments on
the SA and SB corpus, and present results in Table
3. Indeed, the F1-scores obtained on the develop-
ment and test corpus closely match for text drawn
from the same book (whilst exhibiting better over-
all performance), differs slightly for text drawn from
different books by the same author, and has a large
deviation for the GER and ENG corpus.

Table 3: Comparison on various ENG datasets.

DATASET ACC. REC. PREC. F1-SCORE

SB (DEV) 92.81 86.44 92.73 89.47
SB (TEST) 96.30 96.00 96.00 96.00
SA (DEV) 82.24 61.11 82.38 70.17
SA (TEST) 81.03 79.17 76.00 77.55
ENG (DEV) 69.84 18.46 78.63 29.90
ENG (TEST) 75.61 46.67 77.78 58.33

There is one extra degree of freedom that we can
optimize in our model, namely the offset, i. e. the
weight assigned to the constant feature Φ0. After
fixing all the parameters as described above, we vary
the value of the offset parameter and pick the value
that gives the F1-score on the development data. We
choose to use F1-score, since it is the error measure
that we care about. Although this extra optimization

646

leads to better F1-score in German (69.35% as op-
posed to 54.66% where there is no extra tuning of
the offset), it results in a decrease of the F1-score in
English (52.28% as opposed to 58.33%). These re-
sults are reported in Table 4. We found that the dif-
ference of the F1-score of tuning and not tuning the
threshold on the development set was not a good in-
dicator on the usefulness of this extra parameter. We
are now investigating other properties, such as vari-
ance on the development data, to see if the tuning of
the threshold can be used for better APS systems.

Figure 2: Precision-recall curves

Figure 2 plots the precision-recall curve obtained
on various datasets. As can be seen the performance
of our algorithm on the SB dataset is close to opti-
mum, whilst it degrades slightly on the SA dataset,
and substantially on the ENG and GER datasets.
This further confirms our hypothesis that our algo-
rithm excels in capturing stylistic elements from a
single author, but suffers slightly when trained to
identify generic stylistic elements. We note that this
is not a weakness of our approach alone. In fact, all
the other learning algorithms also suffer from this
shortcoming.

Table 4: Performance on ENG test set tuning the
offset for best F1-score on ENG development set.

DATASET ACC. REC. PREC. F1-SCORE

ENG 75.61 46.67 77.78 58.33
ENG +Φ0 39.02 93.33 36.84 52.28
GER 70.56 46.81 65.67 54.66
GER + Φ0 75.40 73.40 65.71 69.35

5 Conclusion

We presented a competitive algorithm for paragraph
segmentation which uses the ideas from large mar-
gin classifiers and graphical models to extend the
semi-Markov formalism to the large margin case.
We obtain an efficient dynamic programming for-
mulation for segmentation which works in linear
time in the length of the sequence. Experimental
evaluation shows that our algorithm is competitive
when compared to the state-of-the-art methods.

As future work, we plan on implementing Φ3 fea-
tures in order to perform an accuracy/time analy-
sis. By defining appropriate features, we can use
our method immediately for text and discourse seg-
mentation. It would be interesting to compare this
method to Latent Semantic Analysis approaches for
text segmentation as studied for example in Bestgen
(2006) and the references thereof.

References

Altun, Y., Hofmann, T., & Johnson, M. (2003a).
Discriminative Learning for Label Sequences via
Boosting. In In Proceedings of NIPS 2003.

Altun, Y., Tsochantaridis, I., & Hofmann, T.
(2003b). Hidden markov support vector ma-
chines. In International Conference on Machine
Learning.

Bestgen, Y. (2006). Improving text segmentation us-
ing latent semantic analysis: A reanalysis of choi,
wiemer-hastings, and moore (2001). Computa-
tional Linguistics, 32, 5–12.

Collins, M. (2002). Discriminative training meth-
ods for hidden markov models. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing.

Filippova, K., & Strube, M. (2006). Using linguisti-
cally motivated features for paragraph segmenta-
tion. In Proceedings of the Conference on Empir-
ical Methods in Natural Language Processing.

Genzel, D. (2005). A paragraph boundary detec-
tion system. In Proceedings of the Conference
on Computational Linguistics and Intelligent Text
Processing.

Genzel, D., & Charniak, E. (2003). Variation of en-
tropy and parse tree of sentences as a function of

647

the sentence number. In Proceedings of the Con-
ference on Empirical Methods in Natural Lan-
guage Processing.

Janssen, J., & Limnois, N. (1999). Semi-markov
models and applications. Kluwer Academic.

Lafferty, J. D., McCallum, A., & Pereira, F. (2001).
Conditional random fields: Probabilistic model-
ing for segmenting and labeling sequence data. In
18th International Conference on Machine Learn-
ing ICML.

Raetsch, G., & Sonnenburg, S. (2006). Large scale
hidden Semi-Markov SVMs for gene structure
prediction. In In Proceedings of NIPS 2006.

Sarawagi, S., & Cohen, W. (2004). Semi-Markov
Conditional Random Fields for Information Ex-
traction. In Advances in Neural Information Pro-
cessing Systems (NIPS).

Schapire, R. E., & Singer, Y. (2000). Boostexter:
A boosting-based system for text categorization.
Machine Learning, 39(2/3), 135–168.

Sporleder, C., & Lapata, M. (2004). Automatic para-
graph identification: A study across languages
and domains. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing.

Sporleder, C., & Lapata, M. (2006). Broad coverage
paragraph segmentation across languages and do-
mains. ACM Trans. Speech Lang. Process., 3(2),
1–35.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max-
margin markov networks. In S. Thrun, L. Saul, &
B. Schölkopf, eds., Advances in Neural Informa-
tion Processing Systems 16.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Al-
tun, Y. (2004). Support vector machine learning
for interdependent and structured output spaces.
In ICML ’04: Twenty-first international confer-
ence on Machine learning. New York, NY, USA:
ACM Press. ISBN 1-58113-828-5.

Tsochantaridis, I., Joachims, T., Hofmann, T., & Al-
tun, Y. (2005). Large margin methods for struc-
tured and interdependent output variables. Jour-
nal of Machine Learning Research.

Zhu, C. (1999). Ut once more: The sentence as the

key functional unit of translation. Meta, 44(3),
429–447.

648

