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ID 1 2 3 4 8
AbStI’aCt kare-ha, ohiru-ni piza-to salada-wo tabeta.

(he-nominative) (at lunchtime) (pizza-and) (salad-accusative) (ate)
Modifiee 5 5 4 5 -

We propose a novel method for Japanese de-  Trensition: He ate pizza and salad at lunchi

pendency analysis, which is usually reduced 1/5|2\4

to the construction of a dependency tree. In |

deterministic approaches to this task, depen-
dency trees are constructed by series of ac-
tions of attaching a bunsetsu chunk to one of

i 3 i
"..Dependency Tree -

Figure 1: Example of a dependency tree

the nodes in the tree being constructed. Con-
ventional techniques select the node based
on whether the new bunsetsu chunk and each
node in the trees are in a parent-child rela-

tion or not. However, tree structures include

relations between two nodes other than the
parent-child relation. Therefore, we use

ancestor-descendant relations in addition to
parent-child relations, so that the added re-
dundancy helps errors be corrected. Ex-
perimental results show that the proposed
method achieves higher accuracy.

rection from the modifier to the modifiee. All de-
pendencies in a sentence are represented by a de-
pendency tree, where a node indicates a chunk, and
nodeB is the parent of nodd when chunkB is the
modifiee of chunk4. Figure 1 shows an example of

a dependency tree. The task of Japanese dependency
analysis is to find the modifiee for each chunk in a
sentence. The task is usually regarded as construc-
tion of a dependency tree.

In primitive approaches, the probabilities of de-
pendencies are given by manually constructed rules
and the modifiee of each chunk is determined. How-
ever, those rule-based approaches have problems in
Japanese dependency analysis has been recognizederage and consistency. Therefore, a number of
as one of the basic techniques in Japanese procesttistical techniques using machine learning algo-
ing. A number of techniques have been proposeithms have recently been proposed. In most con-
for years. Japanese dependency is usually repneentional statistical techniques, the probabilities of
sented by the relation between phrasal units calletependencies between two chunks are learned in the
‘bunsetsu’ chunks, which are the smallest meanindearning phase, and then the modifiee of each chunk
ful sequences consisting of an independent word anmgl determined using the learned models in the anal-
accompanying words (e.g., a noun and a particleysis phase. In terms of dependency trees, the parent
Hereafter, a ‘chunk’ means a bunsetsu chunk in thisode of each node is determined based on the likeli-
paper. The relation between two chunks has a ditess of parent-child relations between two nodes.

T Alihire Tar We here take notice of the characteristics of de-
pendencies which cannot be captured well only by

1 Introduction

“Akihiro Tamura belonged to Tokyo Institute of Technology
when this work was done.
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the parent-child relation. Consider, for example2 Conventional Statistical Methods for
Figure 1. In Figure 1, ID3(pizza-and) and ID Japanese Dependency Analysis
4(salad-accusative) are in a parallel structure. In the
structure, node is a child of nodes(ate), but node First, we describe general formulation of the
3is not a child of5, although3 and4 are both foods Probability model for dependency analysis. We
and should share a tendency of being subcategorizéinote a sequence of chunkspi, s, ..., bp.",
by the verb “eat”. A number of conventional model?y B, and a sequence of dependency pat-
use the pair of3(pizza-and) and(ate) as a nega- termns, ‘Dep(1), Dep(2), ..., Dep(m)”, by D, where
tive instance becauskdoes not modifys. Conse- Dep(i) = j means thak; modifiesb;. Given the se-
quently, those models cannot learn and use the sulienceB of chunks as an input, dependency analy-
categorization preference of verbs well in the parapis is defined as the problem of finding the sequence
lel structures. D of the dependency patterns that maximizes the
conditional probabilityP(D | B). A number of
the conventional methods assume that dependency

We focus on ancestor-descendant relations to .
compensate for the weakness. Two nodes are in t éobabllmes are independent of each other and ap-
P ' imateP(D | B) with [[™7! P(Dep(i) | B).

. proxi
ancestor-descendant relation when one of the t ) : . . g
i . (Dep(i) | B) is estimated using machine learn-
nodes is included in the path from the root node tQ .
ing algorithms. For example, Haruno et al. (1999)
the other node. The upper node of the two nodes o : .
. ) , used Decision Trees, Sekine (2000) used Maximum
is called an ‘ancestor node’ and the lower node

‘descendant node’. When the ancestor-descend Ertltropy Models, Kudo and Matsumoto (2000) used

relation is used, both of the above two instancesu';ltpotr:]Vec'[otr It\)/llachmf[ahs ' dis C ded Chunki
for nodes3 and4 can be considered as positive in- nother No'able MEthod 1S -ascade ek

stances. Therefore, it is expected that the ancestM—oge: by KUdtO and. Matsurr:jotkc)) (2092)' ;ntr':he;rl
descendant relation helps the algorithm capture t 0d€l, a sentence 1S parsed by series of he 1ok

characteristics that cannot be captured well by thgwélr?? pr?r:: e?sﬁs: .Whet::er I(<) r not :h © (iu;rentcclhfu_r;k
parent-child relation, modifies the following chunk is estimated, and if i

is so, the two chunks are merged together. Sassano
. . (2004) parsed a sentence efficiently using a stack.
We aim to improve the performance of Japanesghe stack controls the modifier being analyzed.
dependency analysis by taking the ancestor- thage conventional methods determine the mod-
descendant relation into account. In exploitingaa of each chunk based on the likeliness of de-
ancestor-descendant information, it came to us thBEndencies between two chunks (in terms of depen-
redundant information is effectively utilized in aygncy tree, the likeliness of parent-child relations
coding problem in communications (Mackay, 2003)peqveen two nodes). The difference between the
Therefore, we propose a method in which the probsgentional methods and the proposed method is
lem of determining the modifiee of a chunk is réyh4t the proposed method determines the modifiees

garded as a kind of a coding problem: dependency 5,504 on the likeliness of ancestor-descendant re-

expressed as a sequence of values, each of which ;s in addition to parent-child relations, while

notes whetheraparent-child relation or an ancestqiia conventional methods tried to capture charac-
descendant relation holds between two chunks.  tgyistics that cannot be captured by parent-child re-
lations, by adding ad-hoc features such as features
In Section 2, we present the related work. In Semf “the chunk modified by the candidate modifiee”
tion 3, we explain our method. In Section 4, we deto features of the candidate modifiee and the mod-
scribe our experiments and their results, where wiéier. However, these methods do not deal with
show the effectiveness of the proposed method. kncestor-descendant relations between two chunks
Section 5, we discuss the results of the experimentirectly, while our method uses that information di-
Finally, we describe the summary of this paper ancectly. In Section 5, we empirically show that our
the future work in Section 6. method uses the ancestor-descendant relation more
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effectively than the conventional ones and explainan be determined based only on the relation be-
that our method is justifiable in terms of a codingween ID1 and5. On the other hand, when using the

problem. ancestor-descendant relation, the modifiee cannot be
determined based only on the relation between ID
3 Proposed Method 1 and5. This is because if one of IR, 3 and4

is the modifiee of ID1, the relation between 1D

The methods explained in this section construct and 5 is ancestor-descendant. IDis determined
dependency tree by series of actions of attachings the modifiee of I only after the relations with

a node to one of the nodes in the trees being codach node of ID2, 3 and 4 are recognized not to
structed. Hence, when the parent node of a certajie ancestor-descendant. An elegant way to use the
node is being determined, it is required that the pagncestor-descendant relation, which we propose in
ent node should already be included in the tree bell’tg|s paper, is to represent a dependency as a code-
constructed. To satisfy the requirement, we note thord where each bit indicates the relation with a
characteristic of Japanese dependencies: dependgfde in the tree, and determine the modifiee based

cies are directed from left to right. (i.e., the paron the relations with every node in the tree (for de-
ent node is closer to the end of a sentence than iils to the next section).

child node). Therefore, our methods analyze a sen- _ _ _
tence backwards as in Sekine (2000) and Kudo aril Methods with a single relation: PARENT
Matsumoto (2000). Consider, for example, Figure =~ METHOD and ANCESTOR METHOD

1. First, our methods determine the parent node ¢figure 2 shows the pseudo code of the algo-
ID 4(salad-accusative), and then that of3(pizza-  rithm to construct a dependency tree using PAR-
and) is determined. Next, the parent node ot ENT METHOD or ANCESTOR METHOD. As
lunchtime), and finally, that of ID.(he-nominative) mentioned above, the two methods analyze a sen-
is determined and dependencies in a sentence ag@ce backwards. We should note thatde; to
identified. Please note that our methods are applicayde,, in the algorithm respectively correspond to
ble only to dependency structures of languages theife |ast chunk to the first chunk of a sentence.
have a consistent head-direction like Japanese. MODEL _PARENT (uode;,node;) indicates the pre-
We explain three methods that are different irdiction whethernode; is the parent ofnode; or
the information used in determining the modifiee ofiot, which is the output of the learned model.
each chunk. In Section 3.1, we explain PARENTVMODEL_ANCESTOR@ode;,node;) indicates the
METHOD and ANCESTOR METHOD, which de- prediction whethenode; is the ancestor afode; or
termine the modifiee of each chunk based on theot. String_output indicates the sequence of the
likeliness of only one type of the relation. PARENT1 predictions stored in step 3. The codeword denoted
METHOD uses the parent-child relation, which isby string[k] is the binary sequence given to the ac-
used in conventional Japanese dependency anafion thatnode; is attached taodey,. Parent[node;)
sis. ANCESTOR METHOD is novel in that it indicates the node to whichode; is attached, and
uses the ancestor-descendant relation which has mk indicates a distance function. Thus, our method
been used in the existing methods. In Sectiopredicts the correct actions by measuring the dis-
3.2, we explain our method, PARENT-ANCESTORtance between the codewostring[k] and the pre-
METHOD, which determines the modifiees basedicted binary (later extended to real-valued) se-
on the likeliness of both ancestor-descendant anfliencestring_output. In other words, our method
parent-child relations. selects the action that is the closest to the outputs of
When the modifiee is determined using thehe learned model.
ancestor-descendant relation, it is necessary to takeBoth models are learned from dependency trees
into account the relations with every node in the treggiven as training data as shown in Figure 3. Each
Consider, for example, the case that the modifieelation is learned from ordered pairs of two nodes
of ID 1(he-nominative) is determined in Figure 1l.in the trees. However, our algorithm in Figure 2
When using the parent-child relation, the modifieg¢argets at dependencies directed from left to right.
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Lfori=1,2,..,ndo descendant relation are used in PARENT METHOD
2: forj=1,2,...,i—1do

3 resultparentj]=MODEL_PARENT(uode; node,) and ANCESTOR METHOD respectively.
(in case of PARENT and PARENT-ANCESTOR METHOD)
3:  resultancestor[[=MODEL ANCESTOR@ode;,node;) Our methods regard a dependency between the

gf‘ case of ANCESTOR and PARENT-ANCESTOR METHOD)  target node and its parent node as a set of relations
5 I?’grer[MOde,;]Zargmmk Dis(string|k], string_output) between the target node and each node in the tree.
6:end Each relation corresponds to one bit, which becomes
1 if the relation holds—1 otherwise. For example,

a sequencé—1,—1,—1, 1) represents that the par-
ent ofnodes is nodes in PARENT METHOD (Fig-

ure 4), since the relation holds only between nodes

Figure 2: Pseudo code of PARENT, ANCESTOR
and PARENT-ANCESTOR METHODS

MODEL_PARENT 4 and 5.
1 positive(4 instances) :(1,2),(1,4),(2,3),(2,5)
negative(6 instances):(1,3),(1,5),(2,4),(3,4), i .
%\ 4 |:> oo ANCESTOF({3,5),(4,5) First, the learned model judges whether the tar-
3¢ %5 positive(® nstances) (1L2)(L3)ALALLS), get node and each node in the current tree are in
(2,3),(2,5) i i .
negative(4 instances):(2,4),(3,4),(3,5),(4,5) a certain relatlon or nOt’ PARENT METHOD uses

MODEL_PARENT as the learned model and AN-

Figure 3: Example of training instances CESTOR METHOD uses MODEIANCESTOR.
The sequence of the — 1 predictions by the learned
model is stored intring_output.

Therefore, the instances with a right-to-left depen- ¢ codewordstring|k] is the binary £1 or 1)

dency are excluded from the training data. For exsequence that is to be output when the target node
ample, the instance withoded being the candi- s attached to thewodey,. In Figures 4 and 5, the
date parent (or ancestor) abdel is excluded in  get of string[k] (for nodes) is in the dashed square.
Figure 3. MODELPARENT uses ordered pairs g, example string[2] in ANCESTOR METHOD

of a parent node and a child nod_e as positiv_e irk’Figure 5)is(1,1, —1, —1) since nodes 1 and 2 are
stances and the other ordered pairs as negative Wiz ancestor ofiodes if nodes is attached taodes.
stances. MODELANCESTOR uses ordered pairs

of an ancestor node and a descendant node asNext, among the set oftring[k|, the codeword
positive instances and the other ordered pairs #isat is the closest to thering_output is selected.
negative instances. From the above descriptiohhe target node is then attached to the node cor-
and Figure 3, the number of training instancesesponding to the selected codeword. In Figure 4,
used in learning MODELPARENT is the same the string[4],(—1,—1,—1,1), is selected and then
as the number of training instances used in learmodes is attached taodey.

ing MODEL_ANCESTOR. However, the number of ) )
positive instances in learning MODEANCESTOR ~ Japanese dependencies have the non-crossing
is larger than in learning MODEPARENT be- constraint: dependencies do not cross one another.

cause the set of parent-child relations is a subset & Satisfy the constraint, we remove the nodes that
ancestor-descendant relations will break the non-crossing constraint from the can-

As mentioned above, the two methods analyze (gdates of a parent node in step 5 of the algorithm.

sentence backwards. We should note thate; to PARENT METHOD differs from conventional
nodey, in the algorithm respectively correspond tomethods such as Sekine (2000) or Kudo and Mat-
the last chunk to the first chunk of a sentence. sumoto (2000), in the process of determining the
Next, we illustrate the process of determining thgparent node. These conventional methods select the
parent node of a certain nodede,, (with Figures 4 node given byargmax;P(node; | node;) as the
and 5). Hereafterpode,, is called atarget node parent node ofiode;, setting the beam width to 1.
The parent node is determined based on the likétowever, their processes are essentially the same as
liness of a relation; the parent-child and ancestothe process in PARENT METHOD.
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node1
node2 nodes
nodes o target node : nodes
Step2,3,4 Sequences which can be got

(EORCDECD LGS R

MODEL _ istringf1] 1 -1 -1
PARENT i stringf2] -1 1 -1
istringf37 -1 -1 1

C 1 1

-1 =1 I 1

string_output: -1 -1 -1 1

Figure 4:
METHOD

nodel
node2

nodes

in judgment

(1,5 (2,5) 3,5) (4,5)

P
)

 stringf4] -1

Step5 : nodes is attached to node4

Analysis example using PARENT

node4
o target node : nodes

Step2,3,4

Sequences which can be got

in judgment
(1,5) (2,5) (3,5) (4,5)

MODEL _ istringfz] 1 -1 -1 -1
ANCESTOR istringf2] 11 -1 -1
: string/3] 1 1 1 -1
(Cstringf4 1111 )

1 1 1 i
string_output: 1 -1 1 1

(1,5) (2,9) 3,5) (4,9)

Step5 : nodes is attached to node4

Figure 5. Analysis example using ANCESTO
METHOD

3.2 Proposed method: PARENT-ANCESTOR
METHOD

node1

node2 nodes4
nodez o target node : nodes
Step2,34
(1,5) (2,5) (3,5) (4,9) (1,5) (2,5) 3,5 (4,9)

MODEL_ MODEL_
PARENT ANCESTOR

I I I 1 I 0 T 1

101 1 1 1 -1 1 1

string_output: -1 -1 1 1 1 -1 1 1 «—— Stepd:nodes is
; . attached to node4
Sequences which can be got in judgment

Parent-Child Ancestor-Descendant
(1,9 (2,5) (3,5) (4,9) (1,3) (2,5) (3,9) (4,5)
istringfl] 1 -1 - -1 - - -
i stringf2] -1 1 -1
istring/3] -1 -1 1 -1 1 1
[ stringf4] -1 -1 -1 1 1 -1

.
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Figure 6: Analysis example using PARENT-
ANCESTOR METHOD

4 Experiment

4.1 Experimental settings

We used Kyoto University text corpus (Version
2.0) (Kurohashi and Nagao, 1997) for training and

Rtest data. The articles on January 1st through 8th

(7,958 sentences) were used as training data, and the
articles on January 9th (1,246 sentences) as test data.
The dataset is the same as in leading works (Sekine,
2000; Kudo and Matsumoto, 2000; Kudo and Mat-
sumoto, 2002; Sassano, 2004).

We used SVMs as the algorithm of learning and
analyzing the relations between nodes. We used the
third degree polynomial kernel function and set the

The proposed method determines the parent nodesidft margin parametef’ to 1, which is exactly the

a target node based on the likeliness of ancest@ame setting as in Kudo and Matsumoto (2002). We
descendant relations in addition to parent-childan obtain the real-valued score in step 3 of the al-
relations. The use of ancestor-descendant relgerithm, which is the output of the separating func-
tions makes it possible to capture the charactetion. The score can be regarded as likeliness of the
istics which cannot be captured by parent-childwo nodes being in the parent-child (or the ancestor-
relations alone. The pseudo code of the prodescendant). Therefore, we used the sequence of
posed method, PARENT-ANCESTOR METHOD,the outputs of SVMs astring_output, instead of

is shown in Figure 2. MODELIPARENT and converting the scores into binary values indicating
MODEL_ANCESTOR are learned as described irwhether a certain relation holds or not.

Section 3.1. String_output is the concatenation  Two feature sets are used: static features and dy-
of the predictions by both MODEIPARENT and namic features. The static features used in the ex-
MODEL_ANCESTOR. In addition, string[k] is periments are shown in Table 1. The features are the
provided based not only on parent-child relations buidame as those used in Kudo and Matsumoto (2002).
also on ancestor-descendant relations. An analydis Table 1, HeadW ord means the rightmost con-
example using PARENT-ANCESTOR METHOD istent word in the chunk whose part-of-speech is not
shown in Figure 6. a functional categoryFunctionalW ord means the
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Table 1: Static features used in experiments Table 2: Result of dependency analysis using meth-
ods described in Section 3

-HfTad -VVm»d (su.rfféllce—-forr?, PO)S, POS—SulbI(}:LatnglCEry, Method Dependency Sentence

inflection-type, inflection-form)Functional Wor

Modifier / surface-form, POS, POS-subcategory, inflection-type, Accuracy Accuracy

Modifiee inflection-form), brackets, quotation-marks, PARENT 88.95% 44.87%
zunctuatiz)n-mark)s, position in lsentle):nci(beginning, end) ANCESTOR 87.64% 43.74%

Between two| distance (1,2-5,6-), case-particles, brackets, - 0 0

chunks quotation-marks, punctuation-parks PARENT-ANCESTOR 89.54% 47.38%

modify or not ?

Table 3: Comparison to conventional methods

Feature Method Dependency| Sentence
---[B][B]}--[B] Accuracy | Accuracy

Only Proposed method 88.88% 46.33%

static Kudo and Matsumoto (2002) 88.71% 45.19%

Figure 7: Dynamic features Static + Proposed method 89.43% | 47.94%
Dynamic A,B | Kudo and Matsumoto (2002) 89.19% 46.64%

Proposed method 89.54% 47.38%

Sekine (2000) 87.20% 40.76%

H H H H Original Kudo and Matsumoto (200Q) 89.09% 46.17%
rightmost functional word or the inflectional form of Kudo and Matsumoto (200) 89.20% | 47.53%

the rightmost predicate if there is no functional word Sassano (2004) 89.56% | 48.35%
H w/o Rich 89.19% 47.05%
in the chunk. wio Conj Sassano (2004) 89.41% 47.86%

Next, we explain the dynamic features used in
the experiments. Three types of dynamic features

were used in Kudo and Matsumoto (2002): (Ajnethods. In other words, the accuracy of depen-
the chunks modifying the current candidate modigency analysis improves by utilizing the redundant
fiee, (B) the chunk modified by the current candidatgformation. The improvement is statistically sig-
modifiee, and (C) the chunks modifying the currenificant in the sign-test with 1% significance-level.
candidate modifier. The type C is not available in the Next, we compare the proposed method with
proposed method because the proposed method @@nyentional methods. We compare the proposed
alyzes a sentence backwards unlike Kudo and Matsethod particularly with Kudo and Matsumoto
sumoto (2002). Therefore, we did not use the typg002) with the same feature set. The reasons are
C. We used the type A" and B’ which are recursivgpat Cascaded Chunking Model proposed in Kudo
expansion of type A and B as the dynamic featureg,q matsumoto (2002) is used in a popular Japanese
(Figure 7). The form of functional words or inﬂec'dependency analyzer, CaboChand the compari-

tion was used as a type A feature and,POS and POgan can highlight the effectiveness of our approach
subcategory oH cadWord as a type B’ feature.  pecause we can experiment under the same condi-

tions (e.g., dataset, feature set, learning algorithm).

_ _ . A summary of the comparison is shown in Table 3.
In this section, we show the effectiveness of the pro- topie 3 shows that the proposed method

posed method. First, we compare the three methog§;nerforms conventional methods except Sas-
described in Section 3: PARENT METHOD, AN- g, (2004 while Sassano (2004) used richer fea-
CESTOR METHOD, and PARENT-ANCESTOR yre5 \which are not used in the proposed method,
METHOD. The results are shown in Table 2. Hereg o, a5 features for conjunctive structures based on
dependency accuradg the percentage of COMeCt\,-ohashi and Nagao (1994), features concerning
dependencies (correct parent-child relations in tre€fe leftmost content word in the candidate modi-
in test data), andentence accuradg the percent- fieo The comparison of the proposed method with

age of the sentences in which all the modifiees al€3ssano (2004)'s method without the features of
determined correctly (correctly constructed trees i
test data). Crjll:)lct:éthp{;j/chasen.org/~ taku/software/

Table 2_ shows that PARENT-ANCESTOR 2We have not tested the improvement statistically because
METHOD is more accurate than the other twawe do not have access to the conventional methods.

4.2 Experimental results
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Table 4: Accuracy of dependency analysis on paralFable 5. Comparison between usages of the

lel structures ancestor-descendant relation
Parallel structureg __ Other than Dependency Sentence

parallel structures Accuracy | Accuracy

PARENT 74.18% 91.21%
ANCESTOR 73.24% 90.01% Feature 88.57% 44.71%
PARENT-ANCESTOR 76.29% 91.63% Model 88.88% 46.33%

conjunctive structures (w/o Conj) and without theHence PARENT METHOD can learn appropriate
richer features derived from the words in chunk%ase_p’articles in a modifier of a verb. For exam-

(w/o Rich) suggests that the proposed method is beﬁ;e’ the particle which means “and” does not mod-

verbs. However, it is difficult for ANCESTOR
METHOD to learn the characteristic. Therefore,
both parent-child and ancestor-descendant relations
5.1 Performance on parallel structures are necessary for capturing parallel structures.

ter than or comparable to Sassano (2004)’s metho

5 Discussion

As mentioned in Section 1, the ancestor-descenda,gn2 Discussion on usages of the
relation is supposed to help to capture parallel struc- 9 .

: . . ancestor-descendant relation
tures. In this section, we discuss the performance of
dependency analysis on parallel structures. Parallel the proposed method, MODEANCESTOR,
structures such as those of nouns (e.g., Tom and Kerich judges whether the relation between two
eat hamburgers.) and those of verbs (e.g., Tom eatedes is ancestor-descendant or not, is prepared,
hamburgers and drinks water.), are marked in Kyotand the information on the ancestor-descendant re-
University text corpus. We investigate the accuraclation is directly utilized. On the other hand,
of dependency analysis on parallel structures usirgpnventional methods add the features regarding
the information. the ancestor or descendant chunk to capture the

Table 4 shows that the accuracy on parallel stru@ncestor-descendant relation. In this section, we
tures improves by adding the ancestor-descendagmpirically show that the proposed method utilizes
relation. The improvement is statistically significanthe information on the ancestor-descendant rela-
in the sign-test with 1% significance-level. Table 4ion more effectively than conventional methods.
also shows that error reduction rate on parallel strud-he results in the previous sections could not show
tures by adding the ancestor-descendant relationtide effectiveness because MODIBPARENT and
8.3% and the rate on the others is 4.7%. These shAMODEL_ANCESTOR in the proposed method use
that the ancestor-descendant relation work well ethe features regarding the ancestor-descendant rela-
pecially for parallel structures. tion.

In Table 4, the accuracy on parallel structures Table 5 shows the result of dependency analy-
using PARENT METHOD is slightly better than sis using two types of usages of the information
that using ANCESTOR METHOD, while the dif- on the ancestor-descendant relation. “Feature” indi-
ference is not statistically significant in the sign-cates the conventional usage and “Model” indicates
test. It shows that the parent-child relation is alsour usage. Please note that MODBPARENT and
necessary for capturing the characteristics of pardiAODEL_ANCESTOR used in “Model” do not use
lel structures. Consider the following two instanceshe features regarding the ancestor-descendant rela-
in Figure 1 as an example: the ordered pair of IDion. Table 5 shows that our usage is more effec-
3(pizza-and) and I3 (ate), and the ordered pair of tive than the conventional usage. This is because
ID 4(salad-accusative) and IB. In ANCESTOR our usage takes advantage of redundancy in terms
METHOD, both instances are positive instances. Oaf a coding problem as described in the next sec-
the other hand, only the ordered pair of IDand tion. Moreover, the learned features through the pro-
ID 5 is a positive instance in PARENT METHOD. posed method would include more information than
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ad-hoc features that were manually added. The codewords in PARENT-ANCESTOR
_ _ METHOD are the concatenation of the bits based on
5.3 Proposed method in terms of a coding both parent-child relations and ancestor-descendant
problem relations. Consequently, the distances between
In a coding problem, redundancy is effectively uti-codewords in PARENT-ANCESTOR METHOD are
lized so that information can be transmitted moréonger than those in PARENT METHOD or AN-
properly (Mackay, 2003). This idea is the same a€ESTOR METHOD. From (1), the error-correcting
the main point of the proposed method. In this sea@bility is expected to be higher. In terms of a coding
tion, we discuss the proposed method in terms of groblem, the proposed method exploits the essence
coding problem. of (1), and utilizes ancestor-descendant relations
In a coding problem, when encoding informationgffectively.
the redundant bits are attached so that the added res\e assume that every bit added as redundancy is

dundancy helps errors be corrected. Moreover, th&rrectly transmitted for the above-mentioned dis-
following fact is known (Mackay, 2003): cussion. However, some of these added bits may be
transmitted wrongly in the proposed method. In that
the error-correcting ability is higher when the diS-Case, the added redundancy may not he|p errors be
tances between the codewords are longer. (1)  corrected than cause an error. In the experiments of
dependency analysis, the advantage prevails against
For example, consider the following three typeshe disadvantage because accuracy of each bit of the
of encodings: (A) two events are encoded respegodeword is 94.5%, which is high value.
tively into the codewords-1 and 1 (the simplest
encoding), (B) into the codewords-1, —1,1) and = pigcyssion on applicability of existing codes
(1,1,1) (hamming distance:2), and (C) into the
codewords(—1,—1,—1) and (1,1,1) (hamming A number of approaches use Error Correcting
distance:3). Please note that the hamming distanceitput Coding (ECOC) (Dietterich and Bakiri,
defined as the number of bits that differ between tw995; Ghani, 2000) for solving multiclass classifica-
codewords. In (A), the correct information is nottion problems as a coding problem. The approaches
transmitted if a one-bit error occurs. In (B), if an er-2ssign a unique:-bit codeword to each class, and
ror occurs in the third bit, the error can be correctethenn classifiers are trained to predict each bit. The
by assuming that the original codeword is closediredicted class is the one whose codeword is clos-
to the received codeword. In (C), any one-bit erroest to the codeword produced by the classifiers. The
can be corrected. Thus, (B) has the higher errofodewords in these approaches are designed to be
correcting ability than (A), and (C) has the higheivell-separated from one another and have sufficient
error-correcting ab|||ty than (B) error-correcting ablllty (e.g., BCH COde).

We explain the problem of determining the par- However, these existing codewords are not ap-
ent node of a target node in the proposed method plicable to the proposed method. In the proposed
terms of the coding theory. A sequence of numbenmsethod, we have two models respectively derived
corresponds to a codeword. It is assumed that tHiem the parent-child and ancestor-descendant rela-
codeword which expresses the correct parent nodien, which can be interpreted in terms of both lin-
of the target node is transmitted. The codeword iguistic aspects and tree structures. If we use ECOC,
transmitted through the learned model through chamowever, pairs of nodes are divided into positive and
nels to the receiver. The receiver infers the paremtegative instances arbitrarily. Since this division
node from the received sequeneer-(ng_output) in  lacks linguistic or structural meaning, training in-
consideration of the codewords that can be transmitances will lose consistency and any proper model
ted (string[k]). Therefore, error-correcting ability, will not be obtained. Moreover, we have to prepare
the ability of correcting the errors in predictions indifferent models for each stage in tree construction,
step 3, is dependent on the distances between thecause the length of the codewords vary according
codewords {tring[k)). to the number of nodes in the current tree.
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Table 6: Result of dependency analvsis using var Y E 1 HOPD in any distance functions. It means that
- dep Y y g {he effectiveness of the proposed method does not
ous distance functions

Distance Dependency Sentence depend on distance functions. The result using the
. Method . . . .
Function Accuracy | Accuracy hamming distance is much worse than using the
PARENT(n) 85.05% | 3535%  qgther distance functions. It means that using the
PARENT(f) 85.48% | 39.87% - )
_ ANCESTOR(n) | 87.54% | 43.42% scores output by SVMs as the likeliness of a certain
Hamming | - ANCESTOR() 86.97% | 43.18% relation improves the accuracy. The results of (n)

Proposed method(n) 88.36% | 43.74% and (f) in the hamming distance are different. It is

Proposed method(f) 88.45% 44.79% : . .
SARENT 880506 | 2467% because the hamming distances are always positive

Cosine / ANCESTOR 87.64% | 43.74% integers and ties are more likely to happen. Table
Euclidean| Proposed method| 89.54% | 47.38% 6 also shows that the result of the cosine or the eu-
';ﬁ';'é"\\';((?)) 22-;32;0 jj-?ggf clidean distance is better than that of the manhattan
. 0 . 0 .
Manhattan) — \\cesTOR 87.64% | 4374%  distance.

Proposed method| 89.24% 46.89%

6 Conclusions

_ _ We proposed a novel method for Japanese depen-
5.4 Influence of distance functions dency analysis, which determines the modifiee of
In this section, we compare the performance of deeach chunk based on the likeliness not only of
pendency analysis with various distance functionghe parent-child relation but also of the ancestor-
hamming distance, euclidean distance, cosine didescendant relation in a dependency tree. The
tance, and manhattan distance. These distance fuagicestor-descendant relation makes it possible to
tions between sequences="z; zo ... x,” and capture the parallel structures in more depth. In
Y="y1 yo ... y,"” are defined as follows: terms of a coding theory, the proposed method
boosts error-correcting ability by adding the redun-

e Ham(X,Y) = > (1 —d6(xs,u4)), dant bits based on ancestor-descendant relations and

e Euc(X,Y) = \/m increasing the distance between two codewords. Ex-
., perimental results showed the effectiveness of the
e Cos(X,Y)=1 — nzz':; o —, proposed method. In addition, the results showed
NIV DI that the proposed method outperforms conventional

e Man(X,Y) =", |z — v |. methods.

Future work includes the following. In this pa-

In the hamming distancestring-output is con- per, we use the features proposed in Kudo and Mat-
verted to a binary sequence with their elements beymoto (2002). By extracting new features that are
ing of —1 or 1. The cosine distance is equivalent tongre suitable for the ancestor-descendant relation,
the Euclidean distance under the condition that thge can further improve our method. The features
absolute value of every component af-ing(k] is  ysed by Sassano (2004) are promising as well. We
L. are also planning to apply the proposed method to

The results of dependency analysis using thesgher tasks which need to construct tree structures.
distance functions are shown in Table 6. In Tablgqg, example, (zero-) anaphora resolution is consid-

6, ‘(n)’ means that the nearest chunk in a sentenGged as a good candidate task for application.
is selected as the modifiee in order to break a tie,

which happens when the number of sequences satis-

fying the condition in step 5 is two or more, while References
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