Recovery of Empty Nodes in Parse Structures

Denis Filimonov!
lUniversity of Maryland
College Park, MD 20742

den@cs.umd.edu

Abstract

In this paper, we describe a new algorithm
for recovering WH-trace empty nodes. Our
approach combines a set of hand-written
patterns together with a probabilistic model.
Because the patterns heavily utilize regu-
lar expressions, the pertinent tree structures
are covered using a limited number of pat-
terns. The probabilistic model is essen-
tially a probabilistic context-free grammar
(PCFG) approach with the patterns acting as
the terminals in production rules. We eval-
uate the algorithm’s performance on gold
trees and parser output using three differ-
ent metrics. Our method compares favorably
with state-of-the-art algorithms that recover
WH-traces.

Introduction

Mary P. Harper 12
2Purdue University
West Lafayette, IN 47907

mharper@casl.umd.edu

the SuperARV representation. The transformer is
quite accurate when operating on treebank parses;
however, trees produced by the parser lack one im-
portant type of information — gaps, particularly WH-
traces, which are important for more accurate ex-
traction of the SuperARVSs.

Approaches applied to the problem of empty
node recovery fall into three categories. Dienes
and Dubey (2003) recover empty nodes as a pre-
processing step and pass strings with gaps to their
parser. Their performance was comparable to
(Johnson, 2002); however, they did not evaluate
the impact of the gaps on parser performance.
Collins (1999) directly incorporated wh-traces into
his Model 3 parser, but he did not evaluate gap in-
sertion accuracy directly. Most of the research be-
longs to the third category, i.e., post-processing of
parser output. Johnson (2002) used corpus-induced

1
In this paper, we describe a new algorithm for repatterns to insert gaps into both gold standard trees

covering WH-trace empty nodes in gold parse tree%nOI parser o_utput. C_ampbell (2004.) developed a
in the Penn Treebank and, more importantly, iset of linguistically motivated hand-written rules for

automatically generated parses. This problem h p insertion. Machlne I_earnlng methodg were em-
only been investigated by a handful of researche%OyeCI by (Higgins, 2003; Levy and Manning, 2004;
and yet it is important for a variety of applications, abbard et al., 2006).

e.g., mapping parse trees to logical representations

ar_1d structured representations for language mod- |, this paper, we develop a probabilistic model
eling. For example, SuperARV language modelg,at yses a set of patterns and tree matching to guide
(LMs) (Wang and Harper, 2002; Wang et al., 2003)¢ insertion of WH-traces. We only insert traces of
which tightly integrate lexical features and syntacti¢,on-nul WH-phrases, as they are most relevant for
constraints, have been found to significantly reducg,, goals. Our effort differs from the previous ap-
word error in English speech recognition tasks. Iroaches in that we have developed an algorithm for
order to generate SuperARV LM training, a state-ofhe insertion of gaps that combines a small set of ex-

the-art parser is used to parse training material anfaessive patterns with a probabilistic grammar-based
then a rule-based transformer converts the parsesigdel.

620

Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pp. 620629, Prague, June 2007. (©2007 Association for Computational Linguistics

2 The Model andb being the span of its ancestor, and a <

. <y<b<ij.
We have developed a set of tree-matching patternsx =¥=0=J

that are applied to propagate a gap down a path faiven this not_ation, our mode_l is tasked to identify
a parse tree. Pattern examples appear in Figure € best location for the gap in a parse tree among
Each pattern is designed to match a subtree (a rob€ alternatives, i.e.,
and one or more levels below that root) and used to
guide the propagation of the trace into one or more
nodes at the terminal level of the pattern (indicated o
using directed edges). Since tree-matching patterdéieregie” represents a gap location in a tree, and
are applied in a top-down fashion, multiple patternd = 77} is the subtree of the parse tree whose
can match the same subtree and allow alternati¥g0t node is the nearest ancestor node dominating
ways to propagate a gap. Hence, we have developt® WH-phrase, excluding the WH-node itself, and
a probabilistic model to select among the alterna#aptype is the type of the gap. In order to simplify
tive paths. We have created 24 patterns for WHN1€ notation, we will omit the root label§ in 7;}
traces, 16 for WHADVP, 18 for WHPP, and 11 forandggz’j’N, implying that they match where appropri-
WHADJP. ate.

To guide this model, we utilize tree-matching pat-
terns (see Figure 1), which are formally defined as
functions:

argmax Pr(ggg’N T, gaptype)
xz,a,b,N

ptrn: 7T x G — ' U {none}

NP where7 is the space of parse treds,s the space
of gap types, andl is the space of gapggb,
Figure 1: Examples of tree-matching patterns andnone is a special value representing failure to
matcH. The application of a pattern is defined as:
Before describing our model, we first introduceapp(ptrn, 7, gaptype) = ptrn(r, gaptype), where
some notation. 7 € T andgaptype € G. We define application of
o T/ is a tree dominating the string of words be-patterns as follows:
tween positiong and; with N being the label of
the root. We assume there are no unary chains likepp(ptrn, T;;, gaptype) — gov:i<a<z <y <b<j
N—-X—...—Y — N (which could be collapsed to
a single nodeV) in the tree, so thaf;}” uniquely

describes the subtree.

e A gap locationg?y" is represented as a tupleBecause patterns are uniquely associated with spe-

(gaptype, ancstr(a,b, N),c,d), wheregaptype cific gap types, we will omiyaptype to simplify the

is the type of the gap, (e.gwhnp for a WHNP notation. Application is a function defined for every
trace),ancstr(a,b, N) is the gap’s nearest ances-pair (ptrn, T;;) with fixed gaptype. Patterns are ap-
tor, with a andb being its span andV being its plied to the root off;;, not to an arbitrary subtree.
label, andc andd indicating where the gap can Consider an example of pattern application shown
be inserted. Note that a gap’s location is specifieith Figure 2. The tree contains a relative clause such
precisely wherc = d. If the gap is yet to be in- that the WHNP-phrasthat was moved from some
serted into its final location but will be inserted|ocation inside the subtree of its sister nc&le
somewhere insidencstr(a,b, N), then we set

c=aandd =b. 2m’ewers3will4tune5in6to73668

app(ptrn, Tyj, gaptype) — gog i <a <z <b<j
app(ptrn, T;;, gaptype) — none

; ab,N ; -
¢ aT]LVCStT(a’ b, N) in the tuple forgxy Is the tree "Modeling conjunction requires an alternative definition for
T patterns:ptrn : 7 x G — Powerset(I') U {none}. For the
bN Ny o sake of simplicity, we ignore conjunctions in the following dis-
i p(ggy |gaptyp58,Tij) is the probability that & cussion, except for in the few places where it matters, since this
gap ofgaptype is located between andy, witha has little impact on the development of our model.

621

Figure 4: Pattern tree

acterized by the same tree of patterns. Hence, we
can represent the space of trees by utilizing a rela-
tively small set of classes of trees that are determined
by their tree of pattern applications.

Now suppose there is a patteff that matches LetIl be the set of all patterns. We define the set
the tree Tyg indicating that the gap is some-Of Pattermns maiching treg; as follows:

where in its subtred3g (will tune in to seg i.e., N .

app(Py1,Ths) — g35. The process of applying pat- M(Tyg) = {P | P € LA app(P, Tj) # none}
terns continues until the patteffy proposes an ex-] o
act location for the gapipp(Py, Trs) = gi5. To enable recursive application:

Figure 2: A pattern application example

app(ptrn, Tpp) ifx <y

b
app(ptrn, gz,) = { none itz =y

A Pattern Chain PC is a sequence of pairs
of patterns and sets of pattern sets, terminated by
$, ie., (%,%,...A’}—zﬁ), whereyi p; € M; C
II. M; = M(Ty), whereT,, is the result of
consequent application of the first— 1 patterns:
app(pi—1, app(pi—2, .-, app(p1, Tap))) = g25, and
whereT, s is the subtree we started witllx in the
example above). We defirtiee application of a pat-
tern chainPC = (%,%,...%ﬁ) to a treeT;;
as:

Figure 3: Another pattern application example
app(PC, T;;j) = app(pn, -..app(p2, app(p1, Tij)))

Suppose that, in addition to the pattern applica-
tions shown in Figure 2, there is one more, namely: . . . , :
app(Ps, Tis) — g3, The sequence of patterns It is important to also define a functlo_n to map
PP ’P 0 056656 an alternative arammaticallhé tree to the set of pattern chains applicable to a
1,72, 75 Prop 9 Yoarticular tree. The pseudocode for this function

plausiple location for the 9ap, as shown in I:iguréc)alled FindPCs appears in Figuré. 5When ap-
3. Notice that the combination of the two sequence@ied toT};, this function returns the set of all pat-

g:%dtﬁ:s :ttgrenet:)efepc?ct)?errnss’rniir? 2?‘3’:3 IgtrlljlcgtE:Z t?rn chains, applications of which would result in
the T sSbtree oncrete gap locations. The algorithm is guaranteed
2z ' to terminate as long as trees are of finite depth and
2.1 Tree Classes eachI patltern rr:woves the gaphlocation down at I(re]ast
: : one level in the tree at each iteration. Using this
The number of unique subtrees that contain WHg - 0o GefineTree Clasy(TC) of a treeTQ,
. L P . : i
phrases is essentially infinite; hence, modeling the%rt]sTC(T-) — FindPCs{},)
directly is infeasible. However, trees with varying v e

details, e.g., optional adverbials, often can be char- 2iist o element means “appenelement to list”.

622

function FindPCs'(;;, PC, allPC's) { function CrossProd?C4, PC5) {
M;; — {P | P €Il A app(P, Ti;) # none} prod — ()
forall P € M;; forall pc; € PC
ggz — app(P, T3;) forallpc; € PCy : prod «— prodU{pc;opc;}
PC — PCo]\/Zj returnprod }
if 2 = y then// g2 is a concrete location function FindPCsT;) {
allPCs «— allPCs U {PC o $} M;; — {P | P €Il A app(P, T;;) # none}
else newPC's « ()
allPC's « FindPCs'((,p, PC, allPC's) forall P € M;;
returnallPC's } PCs —{[]}
function FindPCsT;;) { return FindPCs(;;,], 0) } forall g3y, € app(P, T;)
if x =ythen
Figure 5: Pseudocode for FindPCs forall pc € PCs: pc « pco$
else

PC's + CrossProdPC's,FindPCs{ %))
forall pc € PCs : pc «+— W}j] o pe
newPCs «— newPCsU PC's
returnnewPC's }

In the case of a conjunction, the function Find-
PCs is slightly more complex. Recall that in this
casenpp(P, T;;) produces a set of gapswone The
pseudocode for this case appears in Figure 6.

The setapp(P,T;;) must be ordered, so that
2.2 A Gap Automaton branches of conjunction are concatenated in a well de-
The set of pattern chains constructed by the function| €9 °rder:
FindPCs can be represented apaitern treewith Figure 6: Pseudocode for FindPCs in the case of
patterns being the edges. For example, the patteé njunction
tree in Figure 4 corresponds to the tree displayed in
Figures 2 and 3.

This pattern tree captures the history of gap progowerset as the non-terminals (adding a few more
agations beginning at. Assuming at that point only details like the start symbol) and production rules
patternP; is applicable, subtreB is produced. I, such agP.} — P, {Ps, Ps}. However, for our exam-
yields subtree”, and at that point pattern8; and ple the chain of patterns applied, 7., P, P,,$ could
P5 can be applied, this yields subtréeand exact generate a pattern tree that is incompatible with the
location ' (which is expressed by the terminationoriginal tree. For example:
symbol $), respectively. Finally, patteff, matches
subtreeD and proposes exact gap locatiéh Itis ({Pi}) 2 ({P)) 22 ({5, o)) 22 ((Ps, Pa}) P22 (0)
important to note that this pattern tree can be thought
of as an automaton, witd, B, C, D, E,andF be- which might correspond to something likéhat
ing the states and the pattern applications being tiewers will tune in to expect to seeNote that this
transitions. pattern chain belongs to a differdrge classwhich

Now, let us assign meaning of the statesncidentally would have inserted the gap at a differ-
A, B,C,andD to be the set of matching patterns.ent location (VP see gap).
i.e.,A={P}, B={P2},C={Ps, P}, D={P}, and To overcome this problem we add additional con-
E = F = 0. Given this representation, the patterrstraints to the grammar to ensure that all parses the
chains for the insertion of the gaps in our examplgrammar generates belong to the same tree class.

would be as follows: One way to do this is to include the start state of
i . , S) a transition as an element of the terminal, (—.Léz—}
PY) 3 ({P)) 3B (P, Ps}) 3 ({P)) =225 . .)
(A = (1) = (B Bsd) = (1)) == () Py Thatis, we extend the terminals to include
(P B ((P)) B (s, PsY) P $) the left-hand side of the productions they are emitted
from, e.g.,
With this representation, we can create a regular P,
grammar using patterns as the terminals and their (P} — Iy {Ps, Ps}

623

Ps
{P3,Ps} — W{Rl}

and the sequence of terminals becomes: Pr(g|T) = > Pr(pciT)
P P P. P.
P] (0] (T (AT S | peieX

Note that the grammar is unambiguous. For such

a grammar, the question “what is the probability of §nere t — {pe | app(pe, T) = g%}. Note that
parse tree given a string and grammar” doesn’t mal . € TC(T) by definition7. o

sense;_howgver, the question “WhaF s th_e probabi]ity For our model, we use two approximations. First,
of a string given the grammar” is still valid, and thlswe collapse a tre into its Tree Clasg'C(T), ef-

EI"éctively ignoring details irrelevant to gap insertion:

tive model for gap insertion.

2.3 The Pattern Grammar Pr(pc;|T) = Pr(pc;|TC(T))

Let us define the pattern grammar more rigorously.
Let IT be the set of patterns, adfl C IT be the set
of terminal patternd. Let pset(P) be the set of all

subsets of patterns which include the pattBrn.e., /A\

pset(P) = {v U{P} | v € powerset(Il)} B C

o LetT = {,py | P € I} U{$} be the set of S
terminals, where $ is a special symhol D E F

e Let N = {S}Jpowerset(II) be the set of non- VAR
terminals withS being the start symbol. G H I J K

e Let P be the set of productions, defined as the
union of the following sets: L M N O

LAS =y v € powerset(IN)}. Figure 7: A pattern tree with the pattern chain
~ igu : Wi i
2. {v % p| Pell-IT, ve pset(P)'and,u < A%DGM marEed using bold lines P
powerset(II)}. These are nonterminal transi- 9

tions, note that they emit only non-terminal pat-
terns. Consider the pattern tree shown in Figure 7. The

3. {v— §$ | P e IIandv ¢ pset(P)}. These probability of the pattern chaid BDGM given the
are the terminal transitions, they emit a termi{attern tree can be computed as:
nal pattern and the symbol $.

A v - Ly p | Pell-T,v ¢ Pr(ABDGM,TC(T
pset(P) ‘and Viel.n Hi € powerset(Il)}. Pr(ABDGM|TC(T)) = u Pr(TC(7T))()
This rule models conjunction with branches. NR(ABDGM, TC(T))

2.4 Our Gap Model NR(T'C(T))

(_3iven the_grammar defined_i_n Fhe previous supsewhere NRTC(T)) is the number of occurrences
tion, we will define a probabilistic model for gap iN- of the tree clasg’C(T) in the training corpus and

sertion. Recall that our goal is to find: NR(ABDGM, TC(T)) is the number cases when
argmaz Pr(g®|T) the pattern chaisd BDG M leads to a correct gap in
,a,b trees corresponding to the tree cl&s§' (7). For

Just like the probability of a sentence is obtained binany tree classes, NRC(T')) may be a small
summing up the probabilities of its parses, the probgiumber or even zero, thus this direct approach can-
ability of the gap being a2 is the sum of proba- not be applied to the estimation &% (pc;|TC(T)).
bilities of all pattern chains that yielgt®. Further approximation is required to tackle the spar-

BT . sity issue.
Patterns that generate exact position for a gap.

“Symbol $ helps to separate branches in strings with con- In the following diSCUSSiOmX_Y will denqte
junction. an edge (pattern) between vertic&s and Y in

624

the pattern tree shown in Figure 7. Note thaas follows:

Pr(ABDGM|TC(T)) can be represented as:
Pr(pe;|TC(T)) = Pr(pc;|G)
Pr(AB|TC(T), A) x Pr(BD|TC(T), AB)x

xPr(DGITC(T), ABD) x Pr(GM|TC(T), ABDG) -\ hare; is a PCFG model based on the grammar

. . described above.
We make an independence assumption, specifi-

cally, that Pr(BD|TC(T), AB) depends only on Pr(pc|G) = H Pr(prod;|G)
statesB, D, and the edge between them, not on prod; €P(pc;)

the whole pattern tree or the edges abdei.e.,])
Pr(BD|TC(T), AB) ~ Pr(BD, D|B). Note that whgre_P(pci) is the parse of the pattern cham:i
this probability is equivalent to the probability of aWhich is @ string of terminals afr. Combining the

productionPr(B 5D D) of a PCFG. formulae:

Recall that the meaning assigned to a state Pr(g®|T) ~ Z Pr(pci|G)
in pattern grammar in Section 2.2 is the set of peeT
patterns matching at that state. Thus, accord-

ing to that semantics, only the edges displayefiinally, sincePr(TC(T)|G) is a constant fof’,

bold in Figure 8 are involved in computation of
g P argmaz Pr(g®|T) ~ argmax Z Pr(pc|G)

Pr(B B D). Written in the style we used for z.ap Tab ey

our grammar, the production {88D, BE, BF'} —

L{DG DH} . .

{BD,BE,BF} ’ ' To handle conjunction, we must express the fact
that pattern chains yield sets of gaps. Thus, the goal

A becomes:
B C argmaz Pr({gitst, ... gann }|T)
(xl7a17b1)r“7(xn’an7bn)
Dl E F

N Pr({gih, ... gitWT) = > Pr(pc|T)

G H I J K z1a12 02 fann
’\ pCiGT
L M N O where YT = {pc | app(pe,T) =
{gaL ..., g2t»}}. The remaining equations

Figure 8: The context considered for estimation oére unaffected.
the probability of transition fronB to D
2.5 Smoothing

Pattern trees are fairly shallow (partly becausgven for the relatively small number of patterns,
many patterns cover several layers in a parse tréige number of non-terminals in the grammar can
as can be seen in Figures 1 and 2); therefore, thgtentially be large (™). This does not happen
context associated with a production covers a godgl practice since most patterns are mutually exclu-
part of a pattern tree. Another important observasive. Nonetheless, productions, unseen in the train-
tion is that the local configuration of a node, whiching data, do occur and their probabilities have to be
is described by the set of matching patterns, is thestimated. Rewriting the probability of a transition
most relevant to the decision of where the gap is tp,(4 —, % B) asP(4,a, B), we use the following in-
be propagated This is the reason why the states argerpolation:
represented this way.)

Formally, the second approximation we make is P(4,a,B) = MP(A,a, B) + A2P(4, a)

+AsP(A, B) + MP(a, B) + AsP(a)
We have evaluated a model that only uses

Pr(BD|{BD,BE,BF}) for the probability of taking .
BD and found it performs only slightly worse than the modelWe estimate the parameters on the held out data

presented here. (section 24 of WSJ) using a hill-climbing algorithm.

625

3 Evaluation remove the other gap types from both the gold trees
and the output of their algorithms. Note that Gab-
3.1 Setup bard et al.’s algorithm requires the use of function
We compare our algorithm under a variety of conditags, which are produced using a modified version
tions to the work of (Johnson, 2002) and (Gabbardf the Bikel parser (Gabbard et al., 2006) and a sep-
et al., 2006). We selected these two approaches rate software tool (Blaheta, 2003) for the Charniak
cause of their availabili In addition, (Gabbard et parser output.
al., 2006) provides state-of-the-art results. Since we For our algorithm, we do not utilize function tags,
only model the insertion of WH-traces, all metricsbut we automatically replace the tags of auxiliary
include co-indexation with the correct WH phraseserbs in tensed constructions wiuX prior to in-
identified by their type and word span. serting gaps using tree surgeon (Levy and Andrew,
We evaluate on three metrics. The first metric2006). We found that Johnson’s algorithm more
which was introduced by Johnson (2002), has beétcurately inserts gaps when operating on auxified
widely reported by researchers investigating gap irfrees, and so we evaluate his algorithm using these
sertion. A gap is scored as correct only when it hagodified trees.
the correct type and string position. The metric has In order to assess robustness of our algorithm, we
the shortcoming that it does not require correct agvaluate it on a corpus of a different genre — Broad-
tachment into the tree. cast News Penn Treebank (BN), and compare the re-
The second metric, which was developed bgult with Johnson’s and Gabbard’s algorithms. The
Campbell (2004), scores a gap as correct only wheédN corpus uses a modified version of annotation
it has the correct gap type and its mother node ha@siidelines, with some of the modifications affecting
the correct nonterminal label and word span. Agap placement.
Campbell points out, this metric does not restrict th@reepank 2 guidelines (WSJ style):
position of the gap among its siblings, which in mos{SBAR (WHNP-2 (WP whom))
cases is desirable; however, in some cases (e.g., doufS (\(/’\ép'(f/%‘]D (PRP d;hey))
ble object constructions), it does not correctly detect (S (NP-SBJ (-NONE- *T*-2))
errors in object order. This metric is also adversely (NP-PRD (NNS exploiters))))))
affected by incorrect attachments of optional confreebank 2a guidelines (BN style):
stituents, such as PPs, due to the span requiremerf8BAR-NOM (WHNP-1 (WP what))
To overcome the latter issue with Campbell’'s met- (S(V,(DNF()\',%%J C(;EP they))
ric, we propose to use a third metric that evaluates (NF(>é2C(-No(NE- *T*-l()))
gaps with respect to correctness of their lexical head, -CLR (NP-SBJ (-NONE- *PRO*-2
type of the mother node, and the type of the co- (NP-PRD (DT an) (NN epidemic))))))
indexed wh-phrase. This metric differs from thatSince our algorithms were trained on WSJ, we ap-
used by Levy and Manning (2004) in that it countgly tree transformations to the BN corpus to convert
only the dependencies involving gaps, and so it rephese trees to WSJ style. We also auxify the trees as
resents performance of the gap insertion algorithmescribed previously.
more directly.
We evaluate gap insertion on gold trees from se@2 Results

tion 23 of the Wall Street Journal Penn Treebankab|e 1 presents gap insertion F measure for John-
(WSJ) and parse trees automatically produced usirgn’s (2002) (denoted J), Gabbard’s (2006) (denoted
the Charniak (2000) and Bikel (2004) parsers. Thesg), and our (denoted Pres) algorithms on section 23
parsers were trained using sections 00 through 22 gbld trees, as well as on parses generated by the
the WSJ with section 24 as the development set. Charniak and Bikel parsers. In addition to WHNP
Because our algorithm inserts only traces of norand WHADVP results that are reported in the liter-

empty WH phrases, to fairly compare to Johnson'sture, we also present results for WHPP gaps even
and Gabbard’s performance on WH-traces alone, WRough there is a small number of them in section
23 (i.e., 22 gaps total). Since there are only 3 non-

8Johnson’s source code is publicly available, and Ryan Gah

bard kindly provided us with output trees produced by his sysempty WHADJP phrases in section 23, we omit

tem. them in our evaluation.

626

Gold Trees Charniak Parser Bikel Parser

Metric J G Pres J G Pres J G Pres
WHNP Johnson || 94.8 | 90.7 | 979 89.8| 86.3| 915 90.2 | 86.8| 92.6
Campbell || 94.81 97.0] 99.1|| 81.9| 83.8| 835 80.7| 815 82.2
Head dep]|| 94.8 97.0| 99.1(888 90.6 | 91.0|| 89.1 | 91.4| 92.3

WHADVP | Johnson || 75.5] 91.4] 965 61.4] 78.0| 80.0] 61.0] 779 77.2
Campbell || 745] 89.1] 95.0(| 61.4| 71.7| 7841 60.0| 71.5| 74.8
Head dep|| 75.5| 89.8| 958 64.4] 78.0| 84.7] 63.0| 77.1| 80.3
WHPP Johnson [581 N/R | 727 35.7] N/R [55.0]] 429] N/R | 53.7

Campbell || 51.6 | N/R | 86.4 | 28,6 | N/R | 60.0 || 35.7| N/R | 63.4
Head dep|| 51.6 | N/R | 86.4 [35.7 N/R | 70.0|| 35.7| N/R | 73.2

Table 1: F1 performance on section 23 of WSJ (N/R indicates not reported)

Compared to Johnson’s and Gabbard'’s algorithnshow a similar degradation due to parse error across
our algorithm significantly reduces the error orthe board. We are reluctant to draw conclusions for
gold trees (table 1). Operating on automaticallghe metrics on WHPPs; however, it should be noted
parsed trees, our system compares favorably dhat the position of the PP should be less critical for
all WH traces, using all metrics, except for twoevaluating these gaps than their correct attachment,
instances: Gabbard’s algorithm has better perfosuggesting that the head dependency metric would
mance on WHNP, using Cambpell’s metric and treesiore accurately reflect the performance of the sys-
generated by the Charniak parser by 0.3% and dam for these gaps.

WHADVP, using Johnson’s metric and trees pro- Campbell’s metric has an interesting property: in
duces by the Bikel parser by 0.7%. However, wearse trees, we can compute the upper bound on re-
believe that the dependency metric is more appropi¢all by simply checking whether the correct WH-
ate for evaluation on automatically parsed trees b@hrase and gap’s mother node exist in the parse tree.
cause it enforces the most important aspects of tr&e present recall results and upper bounds in Table
structure for evaluating gap insertion. The relativel\3. Clearly the algorithms are performing close to the
poor performance of Johnson’s and our algorithmgpper bound for WHNPs when we take into account
on WHPP gaps compared that on WHADVP gapghe impact of parse errors on this metric. Clearly
is probably due, at least in part, to the significantlyhere is room for improvement for the WHPPs.
smaller number of WHPP gaps in the training corpus

and the relatively wider range of possible attachment Metric J G | Pres

: e WHNP Johnson || 88.0 | 90.3 | 92.0
sites for the prepositional phrases. Campbell ([882 94.0 953

Table 2 displays how well the algorithms trained Head dep|| 88.3 | 94.0 | 95.3
on WSJ perform on BN. A large number of the er- WHADVP [Johnson [76.4] 92.0] 94.3
rors are due td"RAGs which are far more com- Campbell || 76.3 | 88.2 | 92.4

; . Head dep|| 76.3| 88.5 | 925
mon in the speech corpus than in WSJ. WHPP and <gapp Johnson 1566 T NR 757

WHADJP, although more rare than the other types, | Campbell|| 60.4 | N/R | 91.9 |
are presented for reference. Head dep]] 60.4[N/R [91.9

WHADJP | Johnson || N/R | N/R | 89.8
. Campbell|[| N/R | N/R | 85.7
3.3 Error Analysis Head dep|| N/R | N/R | 85.7

Itis clear from the contrast between the results based Taple 2: F1 performance on gold trees of BN
on gold standard trees and the automatically pro-

duced parses in Table 1 that parse error is a major | aqdition to parser errors, which naturally have
source of error. Parse error impacts all of the mefe most profound impact on the performance, we

rics, but the patterns of errors are different. For WHyqng the following sources of errors to have impact
NPs, Campbell’s metric is lower than the other twqy, our results:

across all three algorithms, suggesting that this met-

ric is adversely affected by factors that do not ime Annotation errors and inconsistency in PTB,
pact the other metrics (most likely the span of the which impact not only the training of our system,
gap’s mother node). For WHADVPs, the metrics but also its evaluation.

627

Charniak Parsefl J | G | Pres| UB We believe that lexicalizing the model by adding
WHNP 810 82.8 | 835 84.0 . .)
WHADVP 614 | 7171 784 | 81.1 information about lexical heads of the gaps may re-
WHPP 28.6 | N/R | 60.0 | 86.4 solve some of the errors. For example:
Bikel Parser J G Pres| UB
WHNP 77.0] 805 | 81.5 | 82.0 (SBAR (WHADVP-3 (WRB when))
WHADVP 47.2 | 70.1 | 74.8 | 78.0 S (\(/'\I‘DP (\(/'\I'B'\SP Cotng(;fss))
’ . ' ' wante
WHPP 22.7| N/R | 59.1 | 81.8 (S (VP (TO 1)

VP (VB k
Table 3: Recall on trees produced by the Charniak (A[()Vp ((_NONné_W 1T*_)3)))))))

and Bikel parsers and their upper bounds (UB)
(SBAR (WHADVP-1 (WRB when))
(S (NP (PRP it)
(VP (AUX is)

1. There are some POS labeling errors that con- " yp (vBN expected)
fuse our patterns, e.g., (S (VP (TO to)
(SBAR (WHNP-3 (IN that)) (VP (VB deliver) ...
(S (NP-SBJ (NNP Canada)) (ADVP (-NONE- *T*-1)))))))))
VP (NNS t _ .
(((Np (_i,xgﬁr;) *T*.3)) These sentences have very similar structure, with
(PP ..00) two potential places to insert gaps (ignoring re-

ordering with siblings). The current model inserts

2. Some WHADVPs have gaps attached in th e gaps as followswhen Congress (VP wanted (S

wrong places or do not have gaps at all, e.g.,

(SBAR (WHADVP (WRB when)) to know) gap)and when it is (VP expected (S to
(S (NP (PRP he)) deliver) gap) making an error in the second case
(VP ((\F/,%D(Iﬁ”iggd) (partly due to the bias towards shorter pattern chains,
(NP ...)) typical for a PCFG). Howevedeliveris more likely
(ADVP (NP (CD two) to take a temporal modifier th&mow
33 ,étNe'r\;)s)))days)) In future work, we will investigate methods for

adding lexical information to our model in order to
3. PTB annotation guidelines leave it to annotalmprove the performance on WHADVPs and WH-
tors to decide whether the gap should be af_)PS. In addition, we will investigate methods for
tached at the conjunction level or inside itsautomatically inferring patterns from a treebank cor-
branches (Bies et al., 1995) leading to inconPUs to support fast porting of our approach to other
sistency in attachment decisions for adverbidRrnguages with treebanks.

gaps.
5 Acknowledgements
e Lack of coverage: Even though the patterns we

use are very expressive, due to their small numb&ve would like to thank Ryan Gabbard for provid-
some rare cases are left uncovered. ing us output from his algorithm for evaluation. We

« Model errors: Sometimes despite one of the applf¥ould aiso like to thank the anonymous reviewers

cable pattern chains proposes the correct gap, iffy invaluable comments. This material is based
probabilistic model chooses otherwise. We be!PON work supported by the Defense Advanced Re-

lieve that a lexicalized model can eliminate mosf€arch Projects Agency (DARPA) under Contract

of these errors. No. HRO0011-06-C-0023. Any opinions, findings
and conclusions or recommendations expressed in
4 Conclusions and Future Work this material are those of the authors and do not nec-

] o)) essarily reflect the views of DARPA.
The main contribution of this paper is the de-

velopment of a generative probabilistic model for

gap insertion that operates on subtree structureReferences
Our model achieves state-of-the-art performance,
demonstrating results very close to the upper bou
on WHNP using Campbell’'s metric. Performance
for WHADVPs and especially WHPPs, however,
has room for improvement. D. M. Bikel. 2004. On the Parameter Space of Gen-

Bies, M. Ferguson, K. Katz, and R. MaclIntyre. 1995.
Bracketing guidelines for treebank Il style Penn Tree-
bank project. Technical report.

628

erative Lexicalized Statistical Parsing ModelBh.D.
thesis, University of Pennsylvania.

D. Blaheta. 2003. Function Tagging Ph.D. thesis,
Brown University.

R. Campbell. 2004. Using linguistic principles to re-
cover empty categories. FProceedings of the Annual
Meeting of the Association for Computational Linguis-
tics.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proceedings of the North American Chapter of the
Association for Computational Linguistics

M. Collins. 1999. Head-driven Statistical Models for
Natural Language Parsing Ph.D. thesis, University
of Pennsylvania.

P. Dienes and A. Dubey. 2003. Antecedent recovery:
Experiments with a trace tagger. Rroceedings of
the 2003 Conference on Empirical Methods in Natural
Language Processing

R. Gabbard, S. Kulick, and M. Marcus. 2006. Fully pars-
ing the Penn Treebank. IRAroceedings of the North
American Chapter of the Association for Computa-
tional Linguistics

D. Higgins. 2003. A machine-learning approach to the
identification of WH gaps. IiProceedings of the An-
nual Meeting of the European Chapter of the Associa-
tion for Computational Linguistics

M. Johnson. 2002. A simple pattern-matching algorithm
for recovering empty nodes and their antecedents. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics

R. Levy and G Andrew. 2006. Tregex and Tsurgeon:
Tools for querying and manipulating tree data struc-
tures. InProceedings of LREC

R. Levy and C. Manning. 2004. Deep dependencies
from context-free statistical parsers: Correcting the
surface dependency approximation.Rroceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics

W. Wang and M. P. Harper. 2002. The SuperARV lan-
guage model: Investigating the effectiveness of tightly
integrating multiple knowledge sources in language
modeling. InProceedings of the Empirical Methods
in Natural Language Processing

W. Wang, M. P. Harper, and A. Stolcke. 2003. The ro-
bustness of an almost-parsing language model given
errorful training data. IrProceedings of the IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing

629

