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Abstract 

Reordering model is important for the sta-

tistical machine translation (SMT). Current 

phrase-based SMT technologies are good at 

capturing local reordering but not global 

reordering. This paper introduces syntactic 

knowledge to improve global reordering 

capability of SMT system. Syntactic know-

ledge such as boundary words, POS infor-

mation and dependencies is used to guide 

phrase reordering. Not only constraints in 

syntax tree are proposed to avoid the reor-

dering errors, but also the modification of 

syntax tree is made to strengthen the capa-

bility of capturing phrase reordering. Fur-

thermore, the combination of parse trees 

can compensate for the reordering errors 

caused by single parse tree. Finally, expe-

rimental results show that the performance 

of our system is superior to that of the 

state-of-the-art phrase-based SMT system. 

1 Introduction 

In the last decade, statistical machine translation 

(SMT) has been widely studied and achieved good 

translation results. Two kinds of SMT system have 

been developed, one is phrase-based SMT and the 

other is syntax-based SMT.  

In phrase-based SMT systems (Koehn et al., 

2003; Koehn, 2004), foreign sentences are firstly 

segmented into phrases which consists of adjacent 

words. Then source phrases are translated into tar-

get phrases respectively according to knowledge 

usually learned from bilingual parallel corpus. Fi-

nally the most likely target sentence based on a 

certain statistical model is inferred by combining 

and reordering the target phrases with the aid of 

search algorithm. On the other hand, syntax-based 

SMT systems (Liu et al., 2006; Yamada et al., 

2001) mainly depend on parse trees to complete 

the translation of source sentence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A reordering example 

 

As studied in previous SMT projects, language 

model, translation model and reordering model are 

the three major components in current SMT sys-

tems. Due to the difference between the source and 

target languages, the order of target phrases in the 

target sentence may differ from the order of source 

phrases in the source sentence.  To make the trans-

lation results be closer to the target language style, 

a mathematic model based on the statistic theory is 

constructed to reorder the target phrases. This sta-

tistic model is called as reordering model. As 

shown in Figure 1, the order of the translations of 

“欧元” and “的” is changed. The order of the 
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translation of “欧元/的” and “大幅/升值” is al-

tered as well. The former reordering case with the 

smaller distance is usually referred as local reor-

dering and the latter with the longer distance reor-

dering as global reordering. Phrase-based SMT 

system can effectively capture the local word reor-

dering information which is common enough to be 

observed in training data. But it is hard to model 

global phrase reordering. Although syntactic 

knowledge used in syntax-based SMT systems can 

help reorder phrases, the resulting model is usually 

much more complicated than a phrase-based sys-

tem. 

There have been considerable amount of efforts 

to improve the reordering model in SMT systems, 

ranging from the fundamental distance-based dis-

tortion model (Och and Ney, 2004; Koehn et al., 

2003), flat reordering model (Wu, 1996; Zens et al., 

2004; Kumar et al., 2005), to lexicalized reordering 

model (Tillmann, 2004; Kumar et al., 2005; Koehn 

et al., 2005), hierarchical phrase-based model 

(Chiang, 2005), and maximum entropy-based 

phrase reordering model (Xiong et al., 2006). Due 

to the absence of syntactic knowledge in these sys-

tems, the ability to capture global reordering know-

ledge is not powerful. Although syntax-based SMT 

systems (Yamada et al., 2001; Quirk et al., 2005; 

Liu et al., 2006) are good at modeling global reor-

dering, their performance is subject to parsing er-

rors to a large extent. 

In this paper, we propose a new method to im-

prove reordering model by introducing syntactic 

information. Syntactic knowledge such as boun-

dary of sub-trees, part-of-speech (POS) and depen-

dency relation is incorporated into the SMT system 

to strengthen the ability to handle global phrase 

reordering. Our method is different from previous 

syntax-based SMT systems in which the translation 

process was modeled based on specific syntactic 

structures, either phrase structures or dependency 

relations. In our system, syntactic knowledge is 

used just to decide where we should combine adja-

cent phrases and what their reordering probability 

is. For example, according to the syntactic infor-

mation in Figure 1, the phrase translation combina-

tion should take place between “大幅” and “升值” 

rather than between “的” and “大幅”. Moreover, 

the non-monotone phrase reordering should occur 

between “欧元/的” and “大幅/升值” rather than 

between “欧元/的” and “大幅”. We train a maxi-

mum entropy model, which is able to integrate rich 

syntactic knowledge, to estimate phrase reordering 

probabilities. To enhance the performance of 

phrase reordering model, some modification on the 

syntax trees are also made to relax the phrase reor-

dering constraints. Additionally, the combination 

of other kinds of syntax trees is introduced to over-

come the deficiency of single parse tree. The expe-

rimental results show that the performance of our 

system is superior to that of the state-of-art phrase-

based SMT system.  

The roadmap of this paper is: Section 2 gives the 

related work. Section 3 introduces our model.  Sec-

tion 4 explains the generalization of reordering 

knowledge. The procedures of training and decod-

ing are described in Section 5 and Section 6 re-

spectively. The experimental results are shown in 

Section 7. Section 8 concludes the paper. 

2 Related Work  

The Pharaoh system (Koehn et al., 2004) is well 

known as the typical phrase-based SMT system. Its 

reordering model is designed to penalize transla-

tion according to jump distance regardless of lin-

guistic knowledge. This method just works well for 

language pairs that trend to have similar word-

orders and it has nothing to do with global reorder-

ing. 

A straightforward reordering model used in (Wu, 

1996; Zens et al., 2004; Kumar et al., 2005) is to 

assign constant probabilities to monotone reorder-

ing and non-monotone reordering, which can be 

flexible depending on the different language pairs. 

This method is also adopted in our system for non-

peer phrase reordering. 

The lexicalized reordering model was studied in 

(Tillmann, 2004; Kumar et al., 2005; Koehn et al., 

2005). Their work made a step forward in integrat-

ing linguistic knowledge to capture reordering. But 

their methods have the serious data sparseness 

problem. 

Beyond standard phrase-based SMT system, a 

CKY style decoder was developed in (Xiong et al., 

2006). Their method investigated the reordering of 

any two adjacent phrases. The limited linguistic 

knowledge on the boundary words of phrases is 

used to construct the phrase reordering model.  The 

basic difference to our method is that no syntactic 

knowledge is introduced to guide the global phrase 

reordering in their system. Besides boundary 
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words, our phrase reordering model also integrates 

more significant syntactic knowledge such as POS 

information and dependencies from the  syntax tree, 

which can avoid some intractable phrase reorder-

ing errors. 

A hierarchical phrase-based model was pro-

posed by (Chiang, 2005). In his method, a syn-

chronous CFG is used to reorganize the phrases 

into hierarchical ones and grammar rules are auto-

matically learned from corpus. Different from his 

work, foreign syntactic knowledge is introduced 

into the synchronous grammar rules in our method 

to restrict the arbitrary phrase reordering.   

Syntax-based SMT systems (Yamada et al., 

2001; Quirk et al., 2005; Liu et al., 2006) totally 

depend on syntax structures to complete phrase 

translation. They can capture global reordering by 

simply swapping the children nodes of a parse tree. 

However, there are also reordering cases which do 

not agree with syntactic structures. Furthermore, 

their model is usually much more complex than a 

phrase-based system. Our method exactly attempts 

to integrate the advantages of phrase-based SMT 

system and syntax-based SMT system to improve 

the phrase reordering model. Phrase translation in 

our system is independent of syntactic structures. 

3 The Model 

In our work, we focus on building a better reorder-

ing model with the help of source parsing informa-

tion. Although we borrow some fundamental ele-

ments from a phrase-based SMT system such as 

the use of bilingual phrases as basic translation unit, 

we are more interested in introducing syntactic 

knowledge to strengthen the ability to handle glob-

al reordering phenomena in translation.  

3.1 Definitions 

Given a foreign sentence f and its syntactic parse 

tree T, each leaf in T corresponds to a single word 

in f and each sub-tree of T exactly covers a phrase 

fi in f which is called as linguistic phrase.  Except 

linguistic phrases, any other phrase is regarded as 

non-linguistic phrase. The height of phrase fi is 

defined as the distance between the root node of T 

and the root node of the maximum sub-tree which 

exactly covers fi. For example, in Figure 1 the 

phrase “大幅” has the maximum sub-tree rooting 

at ADJP and its height is 3. The height of phrase 

“的” is 4 since its maximum sub-tree roots at 

ADBP instead of AD. If two adjacent phrases have 

the same height, we regard them as peer phrases.  

In our model, we make use of bilingual phrases 

as well, which refer to source-target aligned phrase 

pairs extracted using the same criterion as most 

phrase-based systems (Och and Ney, 2004). 

3.2 Model 

Similar to the work in Chiang (2005), our transla-

tion model can be formulated as a weighted syn-

chronous context free grammar derivation process. 

Let D be a derivation that generates a bilingual 

sentence pair f, e, in which f is the given source 

sentence, the statistical model that is used to pre-

dict the translation probability p(e|f) is defined over 

Ds as follows: 

𝑝 𝑒 𝑓 ∝ 𝑝 𝐷 ∝ 𝑝𝑙𝑚  𝑒 𝜆𝑙𝑚

×   𝜙𝑖 𝑋 → 𝛾, 𝛼 𝜆𝑖

𝑋→𝛾 ,𝛼∈𝐷

 

𝑖

 

where plm(e) is the language model, i(X ,) 
is a feature function defined over the derivation 

rule X,, and i is its weight.  

Although theoretically it is ideal for translation 

reorder modeling by constructing a synchronous 

context free grammar based on bilingual linguistic 

parsing trees, it is generally a very difficult task in 

practice. In this work we propose to use a small 

synchronous grammar constructed on the basis of 

bilingual phrases to model translation reorder 

probability and constraints by referring to the 

source syntactic parse trees. In the grammar, the 

source / target words serve as terminals, and the 

bilingual phrases and combination of bilingual 

phrases are presented with non-terminals. There 

are two non-terminals in the grammar except the 

start symbol S: Y and Z. The general derivation 

rules are defined as follows: 

a) Derivations from non-terminal to non-

terminals are restricted to binary branching 

forms; 

b) Any non-terminals that derives a list of termin-

als, or any combination of two non-terminals, 

if the resulting source string won’t cause any 

cross-bracketing problems in the source parse 

tree (it exactly corresponds to a linguistic 

phrase in binary parse trees), are reduced to Y; 

c) Otherwise, they are reduced to Z. 

Table 1 shows a complete list of derivation rules 

in our synchronous context grammar. The first nine 

grammar rules are used to constrain phrase reor-
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dering during phrase combination. The last two 

rules are used to represent bilingual phrases. Rule 

(10) is the start grammar rule to generate the entire 

sentence translation.  

 

Rule Name Rule Content 

Rule (1) YY1Y2, Y1Y2 

Rule (2) YY1Y2, Y2Y1 

Rule (3) YZ1Z2, Z1Z2 

Rule (4) YY1Z2,Y1Z2 

Rule (5) YZ1Y2, Z1Y2 

Rule (6) ZY1Z2, Y1Z2 

Rule (7) ZZ1Y2, Z1Y2 

Rule (8) ZZ1Z2, Z1Z2 

Rule (9) ZY1Y2, Y1Y2 

Rule (10) SY1,Y1 

Rule (11) ZZ1, Z1 

Rule (12) YY1,Y1 

 

Table 1: Synchronous grammar rules 

 

Rule (1) and Rule (2) are only applied to two ad-

jacent peer phrases. Note that, according to the 

constraints of foreign syntactic structures, only 

Rule (2) among all rules in Table 1 can be applied 

to conduct non-monotone phrase reordering in our 

framework. This can avoid arbitrary phrase reor-

dering. For example, as shown in Figure 1, Rule (1) 

is applied to the monotone combination of phrases 

“欧元” and “的”, and Rule (2) is applied to the 

non-monotone combination of phrases “欧元/的” 

and “大幅 /升值”. However, the non-monotone 

combination of “的” and “大幅” is not allowed in 

our method since there is no proper rule for it.  

Non-linguistic phrases are involved in Rule 

(3)~(9). We do not allow these grammar rules for 

non-monotone combination of non-peer phrases, 

which really harm the translation results as proved 

in experimental results. Although these rules vi-

olate the syntactic constraints, they not only pro-

vide the option to leverage non-linguistic transla-

tion knowledge to avoid syntactic errors but also 

take advantage of phrase local reordering capabili-

ties. Rule (3) and Rule (8) are applied to the com-

bination of two adjacent non-linguistic phrases. 

Rule (4)~(7) deal with the situation where one is a 

linguistic phrase and the other is a non-linguistic 

phrase. Rule (9) is applied to the combination of 

two adjacent linguistic phrases but their combina-

tion result is not a linguistic phrase.  

Rule (11) and Rule (12) are applied to generate 

bilingual phrases learned from training corpus. 

Table 2 demonstrates an example how these 

rules are applied to translate the foreign sentence 

“欧元/的/大幅/升值” into the English sentence 

“the significant appreciation of the Euro”. 

 

Step Partial derivations Rule 

1 SY1, Y1   (10) 

2 Y2Y3, Y3Y2 (2) 

3 Y4Y5Y3, Y3Y5Y4 (2) 

4 欧元 Y5Y3, Y3Y5 the Euro (12) 

5 欧元 的 Y3, Y3 of the Euro (12) 

6 欧元 的 Y6Y7, Y6Y7 of the Euro (1) 

7 欧元 的 大幅 Y7, the significant 

Y7 of  the Euro 

(12) 

8 欧元 的 大幅 升值, the signifi-

cant appreciation of  the Euro 

(12) 

 

Table 2: Example of application for rules  

 

However, there are always other kinds of bilin-

gual phrases extracted directly from training cor-

pus, such as 欧元, the Euro and 的 大幅 升

值, ’s significant appreciation, which can produce 

different candidate sentence translations. Here, the 

phrase “的 大幅 升值” is a non-linguistic phrase. 

The above derivations can also be rewritten as 

SY1, Y1Y2Z3,Y2Z3 欧 元 Z3, the Euro 

Z3欧元的 大幅 升值, the Euro ’s significant 

appreciation, where Rule (10), (4), (12) and (11) 

are applied respectively. 

3.3 Features 

Similar to the default features in Pharaoh (Koehn, 

Och and Marcu 2003), we used following features 

to estimate the weight of our grammar rules. Note 
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that different rules may have different features in 

our model. 

 The lexical weights plex(|) and plex(|) esti-

mating how well the words in  translate the 

words in . This feature is only applicable to 

Rule (11) and Rule (12). 

 The phrase translation weights pphr(|) and 

pphr(|) estimating how well the terminal 

words of  translate the terminal words of , 
This feature is only applicable to Rule (11) and 

Rule (12). 

 A word penalty exp(||), where || denotes the 

count of terminal words of . This feature is 

only applicable to Rule (11) and Rule (12). 

 A penalty exp(1) for grammar rules analogous 

to Pharaoh’s penalty which allows the model to 

learn a preference for longer or shorter deriva-

tions. This feature is applicable to all rules in 

Table 1. 

 Score for applying the current rule. This feature 

is applicable to all rules in Table 1. We will ex-

plain the score estimation in detail in Section 

3.4. 

3.4 Scoring of Rules 

Based on the syntax constraints and involved non-

terminal types, we separate the grammar rules into 

three groups to estimate their application scores 

which are also treated as reordering probabilities.  

For Rule (1) and Rule (2), they strictly comply 

with the syntactic structures. Given two peer 

phrases, we have two choices to use one of them. 

Thus, we use maximum entropy (ME) model algo-

rithm to estimate their reordering probabilities sep-

arately, where the boundary words of foreign 

phrases and candidate target translation phrases, 

POS information and dependencies are integrated 

as features. As listed in Table 3, there are totally 

twelve categories of features used to train the ME 

model. In fact, the probability of Rule (1) is just 

equal to the supplementary probability of Rule (2), 

and vice versa. 

For Rule (3)~(9), according to the syntactic 

structures, their application is determined since 

there is only one choice to complete reordering, 

which is similar to the “glue rules” in Chiang 

(2005). Due to the appearance of non-linguistic 

phrases, non-monotone phrase reordering is not 

allowed in these rules. We just assign these rules a 

constant score trained using our implementation of 

Minimum Error Rate Training (Och, 2003b), 

which is 0.7 in our system. 

For Rule (10)~(12), they are also determined 

rules since there is no other optional rules compet-

ing with them. Constant score is simply assigned to 

them as well, which is 1.0 in our system. 

 

Fea. Description 

LS1 First word of first foreign phrase 

LS2 First word of second foreign phrase 

RS1 Last word of first foreign phrase 

RS2 Last word of second foreign phrase 

LT1 First word of first target phrase 

LT2 First word of second target phrase 

RT1 Last word of first target phrase 

RT2 Last word of second target phrase 

LPos 
POS of the node covering first foreign 

phrase 

RPos 
POS of the node covering second foreign 

phrase  

Cpos 
POS of the node covering the combina-

tion of foreign phrases 

DP 
Dependency between the nodes covering 

two single foreign phrases respectively 

 

Table 3: Feature categories used for ME model 

4 The Generalization of Reordering 

Knowledge 

4.1 Enriching Parse Trees 

The grammar rules proposed in Section 3 are only 

applied to binary syntax tree nodes. For n-ary syn-

tax trees (n>2), some modification is needed to 

generate more peer phrases. As shown in Figure 

2(a), the syntactic tree of Chinese sentence “广东

省 / 高新技术 / 产品 / 出口 ” (Guangdong/high-

tech/products/export), parsed by the Stanford Pars-

er (Klein, 2003), has a 3-ary sub-tree. Referring to 

its English translation result “export of high-tech 

products in Guangdong”, we understand there 

should be a non-monotone combination between 

the phrases “广东省” and “高新技术/产品”. How-

ever, “高新技术/产品” is not a linguistic phrase 
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though its component phrases “高新技术” and “产

品” are peer phrases. To avoid the conflict with the 

Rule (2), we just add some extra virtual nodes in 

the n-ary sub-trees to make sure that only binary 

sub-trees survive in the modified parse tree. Figure 

2(b) is the modification result of the syntactic tree 

from Figure 2(a), where two virtual nodes with the 

new distinguishable POS of M are added.  

In general, we add virtual nodes for each set of 

the continuous peer phrases and let them have the 

same height. Thus, for a n-ary sub-tree, there are 

 
 1
1 )(n

i in = (n1)
2
/2 virtual nodes being added 

where n>2. The phrases exactly covered by the 

virtual nodes are called as virtual peer phrases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Example of syntax tree modification 

4.2 Combination of Parse Trees 

It is well known that parse errors in syntactic trees 

always are inescapable even if the state-of-the-art 

parser is used.  Incorrect syntactic knowledge may 

harm the reordering probability estimation. To mi-

nimize the impact of parse error of a single tree, 

more parse trees are introduced. To support the 

combination of parse trees, the synchronous 

grammar rules are applied independently, but they 

will compete against each other with the effect of 

other models such as language model. 

In our system, we combine the parse trees gen-

erated respectively by Stanford parser (Klein, 2003) 

and a dependency parser developed by (Zhou, 

2000). Compared with the Stanford parser, the de-

pendency parser only conducts shallow syntactic 

analysis. It is powerful to identify the base NPs and 

base VPs and their dependencies. Additionally, 

dependency parser runs much faster. For example, 

it took about three minutes for the dependency 

parser to parse one thousand sentences with aver-

age length of 25 words, but the Stanford parser 

needs about one hour to complete the same work. 

More importantly, as shown in the experimental 

results, the dependency parser can achieve the 

comparable quality of final translation results with 

Stanford parser in our system.  

5 The Decoder 

We developed a CKY style decoder to complete 

the sentence translation. A two-dimension array 

CA is constructed to store all the local candidate 

phrase translation and each valid cell CAij in CA 

corresponds to a foreign phrase where i is the 

phrase start position and j is the phrase end posi-

tion. The cells in CA are filled in a bottom-up way. 

Firstly we fill in smaller cells with the translation 

in bilingual phrases learned from corpus. Then the 

candidate translation in the larger cell CAij is gen-

erated based on the content in smaller adjacent 

cells CAik and CAk+1j with the monotone combina-

tion and non-monotone combination, where ikj. 

To reduce the cost of system resources, the well 

known pruning methods, such as histogram prun-

ing, threshold pruning and recombination, are used 

to only keep the top N candidate translation in each 

cell.  

6 Training 

Similar to most state-of-the-art phrase-based SMT 

systems, we use the SRI toolkit (Stolcke, 2002) for 

language model training and Giza++ toolkit (Och 

and Ney, 2003) for word alignment. For reordering 

model training, two kinds of parse trees for each 

foreign sentence in the training corpus were ob-

tained through the Stanford parser (Klein, 2003) 

and a dependency parser (Zhou, 2000). After that, 

we picked all the foreign linguistic phrases of the 

same sentence according to syntactic structures. 

Based on the word alignment results, if the aligned 

target words of any two adjacent foreign linguistic 

phrases can also be formed into two valid adjacent 

phrase according to constraints proposed in the 

phrase extraction algorithm by Och (2003a), they 

will be extracted as a reordering training sample. 

Finally, the ME modeling toolkit developed by 

Zhang (2004) is used to train the reordering model 

over the extracted samples. 
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7 Experimental Results and Analysis 

We conducted our experiments on Chinese-to-

English translation task of NIST MT-05 on a 

3.0GHz system with 4G RAM memory. The bilin-

gual training data comes from the FBIS corpus. 

The Xinhua news in GIGAWORD corpus is used 

to train a four-gram language model. The devel-

opment set used in our system is the NIST MT-02 

evaluation test data.  

For phrase extraction, we limit the maximum 

length of foreign and English phrases to 3 and 5 

respectively. But there is no phrase length con-

straint for reordering sample extraction. About 

1.93M and 1.1M reordering samples are extracted 

from the FBIS corpus based on the Stanford parser 

and the dependency parser respectively. To reduce 

the search space in decoder, we set the histogram 

pruning threshold to 20 and relative pruning thre-

shold to 0.1.  

In the following experiments, we compared our 

system performance with that of the other state-of-

the-art systems. Additionally, the effect of some 

strategies on system performance is investigated as 

well. Case-sensitive BLEU-4 score is adopted to 

evaluate system performance.  

7.1 Comparing with Baseline SMT system 

Our baseline system is Pharaoh (Koehn, 2004). 

Xiong’s system (Xiong, et al., 2006) which used 

ME model to train the reordering model is also 

regarded as a competitor. To have a fair compari-

son, we used the same language model and transla-

tion model for these three systems. The experimen-

tal results are showed in Table 4. 

 

System Bleu Score 

Pharaoh 0.2487 

Xiong’s System 0.2616 

Our System 0.2737 

Table 4: Performance against baseline system 

 

These three systems are the same in that the fi-

nal sentence translation results are generated by the 

combination of local phrase translation. Thus, they 

are capable of local reordering but not global reor-

dering. The phrase reordering in Pharaoh depends 

only on distance distortion information which does 

not contain any linguistic knowledge. The experi-

mental result shows that the performance of both 

Xiong’s system and our system is better than that 

of Pharaoh. It proves that linguistic knowledge can 

help the global reordering probability estimation. 

Additionally, our system is superior to Xiong’s 

system in which only use phrase boundary words 

to guide global reordering. It indicates that syntac-

tic knowledge is more powerful to guide global 

reordering than boundary words. On the other hand, 

it proves the importance of syntactic knowledge 

constraints in avoiding the arbitrary phrase reorder-

ing.  

7.2 Syntactic Error Analysis 

Rule (3)~(9) in Section 3 not only play the role to 

compensate for syntactic errors, but also take the 

advantage of the capability of capturing local 

phrase reordering. However, the non-monotone 

combination for non-peer phrases is really harmful 

to system performance. To prove these ideas, we 

conducted experiments with different constrains.  

 

Constraints Bleu Score 

All rules in Table 1 used  0.2737 

Allowing the non-monotone 

combination of non-peer phrases 

0.2647 

Rule (3)~(9) are prohibited 0.2591 

Table 5:  About non-peer phrase combination 

 

From the experimental results shown in Table 5, 

just as claimed in other previous work, the combi-

nation between non-linguistic phrases is useful and 

cannot be abandoned. On the other hand, if we re-

lax the constraint of non-peer phrase combination 

(that is, allowing non-monotone combination for 

on-peer phrases), some more serious errors in non-

syntactic knowledge is introduced, thereby degrad-

ing performance from 0.2737 to 0.2647. 

7.3 Effect of Virtual Peer Phrases 

As discussed in Section 4, for n-ary nodes (n>2) in 

the original syntax trees, the relationship among n-

ary sub-trees is always not clearly captured. To 

give them the chance of free reordering, we add the 

virtual peer nodes to make sure that the combina-

tion of a set of peer phrases can still be a peer 

phrase. An experiment was done to compare with 

the case where the virtual peer nodes were not 

added to n-ary syntax trees. The Bleu score 
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dropped to 26.20 from 27.37, which shows the vir-

tual nodes have great effect on system performance. 

7.4 Effect of Mixed Syntax Trees 

In this section, we conducted three experiments to 

investigate the effect of constituency parse tree and 

dependency parse tree. Over the same platform, we 

tried to use only one of them to complete the trans-

lation task. The experimental results are shown in 

Table 6.  

Surprisingly, there is no significant difference in 

performance. The reason may be that both parsers 

produce approximately equivalent parse results. 

However, the combination of syntax trees outper-

forms merely only one syntax tree. This suggests 

that the N-best syntax parse trees may enhance the 

quality of reordering model. 

 

Situation Bleu Score 

Dependency parser only 0.2667 

Stanford parser only 0.2670 

Mixed parsing trees 0.2737 

 

Table 6: Different parsing tree 

8 Conclusion and Future Work 

In this paper, syntactic knowledge is introduced 

to capture global reordering of SMT system. This 

method can not only inherit the advantage of local 

reordering ability of standard phrase-based SMT 

system, but also capture the global reordering as 

the syntax-based SMT system. The experimental 

results showed the effectiveness of our method. 

In the future work, we plan to improve the reor-

dering model by introducing N-best syntax trees 

and exploiting richer syntactic knowledge. 
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